Epidemiology of Myopia

  • Chen-Wei Pan
  • Seang-Mei Saw
  • Tien-Yin Wong


Myopia is a major health problem throughout the world due to its increasingly high prevalence in the past few decades. Myopia, in particular high myopia, is directly or indirectly associated with a number of ocular complications such as glaucoma and cataract that are potentially blinding. Myopic retinopathy, a major cause of visual impairment and blindness, affects 1–3 % of the general populations in some countries. Increased amount of near-work activities and decreased time spent outdoors are the two most important modifiable risk factors related to myopia onset and progression, though the exact role of how these two risk factors impact on myopia remains to be determined. Efforts should be made to discover treatments to slow or stop progression of myopia to prevent further progression to high myopia and pathologic myopia. Further research on the understanding of the natural history of pathologic myopia and more effective treatment for pathologic myopia is of also of public health importance.


High Myopia Posterior Subcapsular Cataract Chorioretinal Atrophy Myopia Progression Time Spend Outdoor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet. 2012;379(9827):1739–48.PubMedGoogle Scholar
  2. 2.
    Morgan I, Rose K. How genetic is school myopia? Prog Retin Eye Res. 2005;24(1):1–38.PubMedGoogle Scholar
  3. 3.
    Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol Opt. 2012;32(1):3–16.PubMedGoogle Scholar
  4. 4.
    Resnikoff S, Pascolini D, Mariotti SP, Pokharel GP. Global magnitude of visual impairment caused by uncorrected refractive errors in 2004. Bull World Health Organ. 2008;86(1):63–70.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Javitt JC, Chiang YP. The socioeconomic aspects of laser refractive surgery. Arch Ophthalmol. 1994;112(12):1526–30.PubMedGoogle Scholar
  6. 6.
    McCarty CA. Uncorrected refractive error. Br J Ophthalmol. 2006;90(5):521–2.PubMedGoogle Scholar
  7. 7.
    Inhoffen W, Ziemssen F. Morphological features of myopic choroidal neovascularization: differences to neovascular age-related macular degeneration. Ophthalmologe. 2012;109(8):749–57.PubMedGoogle Scholar
  8. 8.
    Takeuchi K, Kachi S, Iwata E, Ishikawa K, Terasaki H. Visual function 5 years or more after macular translocation surgery for myopic choroidal neovascularisation and age-related macular degeneration. Eye (Lond). 2012;26(1):51–60.Google Scholar
  9. 9.
    Coco Martin MB, Arranz De La Fuente I, Gonzalez Garcia MJ, Cuadrado Asensio R, Coco Martin RM. Functional improvement after vision rehabilitation in low monocular vision after myopic macular degeneration and retinal detachment. Arch Soc Esp Oftalmol. 2002;77(2):95–8.PubMedGoogle Scholar
  10. 10.
    Rabb MF, Garoon I, LaFranco FP. Myopic macular degeneration. Int Ophthalmol Clin. 1981 Fall;21(3):51–69.PubMedGoogle Scholar
  11. 11.
    Gilmartin B. Myopia: precedents for research in the twenty-first century. Clin Experiment Ophthalmol. 2004;32(3):305–24.PubMedGoogle Scholar
  12. 12.
    Saw SM. A synopsis of the prevalence rates and environmental risk factors for myopia. Clin Exp Optom. 2003;86(5):289–94.PubMedGoogle Scholar
  13. 13.
    Young TL, Metlapally R, Shay AE. Complex trait genetics of refractive error. Arch Ophthalmol. 2007;125(1):38–48.PubMedGoogle Scholar
  14. 14.
    Wallman J, Winawer J. Homeostasis of eye growth and the question of myopia. Neuron. 2004;43(4):447–68.PubMedGoogle Scholar
  15. 15.
    Wiesel TN, Raviola E. Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature. 1977;266(5597):66–8.PubMedGoogle Scholar
  16. 16.
    Wong TY, Foster PJ, Hee J, Ng TP, Tielsch JM, Chew SJ, et al. Prevalence and risk factors for refractive errors in adult Chinese in Singapore. Invest Ophthalmol Vis Sci. 2000;41(9):2486–94.PubMedGoogle Scholar
  17. 17.
    Van Newkirk MR. The Hong Kong vision study: a pilot assessment of visual impairment in adults. Trans Am Ophthalmol Soc. 1997;95:715–49.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Liang YB, Wong TY, Sun LP, Tao QS, Wang JJ, Yang XH, et al. Refractive errors in a rural Chinese adult population the Handan eye study. Ophthalmology. 2009;116(11):2119–27.PubMedGoogle Scholar
  19. 19.
    Xu L, Li J, Cui T, Hu A, Fan G, Zhang R, et al. Refractive error in urban and rural adult Chinese in Beijing. Ophthalmology. 2005;112(10):1676–83.PubMedGoogle Scholar
  20. 20.
    He M, Zeng J, Liu Y, Xu J, Pokharel GP, Ellwein LB. Refractive error and visual impairment in urban children in Southern China. Invest Ophthalmol Vis Sci. 2004;45(3):793–9.PubMedGoogle Scholar
  21. 21.
    Saw SM, Carkeet A, Chia KS, Stone RA, Tan DT. Component dependent risk factors for ocular parameters in Singapore Chinese children. Ophthalmology. 2002;109(11):2065–71.PubMedGoogle Scholar
  22. 22.
    Dirani M, Chan YH, Gazzard G, Hornbeak DM, Leo SW, Selvaraj P, et al. Prevalence of refractive error in Singaporean Chinese children: the strabismus, amblyopia, and refractive error in young Singaporean Children (STARS) study. Invest Ophthalmol Vis Sci. 2010;51(3):1348–55.PubMedGoogle Scholar
  23. 23.
    Zhao J, Pan X, Sui R, Munoz SR, Sperduto RD, Ellwein LB. Refractive error study in children: results from Shunyi District, China. Am J Ophthalmol. 2000;129(4):427–35.PubMedGoogle Scholar
  24. 24.
    Pi LH, Chen L, Liu Q, Ke N, Fang J, Zhang S, et al. Prevalence of eye diseases and causes of visual impairment in school-aged children in Western China. J Epidemiol. 2012;22(1):37–44.PubMedGoogle Scholar
  25. 25.
    Sawada A, Tomidokoro A, Araie M, Iwase A, Yamamoto T. Refractive errors in an elderly Japanese population: the Tajimi study. Ophthalmology. 2008;115(2):363–70.e3.PubMedGoogle Scholar
  26. 26.
    Jung SK, Lee JH, Kakizaki H, Jee D. Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in Seoul, South Korea. Invest Ophthalmol Vis Sci. 2012;53(9):5579–83.PubMedGoogle Scholar
  27. 27.
    Wu HM, Seet B, Yap EP, Saw SM, Lim TH, Chia KS. Does education explain ethnic differences in myopia prevalence? A population-based study of young adult males in Singapore. Optom Vis Sci. 2001;78(4):234–9.PubMedGoogle Scholar
  28. 28.
    Gao Z, Meng N, Muecke J, Chan WO, Piseth H, Kong A, et al. Refractive error in school children in an urban and rural setting in Cambodia. Ophthalmic Epidemiol. 2012;19(1):16–22.PubMedGoogle Scholar
  29. 29.
    Casson RJ, Kahawita S, Kong A, Muecke J, Sisaleumsak S, Visonnavong V. Exceptionally low prevalence of refractive error and visual impairment in schoolchildren from Lao People’s Democratic Republic. Ophthalmology. 2012;119(10):2021–7.PubMedGoogle Scholar
  30. 30.
    Pokharel GP, Negrel AD, Munoz SR, Ellwein LB. Refractive error study in children: results from Mechi Zone, Nepal. Am J Ophthalmol. 2000;129(4):436–44.PubMedGoogle Scholar
  31. 31.
    Krishnaiah S, Srinivas M, Khanna RC, Rao GN. Prevalence and risk factors for refractive errors in the South Indian adult population: the Andhra Pradesh eye disease study. Clin Ophthalmol. 2009;3:17–27.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Raju P, Ramesh SV, Arvind H, George R, Baskaran M, Paul PG, et al. Prevalence of refractive errors in a rural South Indian population. Invest Ophthalmol Vis Sci. 2004;45(12):4268–72.PubMedGoogle Scholar
  33. 33.
    Pan CW, Wong TY, Lavanya R, Wu RY, Zheng YF, Lin XY, et al. Prevalence and risk factors for refractive errors in Indians: the Singapore Indian eye study (SINDI). Invest Ophthalmol Vis Sci. 2011;52(6):3166–73.PubMedGoogle Scholar
  34. 34.
    Pan CW, Zheng YF, Wong TY, Lavanya R, Wu RY, Gazzard G, et al. Variation in prevalence of myopia between generations of migrant Indians living in Singapore. Am J Ophthalmol. 2012;154(2):376–381.e1.PubMedGoogle Scholar
  35. 35.
    Vitale S, Ellwein L, Cotch MF, Ferris 3rd FL, Sperduto R. Prevalence of refractive error in the United States, 1999–2004. Arch Ophthalmol. 2008;126(8):1111–9.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Vitale S, Sperduto RD, Ferris 3rd FL. Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004. Arch Ophthalmol. 2009;127(12):1632–9.PubMedGoogle Scholar
  37. 37.
    Saw SM, Chan YH, Wong WL, Shankar A, Sandar M, Aung T, et al. Prevalence and risk factors for refractive errors in the Singapore Malay Eye Survey. Ophthalmology. 2008;115(10):1713–9.PubMedGoogle Scholar
  38. 38.
    Katz J, Tielsch JM, Sommer A. Prevalence and risk factors for refractive errors in an adult inner city population. Invest Ophthalmol Vis Sci. 1997;38(2):334–40.PubMedGoogle Scholar
  39. 39.
    Attebo K, Ivers RQ, Mitchell P. Refractive errors in an older population: the Blue Mountains eye study. Ophthalmology. 1999;106(6):1066–72.PubMedGoogle Scholar
  40. 40.
    Tarczy-Hornoch K, Ying-Lai M, Varma R. Myopic refractive error in adult Latinos: the Los Angeles Latino eye study. Invest Ophthalmol Vis Sci. 2006;47(5):1845–52.PubMedGoogle Scholar
  41. 41.
    Pan CW, Cheung CY, Aung T, Cheung CM, Zheng YF, Wu RY, et al. Differential associations of myopia with major age-related eye diseases: the Singapore Indian Eye Study. Ophthalmology. 2013;120(2):284–91.PubMedGoogle Scholar
  42. 42.
    Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25(5):381–91.PubMedGoogle Scholar
  43. 43.
    Iwase A, Araie M, Tomidokoro A, Yamamoto T, Shimizu H, Kitazawa Y. Prevalence and causes of low vision and blindness in a Japanese adult population: the Tajimi Study. Ophthalmology. 2006;113(8):1354–62.PubMedGoogle Scholar
  44. 44.
    Xu L, Wang Y, Li Y, Cui T, Li J, Jonas JB. Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing eye study. Ophthalmology. 2006;113(7):11341.e1–11.Google Scholar
  45. 45.
    Hsu WM, Cheng CY, Liu JH, Tsai SY, Chou P. Prevalence and causes of visual impairment in an elderly Chinese population in Taiwan: the Shihpai eye study. Ophthalmology. 2004;111(1):62–9.PubMedGoogle Scholar
  46. 46.
    Klaver CC, Wolfs RC, Vingerling JR, Hofman A, de Jong PT. Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam Study. Arch Ophthalmol. 1998;116(5):653–8.PubMedGoogle Scholar
  47. 47.
    Foong AW, Saw SM, Loo JL, Shen S, Loon SC, Rosman M, et al. Rationale and methodology for a population-based study of eye diseases in Malay people: the Singapore Malay Eye Study (SiMES). Ophthalmic Epidemiol. 2007;14(1):25–35.PubMedGoogle Scholar
  48. 48.
    Lavanya R, Jeganathan VS, Zheng Y, Raju P, Cheung N, Tai ES, et al. Methodology of the Singapore Indian Chinese Cohort (SICC) eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians. Ophthalmic Epidemiol. 2009;16(6):325–36.PubMedGoogle Scholar
  49. 49.
    Steidl SM, Pruett RC. Macular complications associated with posterior staphyloma. Am J Ophthalmol. 1997;123(2):181–7.PubMedGoogle Scholar
  50. 50.
    Green JS, Bear JC, Johnson GJ. The burden of genetically determined eye disease. Br J Ophthalmol. 1986;70(9):696–9.PubMedGoogle Scholar
  51. 51.
    Vongphanit J, Mitchell P, Wang JJ. Prevalence and progression of myopic retinopathy in an older population. Ophthalmology. 2002;109(4):704–11.PubMedGoogle Scholar
  52. 52.
    Liu HH, Xu L, Wang YX, Wang S, You QS, Jonas JB. Prevalence and progression of myopic retinopathy in Chinese adults: the Beijing eye study. Ophthalmology. 2010;117(9):1763–8.PubMedGoogle Scholar
  53. 53.
    Gao LQ, Liu W, Liang YB, Zhang F, Wang JJ, Peng Y, et al. Prevalence and characteristics of myopic retinopathy in a rural Chinese adult population: the Handan eye study. Arch Ophthalmol. 2011;129(9):1199–204.PubMedGoogle Scholar
  54. 54.
    Asakuma T, Yasuda M, Ninomiya T, Noda Y, Arakawa S, Hashimoto S, et al. Prevalence and risk factors for myopic retinopathy in a Japanese population: the Hisayama Study. Ophthalmology. 2012;119(9):1760–5.PubMedGoogle Scholar
  55. 55.
    Chen SJ, Cheng CY, Li AF, Peng KL, Chou P, Chiou SH, et al. Prevalence and associated risk factors of myopic maculopathy in elderly Chinese: the Shihpai Eye Study. Invest Ophthalmol Vis Sci. 2012;53(8):4868–73.PubMedGoogle Scholar
  56. 56.
    Hayashi K, Ohno-Matsui K, Shimada N, Moriyama M, Kojima A, Hayashi W, et al. Long-term pattern of progression of myopic maculopathy: a natural history study. Ophthalmology. 2010;117(8):1595–611, 611.e1–4.PubMedGoogle Scholar
  57. 57.
    The Eye Disease Case-control Study Group. Risk factors for neovascular age-related macular degeneration. Arch Ophthalmol. 1992;110(12):1701–8.Google Scholar
  58. 58.
    Age-Related Eye Disease Study Group. Risk factors associated with age-related macular degeneration. A case–control study in the age-related eye disease study: age-related eye disease study report number 3. Ophthalmology. 2000;107(12):2224–32.Google Scholar
  59. 59.
    Chaine G, Hullo A, Sahel J, Soubrane G, Espinasse-Berrod MA, Schutz D, et al. Case-control study of the risk factors for age related macular degeneration. France-DMLA Study Group. Br J Ophthalmol. 1998;82(9):996–1002.PubMedGoogle Scholar
  60. 60.
    Ikram MK, van Leeuwen R, Vingerling JR, Hofman A, de Jong PT. Relationship between refraction and prevalent as well as incident age-related maculopathy: the Rotterdam Study. Invest Ophthalmol Vis Sci. 2003;44(9):3778–82.PubMedGoogle Scholar
  61. 61.
    Wang JJ, Mitchell P, Smith W. Refractive error and age-related maculopathy: the Blue Mountains eye study. Invest Ophthalmol Vis Sci. 1998;39(11):2167–71.PubMedGoogle Scholar
  62. 62.
    Lavanya R, Kawasaki R, Tay WT, Cheung GC, Mitchell P, Saw SM, et al. Hyperopic refractive error and shorter axial length are associated with age-related macular degeneration: the Singapore Malay eye study. Invest Ophthalmol Vis Sci. 2010;51(12):6247–52.PubMedGoogle Scholar
  63. 63.
    Xu L, Li Y, Zheng Y, Jonas JB. Associated factors for age related maculopathy in the adult population in China: the Beijing eye study. Br J Ophthalmol. 2006;90(9):1087–90.PubMedGoogle Scholar
  64. 64.
    Klein R, Klein BE, Jensen SC, Cruickshanks KJ. The relationship of ocular factors to the incidence and progression of age-related maculopathy. Arch Ophthalmol. 1998;116(4):506–13.PubMedGoogle Scholar
  65. 65.
    Wong TY, Klein R, Klein BE, Tomany SC. Refractive errors and 10-year incidence of age-related maculopathy. Invest Ophthalmol Vis Sci. 2002;43(9):2869–73.PubMedGoogle Scholar
  66. 66.
    Wang JJ, Jakobsen KB, Smith W, Mitchell P. Refractive status and the 5-year incidence of age-related maculopathy: the Blue Mountains eye study. Clin Experiment Ophthalmol. 2004;32(3):255–8.PubMedGoogle Scholar
  67. 67.
    Ulvik SO, Seland JH, Wentzel-Larsen T. Refraction, axial length and age-related maculopathy. Acta Ophthalmol Scand. 2005;83(4):419–23.Google Scholar
  68. 68.
    Hovener GT. The influence of refraction on diabetic retinopathy (author’s transl). Klin Monbl Augenheilkd. 1975;167(5):733–6.PubMedGoogle Scholar
  69. 69.
    Grange JD, Leynaud JL. Diabetic retinopathy and severe myopia. Bull Soc Ophtalmol Fr. 1984;84(2):205–8, 11.PubMedGoogle Scholar
  70. 70.
    Moss SE, Klein R, Klein BE. Ocular factors in the incidence and progression of diabetic retinopathy. Ophthalmology. 1994;101(1):77–83.PubMedGoogle Scholar
  71. 71.
    McKay R, McCarty CA, Taylor HR. Diabetic retinopathy in Victoria, Australia: the visual impairment project. Br J Ophthalmol. 2000;84(8):865–70.PubMedGoogle Scholar
  72. 72.
    Lim LS, Lamoureux E, Saw SM, Tay WT, Mitchell P, Wong TY. Are myopic eyes less likely to have diabetic retinopathy? Ophthalmology. 2010;117(3):524–30.PubMedGoogle Scholar
  73. 73.
    Wong TY, Klein BE, Klein R, Tomany SC, Lee KE. Refractive errors and incident cataracts: the Beaver Dam eye study. Invest Ophthalmol Vis Sci. 2001;42(7):1449–54.PubMedGoogle Scholar
  74. 74.
    Lim R, Mitchell P, Cumming RG. Refractive associations with cataract: the Blue Mountains eye study. Invest Ophthalmol Vis Sci. 1999;40(12):3021–6.PubMedGoogle Scholar
  75. 75.
    Leske MC, Wu SY, Nemesure B, Hennis A. Risk factors for incident nuclear opacities. Ophthalmology. 2002;109(7):1303–8.PubMedGoogle Scholar
  76. 76.
    Mukesh BN, Le A, Dimitrov PN, Ahmed S, Taylor HR, McCarty CA. Development of cataract and associated risk factors: the visual impairment project. Arch Ophthalmol. 2006;124(1):79–85.PubMedGoogle Scholar
  77. 77.
    Wong TY, Foster PJ, Johnson GJ, Seah SK. Refractive errors, axial ocular dimensions, and age-related cataracts: the Tanjong Pagar survey. Invest Ophthalmol Vis Sci. 2003;44(4):1479–85.PubMedGoogle Scholar
  78. 78.
    McCarty CA, Mukesh BN, Fu CL, Taylor HR. The epidemiology of cataract in Australia. Am J Ophthalmol. 1999;128(4):446–65.PubMedGoogle Scholar
  79. 79.
    Marcus MW, de Vries MM, Junoy Montolio FG, Jansonius NM. Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology. 2011;118(10):1989–94 e2.PubMedGoogle Scholar
  80. 80.
    Daubs JG, Crick RP. Effect of refractive error on the risk of ocular hypertension and open angle glaucoma. Trans Ophthalmol Soc U K. 1981;101(1):121–6.PubMedGoogle Scholar
  81. 81.
    Ponte F, Giuffre G, Giammanco R, Dardanoni G. Risk factors of ocular hypertension and glaucoma. The Casteldaccia Eye Study. Doc Ophthalmol. 1994;85(3):203–10.PubMedGoogle Scholar
  82. 82.
    Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology. 1999;106(10):2010–5.PubMedGoogle Scholar
  83. 83.
    Leske MC, Nemesure B, He Q, Wu SY, Fielding Hejtmancik J, Hennis A. Patterns of open-angle glaucoma in the Barbados Family Study. Ophthalmology. 2001;108(6):1015–22.PubMedGoogle Scholar
  84. 84.
    Ramakrishnan R, Nirmalan PK, Krishnadas R, Thulasiraj RD, Tielsch JM, Katz J, et al. Glaucoma in a rural population of southern India: the Aravind comprehensive eye survey. Ophthalmology. 2003;110(8):1484–90.PubMedGoogle Scholar
  85. 85.
    Vijaya L, George R, Paul PG, Baskaran M, Arvind H, Raju P, et al. Prevalence of open-angle glaucoma in a rural south Indian population. Invest Ophthalmol Vis Sci. 2005;46(12):4461–7.PubMedGoogle Scholar
  86. 86.
    Suzuki Y, Iwase A, Araie M, Yamamoto T, Abe H, Shirato S, et al. Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology. 2006;113(9):1613–7.PubMedGoogle Scholar
  87. 87.
    Xu L, Wang Y, Wang S, Jonas JB. High myopia and glaucoma susceptibility the Beijing Eye Study. Ophthalmology. 2007;114(2):216–20.PubMedGoogle Scholar
  88. 88.
    Casson RJ, Gupta A, Newland HS, McGovern S, Muecke J, Selva D, et al. Risk factors for primary open-angle glaucoma in a Burmese population: the Meiktila Eye Study. Clin Experiment Ophthalmol. 2007;35(8):739–44.PubMedGoogle Scholar
  89. 89.
    Czudowska MA, Ramdas WD, Wolfs RC, Hofman A, De Jong PT, Vingerling JR, et al. Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam Study. Ophthalmology. 2010;117(9):1705–12.PubMedGoogle Scholar
  90. 90.
    Perera SA, Wong TY, Tay WT, Foster PJ, Saw SM, Aung T. Refractive error, axial dimensions, and primary open-angle glaucoma: the Singapore Malay Eye Study. Arch Ophthalmol. 2010;128(7):900–5.PubMedGoogle Scholar
  91. 91.
    Kuzin AA, Varma R, Reddy HS, Torres M, Azen SP. Ocular biometry and open-angle glaucoma: the Los Angeles Latino Eye Study. Ophthalmology. 2010;117(9):1713–9.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Ip JM, Saw SM, Rose KA, Morgan IG, Kifley A, Wang JJ, et al. Role of near work in myopia: findings in a sample of Australian school children. Invest Ophthalmol Vis Sci. 2008;49(7):2903–10.PubMedGoogle Scholar
  93. 93.
    Saw SM, Chua WH, Hong CY, Wu HM, Chan WY, Chia KS, et al. Near work in early-onset myopia. Invest Ophthalmol Vis Sci. 2002;43(2):332–9.PubMedGoogle Scholar
  94. 94.
    Mutti DO, Mitchell GL, Moeschberger ML, Jones LA, Zadnik K. Parental myopia, near work, school achievement, and children’s refractive error. Invest Ophthalmol Vis Sci. 2002;43(12):3633–40.PubMedGoogle Scholar
  95. 95.
    Lu B, Congdon N, Liu X, Choi K, Lam DS, Zhang M, et al. Associations between near work, outdoor activity, and myopia among adolescent students in rural China: the Xichang pediatric refractive error study report no. 2. Arch Ophthalmol. 2009;127(6):769–75.PubMedGoogle Scholar
  96. 96.
    Saw SM, Chan B, Seenyen L, Yap M, Tan D, Chew SJ. Myopia in Singapore kindergarten children. Optometry. 2001;72(5):286–91.PubMedGoogle Scholar
  97. 97.
    Saw SM, Shankar A, Tan SB, Taylor H, Tan DT, Stone RA, et al. A cohort study of incident myopia in Singaporean children. Invest Ophthalmol Vis Sci. 2006;47(5):1839–44.PubMedGoogle Scholar
  98. 98.
    Jones LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML, Zadnik K. Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci. 2007;48(8):3524–32.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Mutti DO, Zadnik K. Has near work’s star fallen? Optom Vis Sci. 2009;86(2):76–8.PubMedGoogle Scholar
  100. 100.
    Smith 3rd EL, Hung LF, Kee CS, Qiao Y. Effects of brief periods of unrestricted vision on the development of form-deprivation myopia in monkeys. Invest Ophthalmol Vis Sci. 2002;43(2):291–9.PubMedGoogle Scholar
  101. 101.
    Norton TT, Siegwart Jr JT, Amedo AO. Effectiveness of hyperopic defocus, minimal defocus, or myopic defocus in competition with a myopiagenic stimulus in tree shrew eyes. Invest Ophthalmol Vis Sci. 2006;47(11):4687–99.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Zhu X, Wallman J. Temporal properties of compensation for positive and negative spectacle lenses in chicks. Invest Ophthalmol Vis Sci. 2009;50(1):37–46.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Dirani M, Tong L, Gazzard G, Zhang X, Chia A, Young TL, et al. Outdoor activity and myopia in Singapore teenage children. Br J Ophthalmol. 2009;93(8):997–1000.PubMedGoogle Scholar
  104. 104.
    Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115(8):1279–85.PubMedGoogle Scholar
  105. 105.
    Rose KA, Morgan IG, Smith W, Burlutsky G, Mitchell P, Saw SM. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch Ophthalmol. 2008;126(4):527–30.PubMedGoogle Scholar
  106. 106.
    Sherwin JC, Reacher MH, Keogh RH, Khawaja AP, Mackey DA, Foster PJ. The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. Ophthalmology. 2012;119(10):2141–51.PubMedGoogle Scholar
  107. 107.
    Jones-Jordan LA, Mitchell GL, Cotter SA, Kleinstein RN, Manny RE, Mutti DO, et al. Visual activity before and after the onset of juvenile myopia. Invest Ophthalmol Vis Sci. 2011;52(3):1841–50.PubMedGoogle Scholar
  108. 108.
    Guggenheim JA, Northstone K, McMahon G, Ness AR, Deere K, Mattocks C, et al. Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study. Invest Ophthalmol Vis Sci. 2012;53(6):2856–65.PubMedGoogle Scholar
  109. 109.
    Jones-Jordan LA, Sinnott LT, Cotter SA, Kleinstein RN, Manny RE, Mutti DO, et al. Time outdoors, visual activity, and myopia progression in juvenile-onset myopes. Invest Ophthalmol Vis Sci. 2012;53(11):7169–75.PubMedGoogle Scholar
  110. 110.
    Hammond DS, Wildsoet CF. Compensation to positive as well as negative lenses can occur in chicks reared in bright UV lighting. Vision Res. 2012;67:44–50.PubMedGoogle Scholar
  111. 111.
    Sherwin JC, Hewitt AW, Coroneo MT, Kearns LS, Griffiths LR, Mackey DA. The association between time spent outdoors and myopia using a novel biomarker of outdoor light exposure. Invest Ophthalmol Vis Sci. 2012;53(8):4363–70.PubMedGoogle Scholar
  112. 112.
    Ashby R, Ohlendorf A, Schaeffel F. The effect of ambient illuminance on the development of deprivation myopia in chicks. Invest Ophthalmol Vis Sci. 2009;50(11):5348–54.PubMedGoogle Scholar
  113. 113.
    Smith 3rd EL, Hung LF, Huang J. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Invest Ophthalmol Vis Sci. 2012;53(1):421–8.PubMedGoogle Scholar
  114. 114.
    Ashby RS, Schaeffel F. The effect of bright light on lens compensation in chicks. Invest Ophthalmol Vis Sci. 2010;51(10):5247–53.PubMedGoogle Scholar
  115. 115.
    Mehdizadeh M, Nowroozzadeh MH. Outdoor activity and myopia. Ophthalmology. 2009;116(6):1229–30; author reply 30.PubMedGoogle Scholar
  116. 116.
    Damian C, Artur M, Maciej C, Ewelina L. Myopia and night lighting. Investigations on children with negative family history. Klin Oczna. 2012;114(1):22–5.PubMedGoogle Scholar
  117. 117.
    Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res. 2012;31(6):622–60.PubMedGoogle Scholar
  118. 118.
    Mutti DO, Marks AR. Blood levels of vitamin D in teens and young adults with myopia. Optom Vis Sci. 2011;88(3):377–82.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Mutti DO, Cooper ME, Dragan E, Jones-Jordan LA, Bailey MD, Marazita ML, et al. Vitamin D receptor (VDR) and group-specific component (GC, vitamin D-binding protein) polymorphisms in myopia. Invest Ophthalmol Vis Sci. 2011;52(6):3818–24.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chen-Wei Pan
    • 1
  • Seang-Mei Saw
    • 2
    • 3
    • 4
  • Tien-Yin Wong
    • 2
    • 3
    • 4
  1. 1.Saw Swee Hock School of Public HealthNational University of SingaporeSingaporeSingapore
  2. 2.Department of OphthalmologySaw Swee Hock School of Public Health, National University of SingaporeSingaporeSingapore
  3. 3.Singapore Eye Research InstituteSingaporeSingapore
  4. 4.Department of OphthalmologyNational University of SingaporeSingaporeSingapore

Personalised recommendations