Alternative Future Therapies for Lysosomal Storage Diseases: Embryonic Stem Cell- and Induced Pluripotent Stem Cell Therapy

  • Arie Koen BraatEmail author
  • Paul J. Coffer
  • Niels Geijsen
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


There are 40 known genetically inherited lysosomal storage diseases, most of which are caused by a mutation(s) in a single gene or enzyme [1]. This category of diseases may provide a good platform for the field of regenerative medicine to apply new therapeutical methods: stem cell therapy and induced pluripotent stem cell therapy. Stem cells are defined by two properties, the ability to self-renew indefinitely and the ability to differentiate into specialized cells. Embryonic stem cells (ESCs) are pluripotent; they have the capacity to generate all cell types of the body. With the more recent advances in this field, somatic cells can now be reprogrammed to induced pluripotent stem cells (iPSCs) which are functionally equivalent to ESCs. These cells hold much promise for future therapeutic applications. In this chapter, we provide an overview of (iPSC) technology and discuss ESC therapy and iPSC therapy in the context of their potential application in lysosomal storage diseases.


Amyotrophic Lateral Sclerosis Embryonic Stem Cell Pluripotent Stem Cell Enzyme Replacement Therapy Spinal Muscular Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Winchester, B., Vellodi, A., Young, E.: The molecular basis of lysosomal storage diseases and their treatment. Biochem. Soc. Trans. 28(2), 150–154 (2000)PubMedGoogle Scholar
  2. 2.
    Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K.R., Yanagimachi, R.: Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394(6691), 369–374 (1998)PubMedCrossRefGoogle Scholar
  3. 3.
    Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., Campbell, K.H.: Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619), 810–813 (1997)PubMedCrossRefGoogle Scholar
  4. 4.
    Campbell, K.H., McWhir, J., Ritchie, W.A., Wilmut, I.: Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569), 64–66 (1996)PubMedCrossRefGoogle Scholar
  5. 5.
    Hochedlinger, K., Blelloch, R., Brennan, C., Yamada, Y., Kim, M., Chin, L., Jaenisch, R.: Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 18(15), 1875–1885 (2004)PubMedCrossRefGoogle Scholar
  6. 6.
    Hochedlinger, K., Jaenisch, R.: Nuclear transplantation: lessons from frogs and mice. Curr. Opin. Cell Biol. 14(6), 741–748 (2002)PubMedCrossRefGoogle Scholar
  7. 7.
    Humpherys, D., Eggan, K., Akutsu, H., Friedman, A., Hochedlinger, K., Yanagimachi, R., Lander, E.S., Golub, T.R., Jaenisch, R.: Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc. Natl. Acad. Sci. USA. 99(20), 12889–12894 (2002)PubMedCrossRefGoogle Scholar
  8. 8.
    Ng, R.K., Gurdon, J.B.: Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proc. Natl. Acad. Sci. USA. 102(6), 1957–1962 (2005)PubMedCrossRefGoogle Scholar
  9. 9.
    Ogonuki, N., Inoue, K., Yamamoto, Y., Noguchi, Y., Tanemura, K., Suzuki, O., Nakayama, H., Doi, K., Ohtomo, Y., Satoh, M., Nishida, A., Ogura, A.: Early death of mice cloned from somatic cells. Nat. Genet. 30(3), 253–254 (2002)PubMedCrossRefGoogle Scholar
  10. 10.
    Jaenisch, R., Hochedlinger, K., Blelloch, R., Yamada, Y., Baldwin, K., Eggan, K.: Nuclear cloning, epigenetic reprogramming, and cellular differentiation. Cold Spring Harb. Symp. Quant. Biol. 69, 19–27 (2004)PubMedCrossRefGoogle Scholar
  11. 11.
    Tamashiro, K.L., Wakayama, T., Akutsu, H., Yamazaki, Y., Lachey, J.L., Wortman, M.D., Seeley, R.J., D’Alessio, D.A., Woods, S.C., Yanagimachi, R., Sakai, R.R.: Cloned mice have an obese phenotype not transmitted to their offspring. Nat. Med. 8(3), 262–267 (2002)PubMedCrossRefGoogle Scholar
  12. 12.
    Lanza, R.P., Cibelli, J.B., West, M.D.: Human therapeutic cloning. Nat. Med. 5(9), 975–977 (1999)PubMedCrossRefGoogle Scholar
  13. 13.
    Rideout 3rd, W.M., Hochedlinger, K., Kyba, M., Daley, G.Q., Jaenisch, R.: Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109(1), 17–27 (2002)PubMedCrossRefGoogle Scholar
  14. 14.
    Takahashi, K., Yamanaka, S.: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676 (2006)PubMedCrossRefGoogle Scholar
  15. 15.
    Evans, M.J., Kaufman, M.H.: Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819), 154–156 (1981)PubMedCrossRefGoogle Scholar
  16. 16.
    Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., Jones, J.M.: Embryonic stem cell lines derived from human blastocysts. Science 282(5391), 1145–1147 (1998)PubMedCrossRefGoogle Scholar
  17. 17.
    Sato, N., Sanjuan, I.M., Heke, M., Uchida, M., Naef, F., Brivanlou, A.H.: Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev. Biol. 260(2), 404–413 (2003)PubMedCrossRefGoogle Scholar
  18. 18.
    Schuringa, J.J., van der Schaaf, S., Vellenga, E., Eggen, B.J., Kruijer, W.: LIF-induced STAT3 signaling in murine versus human embryonal carcinoma (EC) cells. Exp. Cell Res. 274(1), 119–129 (2002)PubMedCrossRefGoogle Scholar
  19. 19.
    Ying, Q.L., Nichols, J., Chambers, I., Smith, A.: BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115(3), 281–292 (2003)PubMedCrossRefGoogle Scholar
  20. 20.
    Xu, R.H., Peck, R.M., Li, D.S., Feng, X., Ludwig, T., Thomson, J.A.: Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2(3), 185–190 (2005)PubMedCrossRefGoogle Scholar
  21. 21.
    Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., Smith, A.: Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5), 643–655 (2003)PubMedCrossRefGoogle Scholar
  22. 22.
    Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., Yamanaka, S.: The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5), 631–642 (2003)PubMedCrossRefGoogle Scholar
  23. 23.
    Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., Smith, A.: Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3), 379–391 (1998)PubMedCrossRefGoogle Scholar
  24. 24.
    Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H., Benvenisty, N.: Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6(2), 88–95 (2000)PubMedGoogle Scholar
  25. 25.
    Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., Roder, J.C.: Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA. 90(18), 8424–8428 (1993)PubMedCrossRefGoogle Scholar
  26. 26.
    Lamba, D.A., Gust, J., Reh, T.A.: Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4(1), 73–79 (2009)PubMedCrossRefGoogle Scholar
  27. 27.
    Basma, H., Soto-Gutierrez, A., Yannam, G.R., Liu, L., Ito, R., Yamamoto, T., Ellis, E., Carson, S.D., Sato, S., Chen, Y., Muirhead, D., Navarro-Alvarez, N., Wong, R.J., Roy-Chowdhury, J., Platt, J.L., Mercer, D.F., Miller, J.D., Strom, S.C., Kobayashi, N., Fox, I.J.: Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 136(3), 990–999 (2009)PubMedCrossRefGoogle Scholar
  28. 28.
    Keirstead, H.S., Nistor, G., Bernal, G., Totoiu, M., Cloutier, F., Sharp, K., Steward, O.: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. 25(19), 4694–4705 (2005)PubMedCrossRefGoogle Scholar
  29. 29.
    Sun, N., Longaker, M.T., Wu, J.C.: Human iPS cell-based therapy: considerations before clinical applications. Cell Cycle 9(5), 880–885 (2010)PubMedCrossRefGoogle Scholar
  30. 30.
    Chang, J.C., Ye, L., Kan, Y.W.: Correction of the sickle cell mutation in embryonic stem cells. Proc. Natl. Acad. Sci. USA. 103(4), 1036–1040 (2006)PubMedCrossRefGoogle Scholar
  31. 31.
    Urbach, A., Schuldiner M., Benvenisty, N.: Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells. 22(4), 635–641 (2004)Google Scholar
  32. 32.
    Zwaka, T.P., Thomson, J.A.: Homologous recombination in human embryonic stem cells. Nat. Biotechnol. 21(3), 319–321 (2003)PubMedCrossRefGoogle Scholar
  33. 33.
    Xue, H., Wu, S., Papadeas, S.T., Spusta, S., Swistowska, A.M., MacArthur, C.C., Mattson, M.P., Maragakis, N.J., Capecchi, M.R., Rao, M.S., Zeng, X., Liu, Y.: A targeted neuroglial reporter line generated by homologous recombination in human embryonic stem cells. Stem Cells 27(8), 1836–1846 (2009)PubMedCrossRefGoogle Scholar
  34. 34.
    Davis, R.P., Ng, E.S., Costa, M., Mossman, A.K., Sourris, K., Elefanty, A.G., Stanley, E.G.: Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111(4), 1876–1884 (2008)PubMedCrossRefGoogle Scholar
  35. 35.
    Song, H., Chung, S.K., Xu, Y.: Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6(1), 80–89 (2010)PubMedCrossRefGoogle Scholar
  36. 36.
    Buecker, C., Chen, H.H., Polo, J.M., Daheron, L., Bu, L., Barakat, T.S., Okwieka, P., Porter, A., Gribnau, J., Hochedlinger, K., Geijsen, N.: A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell 6(6), 535–546 (2010)PubMedCrossRefGoogle Scholar
  37. 37.
    Drukker, M., Katz, G., Urbach, A., Schuldiner, M., Markel, G., Itskovitz-Eldor, J., Reubinoff, B., Mandelboim, O., Benvenisty, N.: Characterization of the expression of MHC proteins in human embryonic stem cells. Proc. Natl. Acad. Sci. USA. 99(15), 9864–9869 (2002)PubMedCrossRefGoogle Scholar
  38. 38.
    Rubinstein, P.: HLA matching for bone marrow transplantation—how much is enough? N. Engl. J. Med. 345(25), 1842–1844 (2001)PubMedCrossRefGoogle Scholar
  39. 39.
    Tabar, V., Tomishima, M., Panagiotakos, G., Wakayama, S., Menon, J., Chan, B., Mizutani, E., Al-Shamy, G., Ohta, H., Wakayama, T., Studer, L.: Therapeutic cloning in individual parkinsonian mice. Nat. Med. 14(4), 379–381 (2008)PubMedCrossRefGoogle Scholar
  40. 40.
    Munsie, M.J., Michalska, A.E., O’Brien, C.M., Trounson, A.O., Pera, M.F., Mountford, P.S.: Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr. Biol. 10(16), 989–992 (2000)PubMedCrossRefGoogle Scholar
  41. 41.
    Wakayama, T., Tabar, V., Rodriguez, I., Perry, A.C., Studer, L., Mombaerts, P.: Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292(5517), 740–743 (2001)PubMedCrossRefGoogle Scholar
  42. 42.
    Egli, D., Rosains, J., Birkhoff, G., Eggan, K.: Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447(7145), 679–685 (2007)PubMedCrossRefGoogle Scholar
  43. 43.
    Okita, K., Ichisaka, T., Yamanaka, S.: Generation of germline-competent induced pluripotent stem cells. Nature 448(7151), 313–317 (2007)PubMedCrossRefGoogle Scholar
  44. 44.
    Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B.E., Jaenisch, R.: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151), 318–324 (2007)PubMedCrossRefGoogle Scholar
  45. 45.
    Takahashi, K., Okita, K., Nakagawa, M., Yamanaka, S.: Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2(12), 3081–3089 (2007)PubMedCrossRefGoogle Scholar
  46. 46.
    Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I., Thomson, J.A.: Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858), 1917–1920 (2007)PubMedCrossRefGoogle Scholar
  47. 47.
    Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., Hochedlinger, K.: Induced pluripotent stem cells generated without viral integration. Science 322(5903), 945–949 (2008)PubMedCrossRefGoogle Scholar
  48. 48.
    Woltjen, K., Michael, I.P., Mohseni, P., Desai, R., Mileikovsky, M., Hamalainen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., Kaji, K., Sung, H.K., Nagy, A.: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239), 766–770 (2009)PubMedCrossRefGoogle Scholar
  49. 49.
    Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., Woltjen, K.: Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239), 771–775 (2009)PubMedCrossRefGoogle Scholar
  50. 50.
    Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I.I., Thomson, J.A.: Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928), 797–801 (2009)PubMedCrossRefGoogle Scholar
  51. 51.
    Kim, D., Kim, C.H., Moon, J.I., Chung, Y.G., Chang, M.Y., Han, B.S., Ko, S., Yang, E., Cha, K.Y., Lanza, R., Kim, K.S.: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6), 472–476 (2009)PubMedCrossRefGoogle Scholar
  52. 52.
    Zhou, H., Wu, S., Joo, J.Y., Zhu, S., Han, D.W., Lin, T., Trauger, S., Bien, G., Yao, S., Zhu, Y., Siuzdak, G., Scholer, H.R., Duan, L., Ding, S.: Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5), 381–384 (2009)PubMedCrossRefGoogle Scholar
  53. 53.
    Warren, L., Manos, P.D., Ahfeldt, T., Loh, Y.H., Li, H., Lau, F., Ebina, W., Mandal, P.K., Smith, Z.D., Meissner, A., Daley, G.Q., Brack, A.S., Collins, J.J., Cowan, C., Schlaeger, T.M., Rossi, D.J.: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5), 618–630 (2010)PubMedCrossRefGoogle Scholar
  54. 54.
    Ichida, J.K., Blanchard, J., Lam, K., Son, E.Y., Chung, J.E., Egli, D., Loh, K.M., Carter, A.C., Di Giorgio, F.P., Koszka, K., Huangfu, D., Akutsu, H., Liu, D.R., Rubin, L.L., Eggan, K.: A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5(5), 491–503 (2009)PubMedCrossRefGoogle Scholar
  55. 55.
    Lyssiotis, C.A., Foreman, R.K., Staerk, J., Garcia, M., Mathur, D., Markoulaki, S., Hanna, J., Lairson, L.L., Charette, B.D., Bouchez, L.C., Bollong, M., Kunick, C., Brinker, A., Cho, C.Y., Schultz, P.G., Jaenisch, R.: Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc. Natl. Acad. Sci. USA. 106(22), 8912–8917 (2009)PubMedCrossRefGoogle Scholar
  56. 56.
    Shi, Y., Desponts, C., Do, J.T., Hahm, H.S., Scholer, H.R., Ding, S.: Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3(5), 568–574 (2008)PubMedCrossRefGoogle Scholar
  57. 57.
    Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., Yamanaka, S.: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26(1), 101–106 (2008)PubMedCrossRefGoogle Scholar
  58. 58.
    Loh, Y.H., Agarwal, S., Park, I.H., Urbach, A., Huo, H., Heffner, G.C., Kim, K., Miller, J.D., Ng, K., Daley, G.Q.: Generation of induced pluripotent stem cells from human blood. Blood 113(22), 5476–5479 (2009)PubMedCrossRefGoogle Scholar
  59. 59.
    Cowan, C.A., Atienza, J., Melton, D.A., Eggan, K.: Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309(5739), 1369–1373 (2005)PubMedCrossRefGoogle Scholar
  60. 60.
    Tada, M., Takahama, Y., Abe, K., Nakatsuji, N., Tada, T.: Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11(19), 1553–1558 (2001)PubMedCrossRefGoogle Scholar
  61. 61.
    Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., Yamanaka, S.: Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321(5889), 699–702 (2008)PubMedCrossRefGoogle Scholar
  62. 62.
    Stadtfeld, M., Brennand, K., Hochedlinger, K.: Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr. Biol. 18(12), 890–894 (2008)PubMedCrossRefGoogle Scholar
  63. 63.
    Hanna, J., Markoulaki, S., Schorderet, P., Carey, B.W., Beard, C., Wernig, M., Creyghton, M.P., Steine, E.J., Cassady, J.P., Foreman, R., Lengner, C.J., Dausman, J.A., Jaenisch, R.: Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133(2), 250–264 (2008)PubMedCrossRefGoogle Scholar
  64. 64.
    Eminli, S., Utikal, J., Arnold, K., Jaenisch, R., Hochedlinger, K.: Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 26(10), 2467–2474 (2008)PubMedCrossRefGoogle Scholar
  65. 65.
    Kim, J.B., Zaehres, H., Wu, G., Gentile, L., Ko, K., Sebastiano, V., Arauzo-Bravo, M.J., Ruau, D., Han, D.W., Zenke, M., Scholer, H.R.: Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454(7204), 646–650 (2008)PubMedCrossRefGoogle Scholar
  66. 66.
    Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G., Edel, M., Boue, S., Izpisua Belmonte, J.C.: Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26(11), 1276–1284 (2008)PubMedCrossRefGoogle Scholar
  67. 67.
    Botchkarev, V.A.: Molecular mechanisms of chemotherapy-induced hair loss. J. Investig. Dermatol. Symp. Proc. 8(1), 72–75 (2003)PubMedCrossRefGoogle Scholar
  68. 68.
    Krause, K., Foitzik, K.: Biology of the hair follicle: the basics. Semin. Cutan. Med. Surg. 25(1), 2–10 (2006)PubMedCrossRefGoogle Scholar
  69. 69.
    Giorgetti, A., Montserrat, N., Aasen, T., Gonzalez, F., Rodriguez-Piza, I., Vassena, R., Raya, A., Boue, S., Barrero, M.J., Corbella, B.A., Torrabadella, M., Veiga, A., Izpisua Belmonte, J.C.: Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5(4), 353–357 (2009)PubMedCrossRefGoogle Scholar
  70. 70.
    Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M.J., Ji, H., Ehrlich, L.I., Yabuuchi, A., Takeuchi, A., Cunniff, K.C., Hongguang, H., McKinney-Freeman, S., Naveiras, O., Yoon, T.J., Irizarry, R.A., Jung, N., Seita, J., Hanna, J., Murakami, P., Jaenisch, R., Weissleder, R., Orkin, S.H., Weissman, I.L., Feinberg, A.P., Daley, G.Q.: Epigenetic memory in induced pluripotent stem cells. Nature 467(7313), 285–290 (2010)PubMedCrossRefGoogle Scholar
  71. 71.
    Polo, J.M., Liu, S., Figueroa, M.E., Kulalert, W., Eminli, S., Tan, K.Y., Apostolou, E., Stadtfeld, M., Li, Y., Shioda, T., Natesan, S., Wagers, A.J., Melnick, A., Evans, T., Hochedlinger, K.: Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat. Biotechnol. 28(8), 848–855 (2010)PubMedCrossRefGoogle Scholar
  72. 72.
    Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.C., Townes, T.M., Jaenisch, R.: Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858), 1920–1923 (2007)PubMedCrossRefGoogle Scholar
  73. 73.
    Wernig, M., Zhao, J.P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O., Jaenisch, R.: Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl. Acad. Sci. USA. 105(15), 5856–5861 (2008)PubMedCrossRefGoogle Scholar
  74. 74.
    Park, I.H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M.W., Cowan, C., Hochedlinger, K., Daley, G.Q.: Disease-specific induced pluripotent stem cells. Cell 134(5), 877–886 (2008)PubMedCrossRefGoogle Scholar
  75. 75.
    Ebert, A.D., Yu, J., Rose Jr., F.F., Mattis, V.B., Lorson, C.L., Thomson, J.A., Svendsen, C.N.: Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227), 277–280 (2009)PubMedCrossRefGoogle Scholar
  76. 76.
    Raya, A., Rodriguez-Piza, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M.J., Consiglio, A., Castella, M., Rio, P., Sleep, E., Gonzalez, F., Tiscornia, G., Garreta, E., Aasen, T., Veiga, A., Verma, I.M., Surralles, J., Bueren, J., Izpisua Belmonte, J.C.: Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460(7251), 53–59 (2009)PubMedCrossRefGoogle Scholar
  77. 77.
    Ieda, M., Fu, J.D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G., Srivastava, D.: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3), 375–386 (2010)PubMedCrossRefGoogle Scholar
  78. 78.
    Szabo, E., Rampalli, S., Risueno, R.M., Schnerch, A., Mitchell, R., Fiebig-Comyn, A., Levadoux-Martin, M., Bhatia, M.: Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468(7323), 521–526 (2010)PubMedCrossRefGoogle Scholar
  79. 79.
    Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., Wernig, M.: Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284), 1035–1041 (2010)PubMedCrossRefGoogle Scholar
  80. 80.
    Bruni, S., Loschi, L., Incerti, C., Gabrielli, O., Coppa, G.V.: Update on treatment of lysosomal storage diseases. Acta Myol. 26(1), 87–92 (2007)PubMedGoogle Scholar
  81. 81.
    Clarke, J.T., Iwanochko, R.M.: Enzyme replacement therapy of Fabry disease. Mol. Neurobiol. 32(1), 43–50 (2005)PubMedCrossRefGoogle Scholar
  82. 82.
    Boelens, J.J., Prasad, V.K., Tolar, J., Wynn, R.F., Peters, C.: Current international perspectives on hematopoietic stem cell transplantation for inherited metabolic disorders. Pediatr. Clin. North Am. 57(1), 123–145 (2010). doi: 10.1016/j.pcl.2009.11.004 PubMedCrossRefGoogle Scholar
  83. 83.
    Meng, X.L., Shen, J.S., Kawagoe, S., Ohashi, T., Brady, R.O., Eto, Y.: Induced pluripotent stem cells derived from mouse models of lysosomal storage disorders. Proc. Natl. Acad. Sci. USA. 107(17), 7886–7891 (2010)PubMedCrossRefGoogle Scholar
  84. 84.
    Tolar, J., Park, I.H., Xia, L., Lees, C.J., Peacock, B., Webber, B., McElmurry, R.T., Eide, C.R., Orchard, P.J., Kyba, M., Osborn, M.J., Lund, T.C., Wagner, J.E., Daley, G.Q., Blazar, B.R.: Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome). Blood 117(3), 839–847 (2010)PubMedCrossRefGoogle Scholar
  85. 85.
    Zou, J., Sweeney, C.L., Chou, B.K., Choi, U., Pan, J., Wang, H., Dowey, S.N., Cheng, L., Malech, H.L.: Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 117(21), 5561–5572 (2011). doi: 10.1182/blood-2010-12-328161 PubMedCrossRefGoogle Scholar
  86. 86.
    Hockemeyer, D., Wang, H., Kiani, S., Lai, C.S., Gao, Q., Cassady, J.P., Cost, G.J., Zhang, L., Santiago, Y., Miller, J.C., Zeitler, B., Cherone, J.M., Meng, X., Hinkley, S.J., Rebar, E.J., Gregory, P.D., Urnov, F.D., Jaenisch, R.: Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29(8), 731–734 (2011). doi: 10.1038/nbt.1927 PubMedCrossRefGoogle Scholar
  87. 87.
    Meng, X.L., Shen, J.S., Ohashi, T., Maeda, H., Kim, S.U., Eto, Y.: Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis type VII mouse. J. Neurosci. Res. 74(2), 266–277 (2003)PubMedCrossRefGoogle Scholar
  88. 88.
    Lian, Q., Zhang, Y., Zhang, J., Zhang, H.K., Wu, X., Zhang, Y., Lam, F.F., Kang, S., Xia, J.C., Lai, W.H., Au, K.W., Chow, Y.Y., Siu, C.W., Lee, C.N., Tse, H.F.: Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121(9), 1113–1123 (2010)PubMedCrossRefGoogle Scholar
  89. 89.
    Hoffman, D., Breakefield, X.O., Short, M.P., Aebischer, P.: Transplantation of a polymer-encapsulated cell line genetically engineered to release NGF. Exp. Neurol. 122(1), 100–106 (1993)PubMedCrossRefGoogle Scholar
  90. 90.
    Sautter, J., Tseng, J.L., Braguglia, D., Aebischer, P., Spenger, C., Seiler, R.W., Widmer, H.R., Zurn, A.D.: Implants of polymer-encapsulated genetically modified cells releasing glial cell line-derived neurotrophic factor improve survival, growth, and function of fetal dopaminergic grafts. Exp. Neurol. 149(1), 230–236 (1998)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Arie Koen Braat
    • 1
    • 2
    Email author
  • Paul J. Coffer
    • 1
    • 2
  • Niels Geijsen
    • 3
    • 4
  1. 1.Department of Cell BiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Center for Molecular and Cellular Intervention, Wilhelmina Children’s HospitalUtrechtThe Netherlands
  3. 3.Hubrecht Institute for Developmental Biology and Stem Cell ResearchUtrechtThe Netherlands
  4. 4.Utrecht University Veterinary SchoolUtrechtThe Netherlands

Personalised recommendations