Skip to main content

Abstract

Stereotactic body radiotherapy (SBRT) is a noninvasive method to deliver high doses of precision radiotherapy to small tumors in the body using novel technologies developed over the last 15 years. Since its inception, this approach was initially developed to shorten therapy for patients with severe limitations making more prolonged courses of radiation a significant burden but investigators have discovered that this treatment not only is more efficacious than conventional therapy but also has lower side effect profile. In fact, the outcomes are so favorable that several cooperative groups are now challenging the paradigm that surgery is the standard of care for lung cancer. Inside this chapter, the authors paint the picture of the current landscape of SBRT and the important steps needed to consider as a clinical SBRT program is developed. This includes the definition of target volumes, the mechanism of action, patient selection, the appropriate use of immobilization, motion management, image guidance, and simulation. In addition, the last several sections try to go through the clinical data for the most commonly treated subsites with SBRT and discuss the potential future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kavanagh B, Timmerman R. Stereotactic body radiation therapy. Philadelphia: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  2. Potters L, Steinberg M, Rose C, Timmerman R, Ryu S, Hevezi JM, et al. American Society for Therapeutic Radiology and Oncology and American College of Radiology practice guideline for the performance of stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2004;60(4):1026–32.

    Article  PubMed  Google Scholar 

  3. Hamilton AJ, Lulu BA. A prototype device for linear accelerator-based extracranial radiosurgery. Acta Neurochir Suppl. 1995;63:40–3.

    CAS  PubMed  Google Scholar 

  4. Lax I, Blomgren H, Naslund I, Svanstrom R. Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol. 1994;33(6):677–83.

    Article  CAS  PubMed  Google Scholar 

  5. Blomgren H, Lax I, Naslund I, Svanstrom R. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol. 1995;34(6):861–70.

    Article  CAS  PubMed  Google Scholar 

  6. Timmerman R, Papiez L, McGarry R, Likes L, DesRosiers C, Frost S, et al. Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest. 2003;124(5):1946–55.

    Article  PubMed  Google Scholar 

  7. McGarry RC, Papiez L, Williams M, Whitford T, Timmerman RD. Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: phase I study. Int J Radiat Oncol Biol Phys. 2005;63(4):1010–5.

    Article  PubMed  Google Scholar 

  8. Timmerman R, McGarry R, Yiannoutsos C, Papiez L, Tudor K, DeLuca J, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol. 2006;24(30):4833–9.

    Article  PubMed  Google Scholar 

  9. Fakiris AJ, McGarry RC, Yiannoutsos CT, Papiez L, Williams M, Henderson MA, et al. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys. 2009;75(3):677–82.

    Article  PubMed  Google Scholar 

  10. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303(11):1070–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Timmerman RD. Surgery versus stereotactic body radiation therapy for early-stage lung cancer: who’s down for the count? J Clin Oncol. 2010;28(6):907–9.

    Article  PubMed  Google Scholar 

  12. Mehta M, Scrimger R, Mackie R, Paliwal B, Chappell R, Fowler J. A new approach to dose escalation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2001;49(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  13. Fowler JF. Linear quadratics is alive and well: in regard to Park et al. (Int J Radiat Oncol Biol Phys 2008;70:847–852). Int J Radiat Oncol Biol Phys. 2008;72(3):957; author reply 8.

    Google Scholar 

  14. Fowler JF. Review: total doses in fractionated radiotherapy—implications of new radiobiological data. Int J Radiat Biol Relat Stud Phys Chem Med. 1984;46(2):103–20.

    Article  CAS  PubMed  Google Scholar 

  15. Hayman JA, Martel MK, Ten Haken RK, Normolle DP, Todd III RF, Littles JF, et al. Dose escalation in non-small-cell lung cancer using three-dimensional conformal radiation therapy: update of a phase I trial. J Clin Oncol. 2001;19(1):127–36.

    CAS  PubMed  Google Scholar 

  16. Narayan S, Henning GT, Ten Haken RK, Sullivan MA, Martel MK, Hayman JA. Results following treatment to doses of 92.4 or 102.9 Gy on a phase I dose escalation study for non-small cell lung cancer. Lung Cancer. 2004;44(1):79–88.

    Article  PubMed  Google Scholar 

  17. Wulf J, Hadinger U, Oppitz U, Thiele W, Ness-Dourdoumas R, Flentje M. Stereotactic radiotherapy of targets in the lung and liver. Strahlenther Onkol. 2001;177(12):645–55.

    Article  CAS  PubMed  Google Scholar 

  18. Park C, Papiez L, Zhang S, Story M, Timmerman RD. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(3):847–52.

    Article  PubMed  Google Scholar 

  19. Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005;8(2):89–91.

    Article  CAS  PubMed  Google Scholar 

  20. Grills IS, Mangona VS, Welsh R, Chmielewski G, McInerney E, Martin S, et al. Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol. 2010;28(6):928–35.

    Article  PubMed  Google Scholar 

  21. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–4.

    Article  CAS  PubMed  Google Scholar 

  22. Franzke A, Buer J, Probst-Kepper M, Lindig C, Framzle M, Schrader AJ, et al. HLA phenotype and cytokine-induced tumor control in advanced renal cell cancer. Cancer Biother Radiopharm. 2001;16(5):401–9.

    Article  CAS  PubMed  Google Scholar 

  23. Gray WC, Chretien PB, Suter CM, Revie DR, Tomazic VT, Blanchard CL, et al. Effects of radiation therapy on T-lymphocyte subpopulations in patients with head and neck cancer. Otolaryngol Head Neck Surg. 1985;93(5):650–60.

    CAS  PubMed  Google Scholar 

  24. Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3):589–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO, Green AR. The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat. 2012;132:545–53.

    Article  CAS  PubMed  Google Scholar 

  26. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.

    Article  PubMed  Google Scholar 

  27. Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28(1):105–13.

    Article  CAS  PubMed  Google Scholar 

  28. Paulson KG, Iyer JG, Tegeder AR, Thibodeau R, Schelter J, Koba S, et al. Transcriptome-wide studies of merkel cell carcinoma and validation of intratumoral CD8+ lymphocyte invasion as an independent predictor of survival. J Clin Oncol. 2011;29(12):1539–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(10):925–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Takeda T, Takeda A, Kunieda E, Ishizaka A, Takemasa K, Shimada K, et al. Radiation injury after hypofractionated stereotactic radiotherapy for peripheral small lung tumors: serial changes on CT. AJR Am J Roentgenol. 2004;182(5):1123–8.

    Article  PubMed  Google Scholar 

  31. Kimura T, Matsuura K, Murakami Y, Hashimoto Y, Kenjo M, Kaneyasu Y, et al. CT appearance of radiation injury of the lung and clinical symptoms after stereotactic body radiation therapy (SBRT) for lung cancers: are patients with pulmonary emphysema also candidates for SBRT for lung cancers? Int J Radiat Oncol Biol Phys. 2006;66(2):483–91.

    Article  PubMed  Google Scholar 

  32. Scott WJ, Schwabe JL, Gupta NC, Dewan NA, Reeb SD, Sugimoto JT. Positron emission tomography of lung tumors and mediastinal lymph nodes using [18F]fluorodeoxyglucose. The members of the PET-Lung Tumor Study Group. Ann Thorac Surg. 1994;58(3):698–703.

    Article  CAS  PubMed  Google Scholar 

  33. Shim SS, Lee KS, Kim BT, Chung MJ, Lee EJ, Han J, et al. Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology. 2005;236(3):1011–9.

    Article  PubMed  Google Scholar 

  34. Magnani P, Carretta A, Rizzo G, Fazio F, Vanzulli A, Lucignani G, et al. FDG/PET and spiral CT image fusion for mediastinal lymph node assessment of non-small cell lung cancer patients. J Cardiovasc Surg (Torino). 1999;40(5):741–8.

    CAS  Google Scholar 

  35. Decoster L, Schallier D, Everaert H, Nieboer K, Meysman M, Neyns B, et al. Complete metabolic tumour response, assessed by 18-fluorodeoxyglucose positron emission tomography (18FDG-PET), after induction chemotherapy predicts a favourable outcome in patients with locally advanced non-small cell lung cancer (NSCLC). Lung Cancer. 2008;62(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  36. Vansteenkiste JF, Mortelmans LA. FDG-PET in the locoregional lymph node staging of non-small cell lung cancer. A comprehensive review of the Leuven Lung Cancer Group experience. Clin Positron Imaging. 1999;2(4):223–31.

    Article  PubMed  Google Scholar 

  37. Higashi T, Saga T, Nakamoto Y, Ishimori T, Mamede MH, Wada M, et al. Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med. 2002;43(2):173–80.

    CAS  PubMed  Google Scholar 

  38. Cohen RJ, Sharma NK, Yu JQ, et al. A phase I radiation dose escalation trial of stereotactic body radiotherapy for malignant lung tumors. J Biomed Sci Eng. 2010;3(4):351–8.

    Article  Google Scholar 

  39. Sharma NK, Ruth K, Konski AA, et al. Low morbidity and excellent local control using image guided stereotactic body radiotherapy (IGSBRT) for lung tumors. Int J Radiat Oncol Biol Phys. 2008;72(1):S454.

    Article  Google Scholar 

  40. Husain ZA, Sharma NK, Hanlon AL, Buyyounouski MK, Mirmiran A, Dhople AA, Turaka A, Yu M, Chen W, Feigenberg SJ. Low pretreatment PET SUV predicts for increased local failure following stereotactic body radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys. 2010;78(3):S525.

    Article  Google Scholar 

  41. Hoopes DJ, Tann M, Fletcher JW, Forquer JA, Lin PF, Lo SS, et al. FDG-PET and stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer. Lung Cancer. 2007;56(2):229–34.

    Article  PubMed  Google Scholar 

  42. Sovik A, Malinen E, Skogmo HK, Bentzen SM, Bruland OS, Olsen DR. Radiotherapy adapted to spatial and temporal variability in tumor hypoxia. Int J Radiat Oncol Biol Phys. 2007;68(5):1496–504.

    Article  PubMed  Google Scholar 

  43. Ishimori T, Saga T, Nagata Y, Nakamoto Y, Higashi T, Mamede M, et al. 18F-FDG and 11C-methionine PET for evaluation of treatment response of lung cancer after stereotactic radiotherapy. Ann Nucl Med. 2004;18(8):669–74.

    Article  PubMed  Google Scholar 

  44. Direcks WG, Berndsen SC, Proost N, Peters GJ, Balzarini J, Spreeuwenberg MD, et al. [18F]FDG and [18F]FLT uptake in human breast cancer cells in relation to the effects of chemotherapy: an in vitro study. Br J Cancer. 2008;99(3):481–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. van Luijk P, Bijl HP, Konings AW, van der Kogel AJ, Schippers JM. Data on dose-volume effects in the rat spinal cord do not support existing NTCP models. Int J Radiat Oncol Biol Phys. 2005;61(3):892–900.

    Article  PubMed  Google Scholar 

  46. Dawson LA, Eccles C, Craig T. Individualized image guided iso-NTCP based liver cancer SBRT. Acta Oncol. 2006;45(7):856–64.

    Article  PubMed  Google Scholar 

  47. Dawson LA, Litzenberg DW, Brock KK, Sanda M, Sullivan M, Sandler HM, et al. A comparison of ventilatory prostate movement in four treatment positions. Int J Radiat Oncol Biol Phys. 2000;48(2):319–23.

    Article  CAS  PubMed  Google Scholar 

  48. Malone S, Crook JM, Kendal WS, Szanto J. Respiratory-induced prostate motion: quantification and characterization. Int J Radiat Oncol Biol Phys. 2000;48(1):105–9.

    Article  CAS  PubMed  Google Scholar 

  49. Yenice KM, Lovelock DM, Hunt MA, Lutz WR, Fournier-Bidoz N, Hua CH, et al. CT image-guided intensity-modulated therapy for paraspinal tumors using stereotactic immobilization. Int J Radiat Oncol Biol Phys. 2003;55(3):583–93.

    Article  PubMed  Google Scholar 

  50. Meeks SL, Buatti JM, Bouchet LG, Bova FJ, Ryken TC, Pennington EC, et al. Ultrasound-guided extracranial radiosurgery: technique and application. Int J Radiat Oncol Biol Phys. 2003;55(4):1092–101.

    Article  PubMed  Google Scholar 

  51. Wulf J, Hadinger U, Oppitz U, Olshausen B, Flentje M. Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame. Radiother Oncol. 2000;57(2):225–36.

    Article  CAS  PubMed  Google Scholar 

  52. Lohr F, Debus J, Frank C, Herfarth K, Pastyr O, Rhein B, et al. Noninvasive patient fixation for extracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 1999;45(2):521–7.

    Article  CAS  PubMed  Google Scholar 

  53. Booth JT, Zavgorodni SF. Set-up error & organ motion uncertainty: a review. Australas Phys Eng Sci Med. 1999;22(2):29–47.

    CAS  PubMed  Google Scholar 

  54. Dawson LA, Brock KK, Kazanjian S, Fitch D, McGinn CJ, Lawrence TS, et al. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy. Int J Radiat Oncol Biol Phys. 2001;51(5):1410–21.

    Article  CAS  PubMed  Google Scholar 

  55. Eccles C, Brock KK, Bissonnette JP, Hawkins M, Dawson LA. Reproducibility of liver position using active breathing coordinator for liver cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2006;64(3):751–9.

    Article  PubMed  Google Scholar 

  56. Sonke JJ, Zijp L, Remeijer P, van Herk M. Respiratory correlated cone beam CT. Med Phys. 2005;32(4):1176–86.

    Article  PubMed  Google Scholar 

  57. Claude L, Arpin D, Servois V, Ayadi M, Dussart S, Ferlay C, et al. Acute radiation pneumonitis in non-small cell lung cancer: is respiratory-gated control useful? Results of a French Prospective Randomized Study. Int J Radiat Oncol Biol Phys. 2012;84(3):S175.

    Article  Google Scholar 

  58. Shirato H, Shimizu S, Kitamura K, Nishioka T, Kagei K, Hashimoto S, et al. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys. 2000;48(2):435–42.

    Article  CAS  PubMed  Google Scholar 

  59. Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37(8):4078–101.

    Article  PubMed  Google Scholar 

  60. Balter JM, Lam KL, McGinn CJ, Lawrence TS, Ten Haken RK. Improvement of CT-based treatment-planning models of abdominal targets using static exhale imaging. Int J Radiat Oncol Biol Phys. 1998;41(4):939–43.

    Article  CAS  PubMed  Google Scholar 

  61. Arvidson NB, Mehta MP, Tome WA. Dose coverage beyond the gross tumor volume for various stereotactic body radiotherapy planning techniques reporting similar control rates for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2008;72(5):1597–603.

    Article  PubMed  Google Scholar 

  62. van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(4):1121–35.

    Article  PubMed  Google Scholar 

  63. van Herk M, Remeijer P, Lebesque JV. Inclusion of geometric uncertainties in treatment plan evaluation. Int J Radiat Oncol Biol Phys. 2002;52(5):1407–22.

    Article  PubMed  Google Scholar 

  64. Jin L, Wang L, Li J, Luo W, Feigenberg SJ, Ma CM. Investigation of optimal beam margins for stereotactic radiotherapy of lung-cancer using Monte Carlo dose calculations. Phys Med Biol. 2007;52(12):3549–61.

    Article  CAS  PubMed  Google Scholar 

  65. Kavanagh BD, Timmerman RD, Benedict SH, Wu Q, Schefter TE, Stuhr K, et al. How should we describe the radiobiologic effect of extracranial stereotactic radiosurgery: equivalent uniform dose or tumor control probability? Med Phys. 2003;30(3):321–4.

    Article  CAS  PubMed  Google Scholar 

  66. DesRosiers PM, Moskvin VP, DesRosiers CM, Timmerman RD, Randall ME, Papiez LS. Lung cancer radiation therapy: Monte Carlo investigation of “under dose” by high energy photons. Technol Cancer Res Treat. 2004;3(3):289–94.

    Article  PubMed  Google Scholar 

  67. Xiao Y, Papiez L, Paulus R, Timmerman R, Straube WL, Bosch WR, et al. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: stereotactic body radiotherapy of inoperable stage I-II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009;73(4):1235–42.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Dawson LA, Eccles C, Bissonnette JP, Brock KK. Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control. Int J Radiat Oncol Biol Phys. 2005;62(4):1247–52.

    Article  PubMed  Google Scholar 

  69. Balter JM, Brock KK, Litzenberg DW, McShan DL, Lawrence TS, Ten Haken R, et al. Daily targeting of intrahepatic tumors for radiotherapy. Int J Radiat Oncol Biol Phys. 2002;52(1):266–71.

    Article  PubMed  Google Scholar 

  70. Uematsu M, Sonderegger M, Shioda A, Tahara K, Fukui T, Hama Y, et al. Daily positioning accuracy of frameless stereotactic radiation therapy with a fusion of computed tomography and linear accelerator (focal) unit: evaluation of z-axis with a z-marker. Radiother Oncol. 1999;50(3):337–9.

    Article  CAS  PubMed  Google Scholar 

  71. Court L, Rosen I, Mohan R, Dong L. Evaluation of mechanical precision and alignment uncertainties for an integrated CT/LINAC system. Med Phys. 2003;30(6):1198–210.

    Article  PubMed  Google Scholar 

  72. Kuriyama K, Onishi H, Sano N, Komiyama T, Aikawa Y, Tateda Y, et al. A new irradiation unit constructed of self-moving gantry-CT and linac. Int J Radiat Oncol Biol Phys. 2003;55(2):428–35.

    Article  PubMed  Google Scholar 

  73. Onishi H, Kuriyama K, Komiyama T, Tanaka S, Sano N, Aikawa Y, et al. A new irradiation system for lung cancer combining linear accelerator, computed tomography, patient self-breath-holding, and patient-directed beam-control without respiratory monitoring devices. Int J Radiat Oncol Biol Phys. 2003;56(1):14–20.

    Article  PubMed  Google Scholar 

  74. Jaffray DA. Emergent technologies for 3-dimensional image-guided radiation delivery. Semin Radiat Oncol. 2005;15(3):208–16.

    Article  PubMed  Google Scholar 

  75. Cho Y, Moseley DJ, Siewerdsen JH, Jaffray DA. Accurate technique for complete geometric calibration of cone-beam computed tomography systems. Med Phys. 2005;32(4):968–83.

    Article  PubMed  Google Scholar 

  76. Simpson RG, Chen CT, Grubbs EA, Swindell W. A 4-MV CT scanner for radiation therapy: the prototype system. Med Phys. 1982;9(4):574–9.

    Article  CAS  PubMed  Google Scholar 

  77. Swindell W, Simpson RG, Oleson JR, Chen CT, Grubbs EA. Computed tomography with a linear accelerator with radiotherapy applications. Med Phys. 1983;10(4):416–20.

    Article  CAS  PubMed  Google Scholar 

  78. Nakagawa K, Aoki Y, Tago M, Terahara A, Ohtomo K. Megavoltage CT-assisted stereotactic radiosurgery for thoracic tumors: original research in the treatment of thoracic neoplasms. Int J Radiat Oncol Biol Phys. 2000;48(2):449–57.

    Article  CAS  PubMed  Google Scholar 

  79. Pouliot J, Bani-Hashemi A, Chen J, Svatos M, Ghelmansarai F, Mitschke M, et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys. 2005;61(2):552–60.

    Article  PubMed  Google Scholar 

  80. Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36(9):4197–212.

    Article  PubMed  Google Scholar 

  81. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.

    Article  PubMed  Google Scholar 

  82. Mountain CF. Revisions in the International System for Staging Lung Cancer. Chest. 1997;111(6):1710–7.

    Article  CAS  PubMed  Google Scholar 

  83. McGarry RC, Song G, des Rosiers P, Timmerman R. Observation-only management of early stage, medically inoperable lung cancer: poor outcome. Chest. 2002;121(4):1155–8.

    Article  PubMed  Google Scholar 

  84. Stephans KL, Djemil T, Reddy CA, Gajdos SM, Kolar M, Mason D, et al. A comparison of two stereotactic body radiation fractionation schedules for medically inoperable stage I non-small cell lung cancer: the Cleveland Clinic experience. J Thorac Oncol. 2009;4(8):976–82.

    Article  PubMed  Google Scholar 

  85. Shapiro R, Forquer JA, Henderson MA, Brabham JG, Barriger RB, Andolino DL, Johnstone PAS, Fakiris AJ. Central Tumors in Node Negative Early-stage Non-small Cell Lung Cancer (NSCLC): survival and toxicity outcomes following Stereotactic Body Radiation Therapy (SBRT). Int J Radiat Oncol Biol Phys. 2009;75(3):S457.

    Article  Google Scholar 

  86. Bradley JD, Robinson C, Parikh P, Bien-Willner L, DeWees T, Gao F. Prospective phase i dose escalation results of SBRT for centrally-located stage I NSCLC. Int J Radiat Oncol Biol Phys. 2011;81(2):S79.

    Article  Google Scholar 

  87. Stephans KL, Djemil T, Reddy CA, Gajdos SM, Kolar M, Machuzak M, et al. Comprehensive analysis of pulmonary function Test (PFT) changes after stereotactic body radiotherapy (SBRT) for stage I lung cancer in medically inoperable patients. J Thorac Oncol. 2009;4(7):838–44.

    Article  PubMed  Google Scholar 

  88. Buyyounouski MK, Balter P, Lewis B, D’Ambrosio DJ, Dilling TJ, Miller RC, et al. Stereotactic body radiotherapy for early-stage non-small-cell lung cancer: report of the ASTRO Emerging Technology Committee. Int J Radiat Oncol Biol Phys. 2010;78(1):3–10.

    Article  PubMed  Google Scholar 

  89. Guckenberger M, Kestin LL, Hope AJ, Belderbos J, Werner-Wasik M, Yan D, et al. Is there a lower limit of pretreatment pulmonary function for safe and effective stereotactic body radiotherapy for early-stage non-small cell lung cancer? J Thorac Oncol. 2012;7(3):542–51.

    Article  PubMed  Google Scholar 

  90. Onishi H, Marino K, Terahara A, Kokubo M, Onimaru R, Shioyama Y, Matsuo Y, Kozuka T, Ishikura S, Hiraoka M. Case series study of 26 patients who developed fatal radiation pneumonitis (RP) after stereotactic body radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys. 2009;75(3):S62.

    Article  Google Scholar 

  91. Hughes LL, Wang M, Page DL, Gray R, Solin LJ, Davidson NE, et al. Local excision alone without irradiation for ductal carcinoma in situ of the breast: a trial of the Eastern Cooperative Oncology Group. J Clin Oncol. 2009;27(32):5319–24.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Wambaka MA, Matsuo Y, Shibuya K, Ueki N, Nakamura M, Mukumoto N, Nakamura A, Sakanaka K, Mizowaki T, Hiraoka M. Abdominal compression and respiratory motion as predictors of local recurrence in patients treated with stereotactic body radiation therapy for primary lung cancer. Int J Radiat Oncol Biol Phys. 2011;81(2):S608.

    Article  Google Scholar 

  93. Wang L, Feigenberg S, Fan J, Jin L, Turaka A, Chen L, et al. Target repositional accuracy and PTV margin verification using three-dimensional cone-beam computed tomography (CBCT) in stereotactic body radiotherapy (SBRT) of lung cancers. J Appl Clin Med Phys. 2012;13(2):3708.

    PubMed  Google Scholar 

  94. Josipovic M, Persson GF, Logadottir A, Smulders B, Westmann G, Bangsgaard JP. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy. Acta Oncol. 2012;51(5):610–7.

    Article  PubMed  Google Scholar 

  95. Li W, Purdie TG, Taremi M, Fung S, Brade A, Cho BC, et al. Effect of immobilization and performance status on intrafraction motion for stereotactic lung radiotherapy: analysis of 133 patients. Int J Radiat Oncol Biol Phys. 2011;81(5):1568–75.

    Article  CAS  PubMed  Google Scholar 

  96. Nagata Y, Takayama K, Matsuo Y, Norihisa Y, Mizowaki T, Sakamoto T, et al. Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys. 2005;63(5):1427–31.

    Article  PubMed  Google Scholar 

  97. Onishi H, Araki T, Shirato H, Nagata Y, Hiraoka M, Gomi K, et al. Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer. 2004;101(7):1623–31.

    Article  PubMed  Google Scholar 

  98. Dunlap NE, Larner JM, Read PW, Kozower BD, Lau CL, Sheng K, et al. Size matters: a comparison of T1 and T2 peripheral non-small-cell lung cancers treated with stereotactic body radiation therapy (SBRT). J Thorac Cardiovasc Surg. 2010;140(3):583–9.

    Article  PubMed  Google Scholar 

  99. Grills IS, Hope AJ, Guckenberger M, Kestin LL, Werner-Wasik M, Yan D, et al. A collaborative analysis of stereotactic lung radiotherapy outcomes for early-stage non-small-cell lung cancer using daily online cone-beam computed tomography image-guided radiotherapy. J Thorac Oncol. 2012;7(9):1382–93.

    Article  PubMed  Google Scholar 

  100. Rowe BP, Boffa DJ, Wilson LD, Kim AW, Detterbeck FC, Decker RH. Stereotactic body radiotherapy for central lung tumors. J Thorac Oncol. 2012;7(9):1394–9.

    Article  PubMed  Google Scholar 

  101. Barriger RB, Forquer JA, Brabham JG, Andolino DL, Shapiro RH, Henderson MA, et al. A dose-volume analysis of radiation pneumonitis in non-small cell lung cancer patients treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2012;82(1):457–62.

    Article  PubMed  Google Scholar 

  102. Onishi H, Shirato H, Nagata Y, Hiraoka M, Fujino M, Gomi K, et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol. 2007;2(7 Suppl 3):S94–100.

    Article  PubMed  Google Scholar 

  103. Dunlap NE, Cai J, Biedermann GB, Yang W, Benedict SH, Sheng K, et al. Chest wall volume receiving >30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010;76(3):796–801.

    Article  PubMed  Google Scholar 

  104. Stephans KL, Djemil T, Tendulkar RD, Robinson CG, Reddy CA, Videtic GM. Prediction of chest wall toxicity from lung stereotactic body radiotherapy (SBRT). Int J Radiat Oncol Biol Phys. 2012;82(2):974–80.

    Article  PubMed  Google Scholar 

  105. Welsh J, Thomas J, Shah D, Allen PK, Wei X, Mitchell K, et al. Obesity increases the risk of chest wall pain from thoracic stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2011;81(1):91–6.

    Article  PubMed Central  PubMed  Google Scholar 

  106. Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, et al. Metastatic patterns in adenocarcinoma. Cancer. 2006;106(7):1624–33.

    Article  PubMed  Google Scholar 

  107. Prasad KR, Young RS, Burra P, Zheng SS, Mazzaferro V, Moon DB, et al. Summary of candidate selection and expanded criteria for liver transplantation for hepatocellular carcinoma: a review and consensus statement. Liver Transpl. 2011;17 Suppl 2:S81–9.

    Article  PubMed  Google Scholar 

  108. Mazzaferro V, Bhoori S, Sposito C, Bongini M, Langer M, Miceli R, et al. Milan criteria in liver transplantation for hepatocellular carcinoma: an evidence-based analysis of 15 years of experience. Liver Transpl. 2011;17 Suppl 2:S44–57.

    Article  PubMed  Google Scholar 

  109. Rusthoven KE, Kavanagh BD, Cardenes H, Stieber VW, Burri SH, Feigenberg SJ, et al. Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol. 2009;27(10):1572–8.

    Article  PubMed  Google Scholar 

  110. Tiong L, Maddern GJ. Systematic review and meta-analysis of survival and disease recurrence after radiofrequency ablation for hepatocellular carcinoma. Br J Surg. 2011;98(9):1210–24.

    Article  CAS  PubMed  Google Scholar 

  111. Fong Y, Cohen AM, Fortner JG, Enker WE, Turnbull AD, Coit DG, et al. Liver resection for colorectal metastases. J Clin Oncol. 1997;15(3):938–46.

    CAS  PubMed  Google Scholar 

  112. Berber E, Pelley R, Siperstein AE. Predictors of survival after radiofrequency thermal ablation of colorectal cancer metastases to the liver: a prospective study. J Clin Oncol. 2005;23(7):1358–64.

    Article  PubMed  Google Scholar 

  113. Steele Jr G, Bleday R, Mayer RJ, Lindblad A, Petrelli N, Weaver D. A prospective evaluation of hepatic resection for colorectal carcinoma metastases to the liver: Gastrointestinal Tumor Study Group Protocol 6584. J Clin Oncol. 1991;9(7):1105–12.

    PubMed  Google Scholar 

  114. Wagner JS, Adson MA, Van Heerden JA, Adson MH, Ilstrup DM. The natural history of hepatic metastases from colorectal cancer. A comparison with resective treatment. Ann Surg. 1984;199(5):502–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Kelly RJ, Kemeny NE, Leonard GD. Current strategies using hepatic arterial infusion chemotherapy for the treatment of colorectal cancer. Clin Colorectal Cancer. 2005;5(3):166–74.

    Article  PubMed  Google Scholar 

  116. Salem R, Lewandowski RJ, Mulcahy MF, Riaz A, Ryu RK, Ibrahim S, et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology. 2010;138(1):52–64.

    Article  CAS  PubMed  Google Scholar 

  117. Vogl TJ, Zangos S, Eichler K, Yakoub D, Nabil M. Colorectal liver metastases: regional chemotherapy via transarterial chemoembolization (TACE) and hepatic chemoperfusion: an update. Eur Radiol. 2007;17(4):1025–34.

    Article  PubMed  Google Scholar 

  118. Fowler KJ, Brown JJ, Narra VR. Magnetic resonance imaging of focal liver lesions: approach to imaging diagnosis. Hepatology. 2011;54(6):2227–37.

    Article  PubMed  Google Scholar 

  119. Kelsey CR, Schefter T, Nash SR, Russ P, Baron AE, Zeng C, et al. Retrospective clinicopathologic correlation of gross tumor size of hepatocellular carcinoma: implications for stereotactic body radiotherapy. Am J Clin Oncol. 2005;28(6):576–80.

    Article  PubMed  Google Scholar 

  120. Mendez Romero A, Wunderink W, Hussain SM, De Pooter JA, Heijmen BJ, Nowak PC, et al. Stereotactic body radiation therapy for primary and metastatic liver tumors: a single institution phase I-II study. Acta Oncol. 2006;45(7):831–7.

    Article  PubMed  Google Scholar 

  121. Balter JM, Dawson LA, Kazanjian S, McGinn C, Brock KK, Lawrence T, et al. Determination of ventilatory liver movement via radiographic evaluation of diaphragm position. Int J Radiat Oncol Biol Phys. 2001;51(1):267–70.

    Article  CAS  PubMed  Google Scholar 

  122. Davies SC, Hill AL, Holmes RB, Halliwell M, Jackson PC. Ultrasound quantitation of respiratory organ motion in the upper abdomen. Br J Radiol. 1994;67(803):1096–102.

    Article  CAS  PubMed  Google Scholar 

  123. Aruga T, Itami J, Aruga M, Nakajima K, Shibata K, Nojo T, et al. Target volume definition for upper abdominal irradiation using CT scans obtained during inhale and exhale phases. Int J Radiat Oncol Biol Phys. 2000;48(2):465–9.

    Article  CAS  PubMed  Google Scholar 

  124. Kirilova A, Lockwood G, Choi P, Bana N, Haider MA, Brock KK, et al. Three-dimensional motion of liver tumors using cine-magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2008;71(4):1189–95.

    Article  PubMed  Google Scholar 

  125. Heinzerling JH, Anderson JF, Papiez L, Boike T, Chien S, Zhang G, et al. Four-dimensional computed tomography scan analysis of tumor and organ motion at varying levels of abdominal compression during stereotactic treatment of lung and liver. Int J Radiat Oncol Biol Phys. 2008;70(5):1571–8.

    Article  PubMed  Google Scholar 

  126. Eccles CL, Patel R, Simeonov AK, Lockwood G, Haider M, Dawson LA. Comparison of liver tumor motion with and without abdominal compression using cine-magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2011;79(2):602–8.

    Article  PubMed  Google Scholar 

  127. Eccles CL, Dawson LA, Moseley JL, Brock KK. Interfraction liver shape variability and impact on GTV position during liver stereotactic radiotherapy using abdominal compression. Int J Radiat Oncol Biol Phys. 2011;80(3):938–46.

    Article  PubMed Central  PubMed  Google Scholar 

  128. Baek HM, Chen JH, Nie K, Yu HJ, Bahri S, Mehta RS, et al. Predicting pathologic response to neoadjuvant chemotherapy in breast cancer by using MR imaging and quantitative 1H MR spectroscopy. Radiology. 2009;251(3):653–62.

    Article  PubMed Central  PubMed  Google Scholar 

  129. Hoyer M, Roed H, Sengelov L, Traberg A, Ohlhuis L, Pedersen J, et al. Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother Oncol. 2005;76(1):48–53.

    Article  PubMed  Google Scholar 

  130. Tse RV, Hawkins M, Lockwood G, Kim JJ, Cummings B, Knox J, et al. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2008;26(4):657–64.

    Article  PubMed  Google Scholar 

  131. Cardenes HR, Price TR, Perkins SM, Maluccio M, Kwo P, Breen TE, et al. Phase I feasibility trial of stereotactic body radiation therapy for primary hepatocellular carcinoma. Clin Transl Oncol. 2010;12(3):218–25.

    Article  CAS  PubMed  Google Scholar 

  132. Andolino DL, Johnson CS, Maluccio M, Kwo P, Tector AJ, Zook J, et al. Stereotactic body radiotherapy for primary hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2011;81(4):e447–53.

    Article  PubMed  Google Scholar 

  133. Swaminath A, Dawson LA. Emerging role of radiotherapy in the management of liver metastases. Cancer J. 2010;16(2):150–5.

    Article  PubMed  Google Scholar 

  134. Klein J, Dawson LA. Hepatocellular carcinoma radiation therapy: review of evidence and future opportunities. Int J Radiat Oncol Biol Phys. 2013;87:22–32.

    Article  PubMed  Google Scholar 

  135. Wulf J, Guckenberger M, Haedinger U, Oppitz U, Mueller G, Baier K, et al. Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol. 2006;45(7):838–47.

    Article  PubMed  Google Scholar 

  136. Rule W, Timmerman R, Tong L, Abdulrahman R, Meyer J, Boike T, et al. Phase I dose-escalation study of stereotactic body radiotherapy in patients with hepatic metastases. Ann Surg Oncol. 2011;18(4):1081–7.

    Article  PubMed  Google Scholar 

  137. Chang DT, Swaminath A, Kozak M, Weintraub J, Koong AC, Kim J, et al. Stereotactic body radiotherapy for colorectal liver metastases: a pooled analysis. Cancer. 2011;117(17):4060–9.

    Article  PubMed  Google Scholar 

  138. Goodman KA, Wiegner EA, Maturen KE, Zhang Z, Mo Q, Yang G, Gibbs IC, Fisher GA, Koong AC. Dose-escalation study of single-fraction stereotactic body radiotherapy for liver malignancies. Int J Radiat Oncol Biol Phys. 2010;78(2):486–93. doi:10.1016/j.ijrobp.2009.08.020. Epub 2010 Mar 28.

    Article  PubMed  Google Scholar 

  139. Fajardo LF, Colby TV. Pathogenesis of veno-occlusive liver disease after radiation. Arch Pathol Lab Med. 1980;104(11):584–8.

    CAS  PubMed  Google Scholar 

  140. Sempoux C, Horsmans Y, Geubel A, Fraikin J, Van Beers BE, Gigot JF, et al. Severe radiation-induced liver disease following localized radiation therapy for biliopancreatic carcinoma: activation of hepatic stellate cells as an early event. Hepatology. 1997;26(1):128–34.

    Article  CAS  PubMed  Google Scholar 

  141. Cheng AS, Chan HL, Leung WK, To KF, Go MY, Chan JY, et al. Expression of HBx and COX-2 in chronic hepatitis B, cirrhosis and hepatocellular carcinoma: implication of HBx in upregulation of COX-2. Mod Pathol. 2004;17(10):1169–79.

    Article  CAS  PubMed  Google Scholar 

  142. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys. 1995;31(5):1237–48.

    Article  CAS  PubMed  Google Scholar 

  143. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  144. Dawson LA, Ten Haken RK. Partial volume tolerance of the liver to radiation. Semin Radiat Oncol. 2005;15(4):279–83.

    Article  PubMed  Google Scholar 

  145. Oettle H, Post S, Neuhaus P, Gellert K, Langrehr J, Ridwelski K, et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA. 2007;297(3):267–77.

    Article  CAS  PubMed  Google Scholar 

  146. Regine WF, Winter KA, Abrams RA, Safran H, Hoffman JP, Konski A, et al. Fluorouracil vs gemcitabine chemotherapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma: a randomized controlled trial. JAMA. 2008;299(9):1019–26.

    Article  CAS  PubMed  Google Scholar 

  147. Pisters PW, Wolff RA, Janjan NA, Cleary KR, Charnsangavej C, Crane CN, et al. Preoperative paclitaxel and concurrent rapid-fractionation radiation for resectable pancreatic adenocarcinoma: toxicities, histologic response rates, and event-free outcome. J Clin Oncol. 2002;20(10):2537–44.

    Article  CAS  PubMed  Google Scholar 

  148. Varadhachary GR, Wolff RA, Crane CH, Sun CC, Lee JE, Pisters PW, et al. Preoperative gemcitabine and cisplatin followed by gemcitabine-based chemoradiation for resectable adenocarcinoma of the pancreatic head. J Clin Oncol. 2008;26(21):3487–95.

    Article  CAS  PubMed  Google Scholar 

  149. Koong AC, Christofferson E, Le QT, Goodman KA, Ho A, Kuo T, et al. Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2005;63(2):320–3.

    Article  PubMed  Google Scholar 

  150. Polistina F, Costantin G, Casamassima F, Francescon P, Guglielmi R, Panizzoni G, et al. Unresectable locally advanced pancreatic cancer: a multimodal treatment using neoadjuvant chemoradiotherapy (gemcitabine plus stereotactic radiosurgery) and subsequent surgical exploration. Ann Surg Oncol. 2010;17(8):2092–101.

    Article  PubMed  Google Scholar 

  151. Mahadevan A, Jain S, Goldstein M, Miksad R, Pleskow D, Sawhney M, et al. Stereotactic body radiotherapy and gemcitabine for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2010;78(3):735–42.

    Article  PubMed  Google Scholar 

  152. Schellenberg D, Goodman KA, Lee F, Chang S, Kuo T, Ford JM, et al. Gemcitabine chemotherapy and single-fraction stereotactic body radiotherapy for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2008;72(3):678–86.

    Article  CAS  PubMed  Google Scholar 

  153. Chang DT, Schellenberg D, Shen J, Kim J, Goodman KA, Fisher GA, et al. Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer. 2009;115(3):665–72.

    Article  PubMed  Google Scholar 

  154. Murphy JD, Christman-Skieller C, Kim J, Dieterich S, Chang DT, Koong AC. A dosimetric model of duodenal toxicity after stereotactic body radiotherapy for pancreatic cancer. Int J Radiat Oncol Biol Phys. 2010;78(5):1420–6.

    Article  PubMed  Google Scholar 

  155. Rwigema JC, Parikh SD, Heron DE, Howell M, Zeh H, Moser AJ, et al. Stereotactic body radiotherapy in the treatment of advanced adenocarcinoma of the pancreas. Am J Clin Oncol. 2011;34(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  156. Van Laethem JL, Hammel P, Mornex F, Azria D, Van Tienhoven G, Vergauwe P, et al. Adjuvant gemcitabine alone versus gemcitabine-based chemoradiotherapy after curative resection for pancreatic cancer: a randomized EORTC-40013–22012/FFCD-9203/GERCOR phase II study. J Clin Oncol. 2010;28(29):4450–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  157. Conroy T, Gavoille C, Samalin E, Ychou M, Ducreux M. The role of the FOLFIRINOX regimen for advanced pancreatic cancer. Curr Oncol Rep. 2013;15:182–9.

    Article  CAS  PubMed  Google Scholar 

  158. Conroy T, Mitry E. [Chemotherapy of metastatic pancreatic adenocarcinoma: challenges and encouraging results]. Bull Cancer. 2011;98(12):1439–46.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Feigenberg M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feigenberg, S.J., Cohen, R., Sharma, N.K., Husain, Z., Chen, S., Dawson, L.A. (2015). Stereotactic Body Radiation Therapy. In: Chin, L., Regine, W. (eds) Principles and Practice of Stereotactic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8363-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8363-2_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8362-5

  • Online ISBN: 978-1-4614-8363-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics