Skip to main content

Schlemm’s Canal and Collector Channels as Therapeutic Targets

  • Chapter
  • First Online:
Surgical Innovations in Glaucoma

Abstract

Intraocular pressure (IOP) is maintained within a normal range from a dynamic balance between aqueous humor formation and drainage. Dysfunctional aqueous drainage results in elevated IOP, which is a causative risk factor for the development and progression of primary open-angle glaucoma (POAG). An understanding of how to lower IOP using microinvasive glaucoma surgery (MIGS) begins with an understanding of the normal anatomy of the structures related to the drainage of aqueous humor and changes in POAG. The major drainage structures for aqueous humor are the conventional or trabecular outflow pathway, which is comprised of the uveal and corneoscleral portions of the trabecular meshwork, the juxtacanalicular connective tissue, Schlemm’s canal, the collector channels, and the aqueous veins. Aqueous humor drains from the anterior chamber through progressively smaller channels of the trabecular meshwork into a circumferencely oriented channel called Schlemm’s canal. From this canal, circuitous channels weave toward the surface of the sclera, ultimately joining the episcleral vasculature which drains into the venous system. Flow through this system is driven by a bulk-flow pressure gradient, and active transport is not involved as neither metabolic poisons nor temperature affects this system to any significant degree. 10–20 % of total aqueous outflow has been reported to leave the normal eye via the uveoscleral pathway which has become a primary target for medical intervention in glaucoma. However, this chapter will only focus on the conventional trabecular outflow pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 2000;130(4):429–40.

    Google Scholar 

  2. Barany E. In vitro studies of the resistance to flow through the angle of the anterior chamber. Acta Soc Med Ups. 1954;59:260–76.

    CAS  PubMed  Google Scholar 

  3. VanBuskirk EM, Grant WM. Influence of temperature and the question of involvement of cellular metabolism in aqueous outflow. Am J Ophthalmol. 1974;77(4):565–72.

    CAS  PubMed  Google Scholar 

  4. Bill A, Phillips CI. Uveoscleral drainage of aqueous humour in human eyes. Exp Eye Res. 1971;12(3):275–81.

    Article  CAS  PubMed  Google Scholar 

  5. Pederson JE, Gaasterland DE, MacLellan HM. Uveoscleral aqueous outflow in the rhesus monkey: importance of uveal reabsorption. Invest Ophthalmol Vis Sci. 1977;16(11):1008–7.

    CAS  PubMed  Google Scholar 

  6. Hogan M, Alvarado J, Weddell J. Histology of the human eye. Philadelphia: WB Saunders Co; 1971.

    Google Scholar 

  7. Tamm ER. The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res. 2009;88(4):648–55.

    Article  CAS  PubMed  Google Scholar 

  8. Kasuga T, Chen YC, Bloomer MM, Hirabayashi KE, Hiratsuka Y, Murakami A, et al. Trabecular meshwork length in men and women by histological assessment. Curr Eye Res. 2013;38(1):75–9.

    Article  PubMed  Google Scholar 

  9. Usui T, Tomidokoro A, Mishima K, Mataki N, Mayama C, Honda N, et al. Identification of Schlemm’s canal and its surrounding tissues by anterior segment Fourier domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(9):6934–9.

    Article  PubMed  Google Scholar 

  10. Freddo T. Ocular anatomy and physiology related to aqueous production and outflow. In: Fingeret M, Lewis T, editors. Primary care of the glaucomas. 2nd ed. New York: McGraw -Hill; 2001.

    Google Scholar 

  11. Freddo TF, Civan M, Gong H. Chapter 191: Aqueous humor and the dynamics of its flow: mechanisms and routes of aqueous humor drainage. In: Albert DM, Jakobiec F, editors. Principles and practice of ophthalmology. 3rd ed. Philadelphia: Saunders/Elsevier; 2008.

    Google Scholar 

  12. Freddo T. Primary care of the glaucomas. 2nd ed. New York: McGraw Hill Professional; 2001.

    Google Scholar 

  13. Freddo T, Gong H, Civan M. Duane’s clinical ophthalmology. Philadelphia: Lippincott, Williams & Wilkins; 2011.

    Google Scholar 

  14. Gong H, et al. A new view of the human trabecular meshwork using quick-freeze, deep-etch electron microscopy. Exp Eye Res. 2002;75:347–58.

    Article  CAS  PubMed  Google Scholar 

  15. Rohen JW, van der Zypen E. The phagocytic activity of the trabecular meshwork endothelium. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1968;175:143–60.

    Article  CAS  PubMed  Google Scholar 

  16. Richardson TM, Hutchinson BT, Grant WM. The outflow tract in pigmentary glaucoma: a light and electron microscopic study. Arch Ophthalmol. 1977;95(6):1015–25.

    Article  CAS  PubMed  Google Scholar 

  17. Epstein DL, Freddo TF, Anderson PJ, Patterson MM, Bassett-Chu S. Experimental obstruction to aqueous outflow by pigment particles in living monkeys. Invest Ophthalmol Vis Sci. 1986;27(3):387–95.

    CAS  PubMed  Google Scholar 

  18. Grierson I, Howes RC. Age-related depletion of the cell population in the human trabecular meshwork. Eye (Lond). 1987;1(Pt 2):204–10.

    Article  Google Scholar 

  19. Buller C, Johnson DH, Tschumper RC. Human trabecular meshwork phagocytosis. Observations in an organ culture system. Invest Ophthalmol Vis Sci. 1990;31(10):2156–63.

    CAS  PubMed  Google Scholar 

  20. Alvarado J, Murphy C, Polansky J, Juster R. Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci. 1981;21(5):714–27.

    CAS  PubMed  Google Scholar 

  21. Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology. 1984;91(6):564–79.

    Article  CAS  PubMed  Google Scholar 

  22. Gong H, Tripathi RC, Tripathi BJ. Morphology of the aqueous outflow pathway. Microsc Res Tech. 1996;33:336–67.

    Article  CAS  PubMed  Google Scholar 

  23. Rohen JW. Why is intraocular pressure elevated in chronic simple glaucoma? Anatomical considerations. Ophthalmology. 1983;90(7):758–65.

    Article  CAS  PubMed  Google Scholar 

  24. Gong HY, Trinkaus-Randall V, Freddo TF. Ultrastructural immunocytochemical localization of elastin in normal human trabecular meshwork. Curr Eye Res. 1989;8(10):1071–82.

    Article  CAS  PubMed  Google Scholar 

  25. Mäepea O, Bill A. Pressures in the juxtacanalicular tissue and Schlemm’s canal in monkeys. Exp Eye Res. 1992;54(6):879–83.

    Article  PubMed  Google Scholar 

  26. Keller KE, Aga M, Bradley JM, Kelley MJ, Acott TS. Extracellular matrix turnover and outflow resistance. Exp Eye Res. 2009;88(4):676–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Rohen JW, Lütjen-Drecoll E, Flügel C, Meyer M, Grierson I. Ultrastructure of the trabecular meshwork in untreated cases of primary open-angle glaucoma (POAG). Exp Eye Res. 1993;56(6):683–92.

    Article  CAS  PubMed  Google Scholar 

  28. Rohen JW, Linnér E, Witmer R. Electron microscopic studies on the trabecular meshwork in two cases of corticosteroid-glaucoma. Exp Eye Res. 1973;17(1):19–31.

    Article  CAS  PubMed  Google Scholar 

  29. Lütjen-Drecoll E, Shimizu T, Rohrbach M, Rohen JW. Quantitative analysis of ‘plaque material’ between ciliary muscle tips in normal- and glaucomatous eyes. Exp Eye Res. 1986;42(5):457–65.

    Article  PubMed  Google Scholar 

  30. Johnson D, Gottanka J, Flügel C, Hoffmann F, Futa R, Lütjen-Drecoll E. Ultrastructural changes in the trabecular meshwork of human eyes treated with corticosteroids. Arch Ophthalmol. 1997;115(3):375–83.

    Article  CAS  PubMed  Google Scholar 

  31. Allingham RR, de Kater AW, Ethier CR. Schlemm’s canal and primary open angle glaucoma: correlation between Schlemm’s canal dimensions and outflow facility. Exp Eye Res. 1996;62(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  32. Bhatt K, Gong H, Freddo TF. Freeze-fracture studies of interendothelial junctions in the angle of the human eye. Invest Ophthalmol Vis Sci. 1995;36(7):1379–89.

    CAS  PubMed  Google Scholar 

  33. Allingham RR, de Kater AW, Ethier CR, Anderson PJ, Hertzmark E, Epstein DL. The relationship between pore density and outflow facility in human eyes. Invest Ophthalmol Vis Sci. 1992;33(5):1661–9.

    CAS  PubMed  Google Scholar 

  34. Ye W, Gong H, Sit A, Johnson M, Freddo TF. Immersion fixation vs. fixation under flow: a study of changes in the structure of interendothelial junctions of Schlemm’s canal in normal human eyes. Invest Ophthalmol Vis Sci. 1995;36(suppl):S729.

    Google Scholar 

  35. Johnstone M, Grant W. Microsurgery of Schlemm’s canal and the human aqueous outflow system. Am J Ophthalmol. 1973;76:906–17.

    CAS  PubMed  Google Scholar 

  36. Ten Hulzen RD, Johnson DH. Effect of fixation pressure on juxtacanalicular tissue and Schlemm’s canal. Invest Ophthalmol Vis Sci. 1996;37(1):114–24.

    PubMed  Google Scholar 

  37. Tripathi R, Tripathi B. Functional anatomy of the anterior chamber of the angle. In: Duane TD, Jaeger EA, editors. Biomedical foundations of ophthalmology. Philadelphia: Harper & Row; 1982.

    Google Scholar 

  38. Ethier CR, Coloma FM, Sit AJ, Johnson M. Two pore types in the inner-wall endothelium of Schlemm’s canal. Invest Ophthalmol Vis Sci. 1998;39(11):2041–8.

    CAS  PubMed  Google Scholar 

  39. Bill A, Svedbergh B. Scanning electron microscopic studies of the trabecular meshwork and the canal of Schlemm–an attempt to localize the main resistance to outflow of aqueous humor in man. Acta Ophthalmol (Copenh). 1972;50(3):295–320.

    Article  CAS  Google Scholar 

  40. Johnson M, Chan D, Read AT, Christensen C, Sit A, Ethier CR. The pore density in the inner wall endothelium of Schlemm’s canal of glaucomatous eyes. Invest Ophthalmol Vis Sci. 2002;43(9):2950–5.

    PubMed  Google Scholar 

  41. Battista SA, Lu Z, Hofmann S, Freddo T, Overby DR, Gong H. Reduction of the available area for aqueous humor outflow and increase in meshwork herniations into collector channels following acute IOP elevation in bovine eyes. Invest Ophthalmol Vis Sci. 2008;49(12):5346–52.

    Article  PubMed  Google Scholar 

  42. Moses RA. Circumferential flow in Schlemm’s canal. Am J Ophthalmol. 1979;88(3 Pt 2):585–91.

    CAS  PubMed  Google Scholar 

  43. Van Buskirk EM. Anatomic correlates of changing aqueous outflow facility in excised human eyes. Invest Ophthalmol Vis Sci. 1982;22(5):625–32.

    PubMed  Google Scholar 

  44. Rohen JW, Lütjen E, Bárány E. The relation between the ciliary muscle and the trabecular meshwork and its importance for the effect of miotics on aqueous outflow resistance. A study in two contrasting monkey species, Macaca irus and Cercopithecus aethiops. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1967;172(1):23–47.

    Article  CAS  PubMed  Google Scholar 

  45. Kaufman PL, Bárány EH. Residual pilocarpine effects on outflow facility after ciliary muscle disinsertion in the cynomolgus monkey. Invest Ophthalmol. 1976;15(7):558–61.

    CAS  PubMed  Google Scholar 

  46. Johnson M, Erickson K. Mechanisms and routes of aqueous humor drainage. In: Albert DM, Jakobiec FA, editors. Principles and practice of ophthalmology. Philadelphia: WB Saunders Co; 2000. p. 2577.

    Google Scholar 

  47. Hann CR, Fautsch MP. Preferential fluid flow in the human trabecular meshwork near collector channels. Invest Ophthalmol Vis Sci. 2009;50(4):1692–7.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Parc CE, Johnson DH, Brilakis HS. Giant vacuoles are found preferentially near collector channels. Invest Ophthalmol Vis Sci. 2000;41(10):2984–90.

    CAS  PubMed  Google Scholar 

  49. Dvorak-Theobald G. Further studies on the canal of Schlemm; its anastomoses and anatomic relations. Am J Ophthalmol. 1955;39(4 Pt 2):65–89.

    CAS  PubMed  Google Scholar 

  50. Rohen JW, Rentsch FJ. Morphology of Schlemm’s canal and related vessels in the human eye. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1968;176(4):309–29.

    Article  CAS  PubMed  Google Scholar 

  51. Hann CR, Bentley MD, Vercnocke A, Ritman EL, Fautsch MP. Imaging the aqueous humor outflow pathway in human eyes by three-dimensional micro-computed tomography (3D micro-CT). Exp Eye Res. 2011;92(2):104–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Kagemann L, Wollstein G, Ishikawa H, Bilonick RA, Brennen PM, Folio LS, et al. Identification and assessment of Schlemm’s canal by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51(8):4054–9.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Francis AW, Kagemann L, Wollstein G, Ishikawa H, Folz S, Overby DR, et al. Morphometric analysis of aqueous humor outflow structures with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(9):5198–207.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Lutjen-Drecoll E, Rohen JW. Morphology of aqueous outflow pathways in normal and glaucomatous eyes. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas. St. Louis: Mosby; 1989.

    Google Scholar 

  55. Lütgen-Drecoll E, Rohen J. Morphology of aqueous outflow pathways in normal and glaucomatous eyes. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas. St. Louis: Mosby; 1989.

    Google Scholar 

  56. Johnson M. What controls aqueous humour outflow resistance? Exp Eye Res. 2006;82(4):545–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Grant WM. Further studies on facility of flow through the trabecular meshwork. AMA Arch Ophthalmol. 1958;60(4 Part 1):523–33.

    Article  CAS  PubMed  Google Scholar 

  58. de Kater AW, Spurr-Michaud SJ, Gipson IK. Localization of smooth muscle myosin-containing cells in the aqueous outflow pathway. Invest Ophthalmol Vis Sci. 1990;31(2):347–53.

    PubMed  Google Scholar 

  59. Rosenquist R, Epstein D, Melamed S, Johnson M, Grant WM. Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy. Curr Eye Res. 1989;8(12):1233–40.

    Article  CAS  PubMed  Google Scholar 

  60. Grant WM. Experimental aqueous perfusion in enucleated human eyes. 1963;69:783–801.

    Google Scholar 

  61. Schuman JS, Chang W, Wang N, de Kater AW, Allingham RR. Excimer laser effects on outflow facility and outflow pathway morphology. Invest Ophthalmol Vis Sci. 1999;40(8):1676–80.

    CAS  PubMed  Google Scholar 

  62. Schacknow PN, Samples JR. The glaucoma book: a practical, evidence-based approach to patient care. 1st ed. Medford: Springer-Verlag New York, LLC; 2010.

    Book  Google Scholar 

  63. Ascher KW. Aqueous veins. Am J Ophthalmol. 1942;25:31–8.

    Google Scholar 

  64. Ascher KW. Physiologic importance of the visible elimination of intraocular fluid. Am J Ophthalmol. 1942;25:1174–209.

    Google Scholar 

  65. Norman A. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts: part II. aqueous veins (continued). Br J Ophthalmol. 1952;36:265–7.

    Article  Google Scholar 

  66. Johnstone MA. The aqueous outflow system as a mechanical pump: evidence from examination of tissue and aqueous movement in human and non-human primates. J Glaucoma. 2004;13(5):421–38.

    Article  PubMed  Google Scholar 

  67. DeVries S. De Zichtbare Afvoer Van Het Kamerwater. 1st ed. Amsterdam: Drukkerij Kinsbergen; 1947.

    Google Scholar 

  68. Goldmann H. Weitere Mitteilung über den Abfluss des Kammer wassers beim Menschen. Ophthalmologica. 1946;112(6):344–9.

    Google Scholar 

  69. Stepanik J. Measuring velocity of flow in aqueous veins. Am J Ophthalmol. 1954;37:918–22.

    CAS  PubMed  Google Scholar 

  70. Johnstone M, et al. The glaucoma book, aqueous veins and open angle glaucoma. New York: Springer; 2010. p. 67.

    Google Scholar 

  71. LaBarbera M, Vogel S. The design of fluid transport systems in organisms. Am Sci. 1982;70:54–60.

    Google Scholar 

  72. LaBarbera M. Principles of design of fluid transport systems in zoology. Science. 1990;249(4972):992–1000.

    Article  CAS  PubMed  Google Scholar 

  73. Zamir M, Ritman E. The physics of pulsatile flow. New York: Springer; 2000.

    Book  Google Scholar 

  74. Kleinert H. The visible flow of aqueous humor in the epibulbar veins. II. The pulsating blood vessels of the aqueous humor. Albrecht Von Graefes Arch Ophthalmol. 1952;152(6):587–608.

    Google Scholar 

  75. Kleinert H. The compensation maximum: a new glaucoma sign in aqueous veins. Arch Ophthalmol. 1951;46:618.

    Article  CAS  Google Scholar 

  76. Camp JJ, Hann CR, Johnson DH, Tarara JE, Robb RA. Three-dimensional reconstruction of aqueous channels in human trabecular meshwork using light microscopy and confocal microscopy. Scanning. 1997;19(4):258–63.

    Article  CAS  PubMed  Google Scholar 

  77. Lu Z, Overby DR, Scott PA, Freddo TF, Gong H. The mechanism of increasing outflow facility by rho-kinase inhibition with Y-27632 in bovine eyes. Exp Eye Res. 2008;86(2):271–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Lu Z, Zhang Y, Freddo TF, Gong H. Similar hydrodynamic and morphological changes in the aqueous humor outflow pathway after washout and Y27632 treatment in monkey eyes. Exp Eye Res. 2011;93(4):397–404.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Swaminathan SS, Oh DJ, Kang MH, Ren R, Jin R, Gong H, et al. Secreted protein acidic and rich in cysteine (SPARC)-null mice exhibit more uniform outflow. Invest Ophthalmol Vis Sci. 2013;54(3):2035–47.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Keller KE, Bradley JM, Vranka JA, Acott TS. Segmental versican expression in the trabecular meshwork and involvement in outflow facility. Invest Ophthalmol Vis Sci. 2011;52(8):5049–57.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Yang C-Y, Liu Y, Gong H. Effects of Y27632 on aqueous humor outflow facility with changes in hydrodynamic pattern and morphology in human eyes. Invest Ophthalmol Vis Sci. 2013;54:5859–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Zhu JY, Ye W, Wang T, Gong HY. Reversible changes in aqueous outflow facility, hydrodynamics, and morphology following acute intraocular pressure variation in bovine eyes. Chin Med J (Engl). 2013;126(8):1451–7.

    Google Scholar 

  83. Zhang Y, Toris CB, Liu Y, Ye W, Gong H. Morphological and hydrodynamic correlates in monkey eyes with laser induced glaucoma. Exp Eye Res. 2009;89(5):748–56.

    Article  CAS  PubMed  Google Scholar 

  84. Cha E, Jin R, Gong H. The relationship between morphological changes and reduction of active areas of aqueous outflow in eyes with primary open angle glaucoma. Invest Ophthalmol Vis Sci. 2013;54:2291.

    Google Scholar 

  85. Gottanka J, Johnson DH, Martus P, Lütjen-Drecoll E. Severity of optic nerve damage in eyes with POAG is correlated with changes in the trabecular meshwork. J Glaucoma. 1997;6(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  86. Zhu J, Gong H. Morphological changes contributing to decreased outflow facility following acute IOP elevation in normal human eyes. Invest Ophthalmol Vis Sci. 2008;49:1639.

    Google Scholar 

  87. Gong H, Freddo TF, Zhang Y. New morphological findings in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2007;48:2079.

    Google Scholar 

  88. Gong H, Huang R, Zhu J, Stegmann R. Blockages of collector channel ostia exist in patients with Primary Open Angle Glaucoma (POAG). In: American Glaucoma Society 19th annual meeting, San Diego, CA, March 5–8, 2009.

    Google Scholar 

  89. Grieshaber MC, Pienaar A, Olivier J, Stegmann R. Clinical evaluation of the aqueous outflow system in primary open-angle glaucoma for canaloplasty. Invest Ophthalmol Vis Sci. 2010;51(3):1498–504.

    Article  PubMed  Google Scholar 

  90. Bahler CK, Smedley GT, Zhou J, Johnson DH. Trabecular bypass stents decrease intraocular pressure in cultured human anterior segments. Am J Ophthalmol. 2004;138(6):988–94.

    Article  PubMed  Google Scholar 

  91. Bahler CK, Hann CR, Fjield T, Haffner D, Heitzmann H, Fautsch MP. Second-generation trabecular meshwork bypass stent (iStent inject) increases outflow facility in cultured human anterior segments. Am J Ophthalmol. 2012;153(6):1206–13.

    Article  PubMed  Google Scholar 

  92. Gong H, Cha E, Gorantla V, Gulati V, Fan S, Steiner C, et al. Characterization of aqueous humor outflow through novel glaucoma devices – a tracer study. Invest Ophthalmol Vis Sci. 2012;53:3743.

    Google Scholar 

  93. Hong J, Xu J, Wei A, Wen W, Chen J, Yu X, et al. Spectral-domain optical coherence tomographic assessment of Schlemm’s canal in Chinese subjects with primary open-angle glaucoma. Ophthalmology. 2013;120(4):709–15.

    Article  PubMed  Google Scholar 

  94. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  PubMed  Google Scholar 

  95. Li P, Reif R, Zhi Z, Martin E, Shen TT, Johnstone M, et al. Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes. J Biomed Opt. 2012;17(7):076026.

    Article  PubMed  Google Scholar 

  96. An L, Chao J, Johnstone M, Wang RK. Noninvasive imaging of pulsatile movements of the optic nerve head in normal human subjects using phase-sensitive spectral domain optical coherence tomography. Opt Lett. 2013;38(9):1512–4.

    Article  PubMed  Google Scholar 

  97. Adhi M, Duker JS. Optical coherence tomography – current and future applications. Curr Opin Ophthalmol. 2013;24(3):213–21.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, et al. Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina. 2010;30(2):235–45.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Potsaid B, Baumann B, Huang D, Barry S, Cable AE, Schuman JS, et al. Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express. 2010;18(19):20029–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Liu S, Yu M, Ye C, Lam DS, Leung CK. Anterior chamber angle imaging with swept-source optical coherence tomography: an investigation on variability of angle measurement. Invest Ophthalmol Vis Sci. 2011;52(12):8598–603.

    Article  PubMed  Google Scholar 

  101. Tun TA, Baskaran M, Zheng C, Sakata LM, Perera SA, Chan AS, et al. Assessment of trabecular meshwork width using swept source optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2013;251(6):1587–92.

    Article  PubMed  Google Scholar 

  102. Samuelson TW, Katz LJ, Wells JM, Duh YJ, Giamporcaro JE, US iStent Study Group. Randomized evaluation of the trabecular micro-bypass stent with phacoemulsification in patients with glaucoma and cataract. Ophthalmology. 2011;118(3):459–67.

    Article  PubMed  Google Scholar 

  103. Minckler D, Mosaed S, Dustin L, Ms BF, Group TS. Trabectome (trabeculectomy-internal approach): additional experience and extended follow-up. Trans Am Ophthalmol Soc. 2008;106:149–59; discussion 59–60.

    PubMed Central  PubMed  Google Scholar 

  104. Lewis RA, von Wolff K, Tetz M, Koerber N, Kearney JR, Shingleton BJ, et al. Canaloplasty: Three-year results of circumferential viscodilation and tensioning of Schlemm canal using a microcatheter to treat open-angle glaucoma. J Cataract Refract Surg. 2011;37(4):682–90.

    Article  PubMed  Google Scholar 

  105. Folio LS, Wollstein G, Schuman JS. Optical coherence tomography: future trends for imaging in glaucoma. Optom Vis Sci. 2012;89(5):E554–62.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The original work reported in this chapter was supported in part by NIH/EY018712, EY022634, the American Health Assistance Foundation (now called BrightFocus Foundation), and the Massachusetts Lions Eye Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Gong MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gong, H., Francis, A. (2014). Schlemm’s Canal and Collector Channels as Therapeutic Targets. In: Samples, J.R., Ahmed, I.I.K. (eds) Surgical Innovations in Glaucoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8348-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8348-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8347-2

  • Online ISBN: 978-1-4614-8348-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics