• Carolina E. Fasola
  • Lei Wang
  • John R. Adler
  • Scott G. Soltys
  • Iris C. Gibbs
  • Albert C. Koong
  • Daniel T. Chang


CyberKnife is a radiosurgery system composed of a linear accelerator mounted on a robotic arm coupled with an X-ray imaging device that is capable of delivering high-precision radiotherapy. The robotic arm allows a wide array of noncoplanar beam angles that can produce a highly conformal dose distribution. While isocentric beam arrangements can be utilized for spherical targets, an additional function of CyberKnife is the ability to use non-isocentric beam angles, facilitating the treatment of irregularly shaped targets. Imaging with ceiling-mounted X-ray imagers allows for near real-time imaging adjustments to be made during treatment. The Synchrony™ tracking system and more recently XSight Lung provides the ability to correct for respiratory motion, with or without implanted fiducial markers. The submillimeter accuracy of CyberKnife ushered in widespread use of frameless radiosurgery, facilitating both multi-fractionation schedules and the treatment of extracranial lesions. CyberKnife has successfully been used in the treatment of tumors in the brain, spine, thorax, liver, prostate, kidney, and pancreas as well as other body sites with excellent results. In this chapter, we review the technological capabilities of the CyberKnife system, its clinical indications and outcomes, and future advancements and directions.


Trigeminal Neuralgia Stereotactic Body Radiotherapy Gamma Knife Local Control Rate Stereotactic Radiosurgery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blomgren H, Lax I, Naslund I, Svanstrom R. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol. 1995;34(6):861–70. Epub 1995/01/01.CrossRefPubMedGoogle Scholar
  2. 2.
    Lax I, Blomgren H, Naslund I, Svanstrom R. Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol. 1994;33(6):677–83. Epub 1994/01/01.CrossRefPubMedGoogle Scholar
  3. 3.
    Fu D, Kuduvalli G. A fast, accurate, and automatic 2D-3D image registration for image-guided cranial radiosurgery. Med Phys. 2008;35(5):2180–94. Epub 2008/06/20.CrossRefPubMedGoogle Scholar
  4. 4.
    Ho AK, Fu D, Cotrutz C, Hancock SL, Chang SD, Gibbs IC, et al. A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery. 2007;60(2 Suppl 1):ONS147–56; discussion ONS56. Epub 2007/02/14.Google Scholar
  5. 5.
    Webb S. Conformal intensity-modulated radiotherapy (IMRT) delivered by robotic linac—testing IMRT to the limit? Phys Med Biol. 1999;44(7):1639–54. Epub 1999/08/12.CrossRefPubMedGoogle Scholar
  6. 6.
    Webb S. Conformal intensity-modulated radiotherapy (IMRT) delivered by robotic linac—conformality versus efficiency of dose delivery. Phys Med Biol. 2000;45(7):1715–30. Epub 2000/08/16.CrossRefPubMedGoogle Scholar
  7. 7.
    Schlaefer A, Schweikard A. Stepwise multi-criteria optimization for robotic radiosurgery. Med Phys. 2008;35(5):2094–103. Epub 2008/06/20.CrossRefPubMedGoogle Scholar
  8. 8.
    Poll JJ, Hoogeman MS, Prevost JB, Nuyttens JJ, Levendag PC, Heijmen BJ. Reducing monitor units for robotic radiosurgery by optimized use of multiple collimators. Med Phys. 2008;35(6):2294–9. Epub 2008/07/25.CrossRefPubMedGoogle Scholar
  9. 9.
    Deng J, Guerrero T, Ma CM, Nath R. Modelling 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning. Phys Med Biol. 2004;49(9):1689–704. Epub 2004/05/22.CrossRefPubMedGoogle Scholar
  10. 10.
    Deng J, Ma CM, Hai J, Nath R. Commissioning 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning. Med Phys. 2003;30(12):3124–34. Epub 2004/01/10.CrossRefPubMedGoogle Scholar
  11. 11.
    Wilcox EE, Daskalov GM, Lincoln H, Shumway RC, Kaplan BM, Colasanto JM. Comparison of planned dose distributions calculated by Monte Carlo and Ray-Trace algorithms for the treatment of lung tumors with cyberknife: a preliminary study in 33 patients. Int J Radiat Oncol Biol Phys. 2010;77(1):277–84. Epub 2009/12/17.CrossRefPubMedGoogle Scholar
  12. 12.
    Li JG, Xing L. Inverse planning incorporating organ motion. Med Phys. 2000;27(7):1573–8. Epub 2000/08/18.CrossRefPubMedGoogle Scholar
  13. 13.
    Unkelbach J, Oelfke U. Incorporating organ movements in IMRT treatment planning for prostate cancer: minimizing uncertainties in the inverse planning process. Med Phys. 2005;32(8):2471–83. Epub 2005/10/01.CrossRefPubMedGoogle Scholar
  14. 14.
    Schlaefer A, Fisseler J, Dieterich S, Shiomi H, Cleary K, Schweikard A. Feasibility of four-dimensional conformal planning for robotic radiosurgery. Med Phys. 2005;32(12):3786–92. Epub 2006/02/16.CrossRefPubMedGoogle Scholar
  15. 15.
    van de Water S, Hoogeman MS, Breedveld S, Heijmen BJ. Shortening treatment time in robotic radiosurgery using a novel node reduction technique. Med Phys. 2011;38(3):1397–405. Epub 2011/04/28.CrossRefPubMedGoogle Scholar
  16. 16.
    Dieterich S, Gibbs IC. The CyberKnife in clinical use: current roles, future expectations. Front Radiat Ther Oncol. 2011;43:181–94. Epub 2011/06/01.CrossRefPubMedGoogle Scholar
  17. 17.
    Antypas C, Pantelis E. Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system. Phys Med Biol. 2008;53(17):4697–718. Epub 2008/08/13.CrossRefPubMedGoogle Scholar
  18. 18.
    Chang SD, Main W, Martin DP, Gibbs IC, Heilbrun MP. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery. 2003;52(1):140–6; discussion 146–7. Epub 2002/12/21.PubMedGoogle Scholar
  19. 19.
    Yu C, Main W, Taylor D, Kuduvalli G, Apuzzo ML, Adler Jr JR. An anthropomorphic phantom study of the accuracy of Cyberknife spinal radiosurgery. Neurosurgery. 2004;55(5):1138–49. Epub 2004/10/29.CrossRefPubMedGoogle Scholar
  20. 20.
    Chung H-TK, DG. Modern radiosurgery equipment for treating brain metastases. In: Kim DL, Lunsford LD, editors. Current and future management of brain metastasis Basel, Switzerland: Karger; 2012. p. 236–47.Google Scholar
  21. 21.
    Muacevic A, Kufeld M, Wowra B, Kreth FW, Tonn JC. Feasibility, safety, and outcome of frameless image-guided robotic radiosurgery for brain metastases. J Neurooncol. 2010;97(2):267–74. Epub 2009/10/06.CrossRefPubMedGoogle Scholar
  22. 22.
    Takakura T, Mizowaki T, Nakata M, Yano S, Fujimoto T, Miyabe Y, et al. The geometric accuracy of frameless stereotactic radiosurgery using a 6D robotic couch system. Phys Med Biol. 2010;55(1):1–10. Epub 2009/12/02.CrossRefPubMedGoogle Scholar
  23. 23.
    Mu Z, Fu D, Kuduvalli G. A probabilistic framework based on hidden Markov model for fiducial identification in image-guided radiation treatments. IEEE Trans Med Imaging. 2008;27(9):1288–300. Epub 2008/08/30.CrossRefPubMedGoogle Scholar
  24. 24.
    Wong KH, Dieterich S, Tang J, Cleary K. Quantitative measurement of CyberKnife robotic arm steering. Technol Cancer Res Treat. 2007;6(6):589–94. Epub 2007/11/13.CrossRefPubMedGoogle Scholar
  25. 25.
    Pepin EW, Wu H, Zhang Y, Lord B. Correlation and prediction uncertainties in the cyberknife synchrony respiratory tracking system. Med Phys. 2011;38(7):4036–44. Epub 2011/08/24.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Fu D, Kuduvalli G, Maurer CR, Allision J, Adler J. 3D target localization using 2D local displacements of skeletal structures in orthogonal X-ray images for image-guided spinal radiosurgery. Int J CARS. 2006;1(S1):198–200.Google Scholar
  27. 27.
    Thariat JS, Soltys S.G. Treatment of spinal tumors with Cyberknife stereotactic radiotherapy. In: Hayat MA, editor. Tumors of the Central Nervous System, vol. 6, Netherlands: Springer; 2012. p. 165–79.Google Scholar
  28. 28.
    Bibault JE, Prevost B, Dansin E, Mirabel X, Lacornerie T, Lartigau E. Image-guided robotic stereotactic radiation therapy with fiducial-free tumor tracking for lung cancer. Radiat Oncol. 2012;7:102. Epub 2012/06/26.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Fu DK, R., Wang, B. Xsight lung tracking system: a fiducial-less method for respiratory motion tracking. In: Urschel HCK, J.J., Luketich JD, Papiez L, Timmerman RD, editors. Treating tumors that move with respiration. Berlin: Springer; 2007. p. 265–82.Google Scholar
  30. 30.
    Inoue T, Inoue T, Shiomi H, Shimamoto S. [Clinical experience of new stereotactic radiotherapy system named CyberKnife]. Nihon Rinsho. 2001;59(8):1624–31. Epub 2001/08/25.PubMedGoogle Scholar
  31. 31.
    Chang SD, Lee E, Sakamoto GT, Brown NP, Adler Jr JR. Stereotactic radiosurgery in patients with multiple brain metastases. Neurosurg Focus. 2000;9(2):e3. Epub 2006/07/14.PubMedGoogle Scholar
  32. 32.
    Nishizaki T, Saito K, Jimi Y, Harada N, Kajiwara K, Nomura S, et al. The role of cyberknife radiosurgery/radiotherapy for brain metastases of multiple or large-size tumors. Minim Invasive Neurosurg. 2006;49(4):203–9. Epub 2006/10/17.CrossRefPubMedGoogle Scholar
  33. 33.
    Hara W, Tran P, Li G, Su Z, Puataweepong P, Adler Jr JR, et al. Cyberknife for brain metastases of malignant melanoma and renal cell carcinoma. Neurosurgery. 2009;64(2 Suppl):A26–32. Epub 2009/01/30.CrossRefPubMedGoogle Scholar
  34. 34.
    Karlovits BJ, Quigley MR, Karlovits SM, Miller L, Johnson M, Gayou O, et al. Stereotactic radiosurgery boost to the resection bed for oligometastatic brain disease: challenging the tradition of adjuvant whole-brain radiotherapy. Neurosurg Focus. 2009;27(6):E7. Epub 2009/12/03.CrossRefPubMedGoogle Scholar
  35. 35.
    Jensen CA, Chan MD, McCoy TP, Bourland JD, deGuzman AF, Ellis TL, et al. Cavity-directed radiosurgery as adjuvant therapy after resection of a brain metastasis. J Neurosurg. 2011;114(6):1585–91. Epub 2010/12/21.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Choi CY, Chang SD, Gibbs IC, Adler JR, Harsh GR, Lieberson RE, et al. Stereotactic radiosurgery of the postoperative resection cavity for brain metastases: prospective evaluation of target margin on tumor control. Int J Radiat Oncol Biol Phys. 2012;84(2):336–42. Epub 2012/06/02.CrossRefPubMedGoogle Scholar
  37. 37.
    Villavicencio AT, Burneikiene S, Romanelli P, Fariselli L, McNeely L, Lipani JD, et al. Survival following stereotactic radiosurgery for newly diagnosed and recurrent glioblastoma multiforme: a multicenter experience. Neurosurg Rev. 2009;32(4):417–24. Epub 2009/07/28.CrossRefPubMedGoogle Scholar
  38. 38.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66. Epub 2009/03/10.CrossRefPubMedGoogle Scholar
  39. 39.
    Adler Jr JR, Gibbs IC, Puataweepong P, Chang SD. Visual field preservation after multisession cyberknife radiosurgery for perioptic lesions. Neurosurgery. 2006;59(2):244–54; discussion 254. Epub 2006/08/03.Google Scholar
  40. 40.
    Mehta VK, Lee QT, Chang SD, Cherney S, Adler Jr JR. Image guided stereotactic radiosurgery for lesions in proximity to the anterior visual pathways: a preliminary report. Technol Cancer Res Treat. 2002;1(3):173–80. Epub 2003/03/08.CrossRefPubMedGoogle Scholar
  41. 41.
    Pham CJ, Chang SD, Gibbs IC, Jones P, Heilbrun MP, Adler Jr JR. Preliminary visual field preservation after staged CyberKnife radiosurgery for perioptic lesions. Neurosurgery. 2004;54(4):799–810; discussion 812. Epub 2004/03/30.Google Scholar
  42. 42.
    Pannullo SC, Fraser JF, Moliterno J, Cobb W, Stieg PE. Stereotactic radiosurgery: a meta-analysis of current therapeutic applications in neuro-oncologic disease. J Neurooncol. 2011;103(1):1–17. Epub 2010/12/15.CrossRefPubMedGoogle Scholar
  43. 43.
    Henderson F, Jean W, Nasr N, Gagnon G. CyberKnife: clinical aspects. In: Gildenberg PL, Lozano AM, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. Berlin: Springer; 2009. p. 1111–29.CrossRefGoogle Scholar
  44. 44.
    Andrews DW, Suarez O, Goldman HW, Downes MB, Bednarz G, Corn BW, et al. Stereotactic radiosurgery and fractionated stereotactic radiotherapy for the treatment of acoustic schwannomas: comparative observations of 125 patients treated at one institution. Int J Radiat Oncol Biol Phys. 2001;50(5):1265–78. Epub 2001/08/03.CrossRefPubMedGoogle Scholar
  45. 45.
    Chang SD, Gibbs IC, Sakamoto GT, Lee E, Oyelese A, Adler Jr JR. Staged stereotactic irradiation for acoustic neuroma. Neurosurgery. 2005;56(6):1254–61; discussion 1261–3. Epub 2005/05/28.CrossRefPubMedGoogle Scholar
  46. 46.
    Hansasuta A, Choi CY, Gibbs IC, Soltys SG, Tse VC, Lieberson RE, et al. Multisession stereotactic radiosurgery for vestibular schwannomas: single-institution experience with 383 cases. Neurosurgery. 2011;69(6):1200–9. Epub 2011/05/12.CrossRefPubMedGoogle Scholar
  47. 47.
    Romanelli P, Heit G, Chang SD, Martin D, Pham C, Adler J. Cyberknife radiosurgery for trigeminal neuralgia. Stereotact Funct Neurosurg. 2003;81(1–4):105–9. Epub 2004/01/27.CrossRefPubMedGoogle Scholar
  48. 48.
    Lim M, Cotrutz C, Romanelli P, Schaal D, Gibbs I, Chang SD, et al. Stereotactic radiosurgery using CT cisternography and non-isocentric planning for the treatment of trigeminal neuralgia. Comput Aided Surg. 2006;11(1):11–20. Epub 2006/03/15.CrossRefPubMedGoogle Scholar
  49. 49.
    Villavicencio AT, Lim M, Burneikiene S, Romanelli P, Adler JR, McNeely L, et al. Cyberknife radiosurgery for trigeminal neuralgia treatment: a preliminary multicenter experience. Neurosurgery. 2008;62(3):647–55; discussion 655. Epub 2008/04/22.Google Scholar
  50. 50.
    Adler Jr JR, Bower R, Gupta G, Lim M, Efron A, Gibbs IC, et al. Nonisocentric radiosurgical rhizotomy for trigeminal neuralgia. Neurosurgery. 2009;64(2 Suppl):A84–90. Epub 2009/01/30.CrossRefPubMedGoogle Scholar
  51. 51.
    Fariselli L, Marras C, De Santis M, Marchetti M, Milanesi I, Broggi G. CyberKnife radiosurgery as a first treatment for idiopathic trigeminal neuralgia. Neurosurgery. 2009;64(2 Suppl):A96–101. Epub 2009/01/30.CrossRefPubMedGoogle Scholar
  52. 52.
    Ryu S, Fang Yin F, Rock J, Zhu J, Chu A, Kagan E, et al. Image-guided and intensity-modulated radiosurgery for patients with spinal metastasis. Cancer. 2003;97(8):2013–8. Epub 2003/04/04.CrossRefPubMedGoogle Scholar
  53. 53.
    Gerszten PC, Burton SA, Ozhasoglu C, Welch WC. Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine. 2007;32(2):193–9. Epub 2007/01/17.CrossRefPubMedGoogle Scholar
  54. 54.
    Gerszten PC, Ozhasoglu C, Burton SA, Vogel WJ, Atkins BA, Kalnicki S, et al. CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases. Neurosurgery. 2004;55(1):89–98; discussion 99. Epub 2004/06/25.Google Scholar
  55. 55.
    Martin A, Gaya A. Stereotactic body radiotherapy: a review. Clin Oncol (R Coll Radiol). 2010;22(3):157–72. Epub 2010/01/23.CrossRefGoogle Scholar
  56. 56.
    Hara W, Soltys SG, Gibbs IC. CyberKnife robotic radiosurgery system for tumor treatment. Expert Rev Anticancer Ther. 2007;7(11):1507–15. Epub 2007/11/21.CrossRefPubMedGoogle Scholar
  57. 57.
    Gibbs IC, Kamnerdsupaphon P, Ryu MR, Dodd R, Kiernan M, Chang SD, et al. Image-guided robotic radiosurgery for spinal metastases. Radiother Oncol. 2007;82(2):185–90. Epub 2007/01/30.CrossRefPubMedGoogle Scholar
  58. 58.
    Heron DE, Rajagopalan MS, Stone B, Burton S, Gerszten PC, Dong X, et al. Single-session and multisession CyberKnife radiosurgery for spine metastases-University of Pittsburgh and Georgetown University experience. J Neurosurg Spine. 2012;17(1): 11–8. Epub 2012/05/15.CrossRefPubMedGoogle Scholar
  59. 59.
    Sibley GS, Jamieson TA, Marks LB, Anscher MS, Prosnitz LR. Radiotherapy alone for medically inoperable stage I non-small-cell lung cancer: the Duke experience. Int J Radiat Oncol Biol Phys. 1998;40(1):149–54. Epub 1998/01/09.CrossRefPubMedGoogle Scholar
  60. 60.
    Kaskowitz L, Graham MV, Emami B, Halverson KJ, Rush C. Radiation therapy alone for stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 1993;27(3):517–23. Epub 1993/10/20.CrossRefPubMedGoogle Scholar
  61. 61.
    Nagata Y, Takayama K, Matsuo Y, Norihisa Y, Mizowaki T, Sakamoto T, et al. Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys. 2005;63(5):1427–31. Epub 2005/09/20.CrossRefPubMedGoogle Scholar
  62. 62.
    Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303(11):1070–6. Epub 2010/03/18.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Chen VJ, Oermann E, Vahdat S, Rabin J, Suy S, Yu X, et al. CyberKnife with tumor tracking: an effective treatment for high-risk surgical patients with stage I non-small cell lung cancer. Front Oncol. 2012;2:9. Epub 2012/06/02.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Unger K, Ju A, Oermann E, Suy S, Yu X, Vahdat S, et al. CyberKnife for hilar lung tumors: report of clinical response and toxicity. J Hematol Oncol. 2010;3:39. Epub 2010/10/26.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Vahdat S, Oermann EK, Collins SP, Yu X, Abedalthagafi M, Debrito P, et al. CyberKnife radiosurgery for inoperable stage IA non-small cell lung cancer: 18F-fluorodeoxyglucose positron emission tomography/computed tomography serial tumor response assessment. J Hematol Oncol. 2010;3:6. Epub 2010/02/06.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Pennathur A, Luketich JD, Heron DE, Schuchert MJ, Burton S, Abbas G, et al. Stereotactic radiosurgery for the treatment of lung neoplasm: experience in 100 consecutive patients. Ann Thorac Surg. 2009;88(5):1594–600; discussion 1600. Epub 2009/10/27.CrossRefPubMedGoogle Scholar
  67. 67.
    van der Voort van Zyp NC, van der Holt B, van Klaveren RJ, Pattynama P, Maat A, Nuyttens JJ. Stereotactic body radiotherapy using real-time tumor tracking in octogenarians with non-small cell lung cancer. Lung Cancer. 2010;69(3):296–301. Epub 2010/01/12.Google Scholar
  68. 68.
    van der Voort van Zyp NC, Prevost JB, Hoogeman MS, Praag J, van der Holt B, Levendag PC, et al. Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol. 2009;91(3):296–300. Epub 2009/03/20.Google Scholar
  69. 69.
    Le QT, Loo BW, Ho A, Cotrutz C, Koong AC, Wakelee H, et al. Results of a phase I dose-escalation study using single-fraction stereotactic radiotherapy for lung tumors. J Thorac Oncol. 2006;1(8): 802–9. Epub 2007/04/06.CrossRefPubMedGoogle Scholar
  70. 70.
    Brown WT, Wu X, Fayad F, Fowler JF, Garcia S, Monterroso MI, et al. Application of robotic stereotactic radiotherapy to peripheral stage I non-small cell lung cancer with curative intent. Clin Oncol (R Coll Radiol). 2009;21(8):623–31. Epub 2009/08/18.CrossRefGoogle Scholar
  71. 71.
    Willett CG, Czito BG, Bendell JC, Ryan DP. Locally advanced pancreatic cancer. J Clin Oncol. 2005;23(20):4538–44. Epub 2005/07/09.CrossRefPubMedGoogle Scholar
  72. 72.
    Koong AC, Le QT, Ho A, Fong B, Fisher G, Cho C, et al. Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2004;58(4):1017–21. Epub 2004/03/06.CrossRefPubMedGoogle Scholar
  73. 73.
    Chang DT, Schellenberg D, Shen J, Kim J, Goodman KA, Fisher GA, et al. Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer. 2009;115(3):665–72. Epub 2009/01/02.CrossRefPubMedGoogle Scholar
  74. 74.
    Mahadevan A, Miksad R, Goldstein M, Sullivan R, Bullock A, Buchbinder E, et al. Induction gemcitabine and stereotactic body radiotherapy for locally advanced nonmetastatic pancreas cancer. Int J Radiat Oncol Biol Phys. 2011;81(4):e615–22. Epub 2011/06/11.CrossRefPubMedGoogle Scholar
  75. 75.
    Lominska CE, Unger K, Nasr NM, Haddad N, Gagnon G. Stereotactic body radiation therapy for reirradiation of localized adenocarcinoma of the pancreas. Radiat Oncol. 2012;7:74. Epub 2012/05/23.PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Goyal K, Einstein D, Ibarra RA, Yao M, Kunos C, Ellis R, et al. Stereotactic body radiation therapy for nonresectable tumors of the pancreas. J Surg Res. 2012;174(2):319–25. Epub 2011/09/23.PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Didolkar MS, Coleman CW, Brenner MJ, Chu KU, Olexa N, Stanwyck E, et al. Image-guided stereotactic radiosurgery for locally advanced pancreatic adenocarcinoma results of first 85 patients. J Gastrointest Surg. 2010;14(10):1547–59. Epub 2010/09/15.CrossRefPubMedGoogle Scholar
  78. 78.
    Seo Y, Kim MS, Yoo S, Cho C, Yang K, Yoo H, et al. Stereotactic body radiation therapy boost in locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2009;75(5):1456–61. Epub 2009/09/29.CrossRefPubMedGoogle Scholar
  79. 79.
    Schellenberg D, Goodman KA, Lee F, Chang S, Kuo T, Ford JM, et al. Gemcitabine chemotherapy and single-fraction stereotactic body radiotherapy for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2008;72(3):678–86. Epub 2008/04/09.CrossRefPubMedGoogle Scholar
  80. 80.
    Rwigema JC, Heron DE, Parikh SD, Zeh 3rd HJ, Moser JA, Bahary N, et al. Adjuvant stereotactic body radiotherapy for resected pancreatic adenocarcinoma with close or positive margins. J Gastrointest Cancer. 2012;43(1):70–6. Epub 2010/09/03.CrossRefPubMedGoogle Scholar
  81. 81.
    Polistina F, Costantin G, Casamassima F, Francescon P, Guglielmi R, Panizzoni G, et al. Unresectable locally advanced pancreatic cancer: a multimodal treatment using neoadjuvant chemoradiotherapy (gemcitabine plus stereotactic radiosurgery) and subsequent surgical exploration. Ann Surg Oncol. 2010;17(8):2092–101. Epub 2010/03/13.CrossRefPubMedGoogle Scholar
  82. 82.
    Chang DT, Swaminath A, Kozak M, Weintraub J, Koong AC, Kim J, et al. Stereotactic body radiotherapy for colorectal liver metastases: a pooled analysis. Cancer. 2011;117(17):4060–9. Epub 2011/03/25.CrossRefPubMedGoogle Scholar
  83. 83.
    Lee MT, Kim JJ, Dinniwell R, Brierley J, Lockwood G, Wong R, et al. Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol. 2009;27(10):1585–91. Epub 2009/03/04.CrossRefPubMedGoogle Scholar
  84. 84.
    Tse RV, Hawkins M, Lockwood G, Kim JJ, Cummings B, Knox J, et al. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2008;26(4):657–64. Epub 2008/01/04.CrossRefPubMedGoogle Scholar
  85. 85.
    Rusthoven KE, Kavanagh BD, Cardenes H, Stieber VW, Burri SH, Feigenberg SJ, et al. Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol. 2009;27(10):1572–8. Epub 2009/03/04.CrossRefPubMedGoogle Scholar
  86. 86.
    Andolino DL, Johnson CS, Maluccio M, Kwo P, Tector AJ, Zook J, et al. Stereotactic body radiotherapy for primary hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2011;81(4):e447–53. Epub 2011/06/08.CrossRefPubMedGoogle Scholar
  87. 87.
    Goodman KA, Wiegner EA, Maturen KE, Zhang Z, Mo Q, Yang G, et al. Dose-escalation study of single-fraction stereotactic body radiotherapy for liver malignancies. Int J Radiat Oncol Biol Phys. 2010;78(2):486–93. Epub 2010/03/31.CrossRefPubMedGoogle Scholar
  88. 88.
    Lanciano R, Lamond J, Yang J, Feng J, Arrigo S, Good M, et al. Stereotactic body radiation therapy for patients with heavily pretreated liver metastases and liver tumors. Front Oncol. 2012;2:23. Epub 2012/05/31.PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Goyal K, Einstein D, Yao M, Kunos C, Barton F, Singh D, et al. Cyberknife stereotactic body radiation therapy for nonresectable tumors of the liver: preliminary results. HPB Surg. 2010;2010. Epub 2010/08/07.Google Scholar
  90. 90.
    Choi BO, Choi IB, Jang HS, Kang YN, Jang JS, Bae SH, et al. Stereotactic body radiation therapy with or without transarterial chemoembolization for patients with primary hepatocellular carcinoma: preliminary analysis. BMC Cancer. 2008;8:351. Epub 2008/11/29.PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    O’Connor JK, Trotter J, Davis GL, Dempster J, Klintmalm GB, Goldstein RM. Long-term outcomes of stereotactic body radiation therapy in the treatment of hepatocellular cancer as a bridge to transplantation. Liver Transpl. 2012;18(8):949–54. Epub 2012/04/03.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Carolina E. Fasola
    • 1
  • Lei Wang
    • 1
  • John R. Adler
    • 2
    • 3
  • Scott G. Soltys
    • 1
  • Iris C. Gibbs
    • 1
  • Albert C. Koong
    • 1
  • Daniel T. Chang
    • 1
  1. 1.Department of Radiation OncologyStanford UniversityStanfordUSA
  2. 2.NeurosurgeryStanford UniversityStanfordUSA
  3. 3.Varian Medical SystemsStanfordUSA

Personalised recommendations