Skip to main content

Identifying Citrullination Sites by Mass Spectrometry

  • Chapter
  • First Online:
Protein Deimination in Human Health and Disease
  • 1277 Accesses

Abstract

The citrullination of arginine is one of the smallest posttranslational modifications made to proteins, by mass. Mass spectrometric methods of analysis offer the potential to not only identify sites of protein citrullination but in some instances to quantify their occurrence in diseased tissue, relative to healthy tissues. This is an emerging, if challenging, area where method and instrument selections can influence not only data quality but also throughput. Citrullination, or deimination of arginine, results in the addition of only 0.9848 Da to a peptide. Recent improvements in the accuracy and resolution of mass spectrometers, as well as the advancement of protein chemistry technology that selectively targets citrulline moieties, has allowed greater success in identifying citrullinated arginine within proteins and peptides. This chapter provides an overview of recent, successful strategies used to identify citrullination sites using modern proteomic methods that involve mass spectrometric analysis. Applications to the study of multiple sclerosis and arthritis are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anzilotti C, Pratesi F, Tommasi C, Migliorini P (2010) Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmun Rev 9(3):158–160

    Article  PubMed  CAS  Google Scholar 

  • Biemann K (1990) Utility of exact mass measurements. Methods Enzymol 193:295–305

    PubMed  CAS  Google Scholar 

  • Brand-Schieber E, Werner P, Iacobas DA, Iacobas S, Beelitz M, Lowery SL, Spray DC, Scemes E (2005) Connexin43, the major gap junction protein of astrocytes, is down-regulated in inflamed white matter in an animal model of multiple sclerosis. J Neurosci Res 80(6):798–808

    Article  PubMed  CAS  Google Scholar 

  • Butler AR, Hussain I (1982) Mechanistic studies in the chemistry of urea. J.C.S. Perkins II. 310–316

    Google Scholar 

  • Comisarow MB, Marshall AG (1974) Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett 25:282–283

    Article  CAS  Google Scholar 

  • Cornish TJ, Cotter RJ (1993) Matrix-assisted laser desorption/ionization tandem reflectron time-of-flight mass spectrometry of fullerenes. Anal Chem 65(8):1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Cotter RJ, Griffith W, Jelinek C (2007) Tandem time-of-flight (TOF/TOF) mass spectrometry and the curved-field reflectron. J Chromatogr B 855(1):2–13

    Article  CAS  Google Scholar 

  • Creese AJ, Grant MM, Chapplea IAC, Cooper HJ (2011) On-line liquid chromatography neutral loss-triggered electron transfer dissociation mass spectrometry for the targeted analysis of citrullinated peptides. Anal Meth 3:259–266

    Article  CAS  Google Scholar 

  • De Ceuleneer M, De Wit V, Van Steendam KV, Van Niewerburgh F, Tilleman K, Deforce D (2011) Modification of citrullene residues with 2,3 butanedione facilitates their detection by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 25(11):1536–1542

    Article  PubMed  Google Scholar 

  • Goëb V, Thomas-L'Otellier M, Daveau R, Charlionet R, Fardellone P, Le Loët X, Tron F, Gilbert D, Vittecoq O (2009) Candidate autoantigens identified by mass spectrometry in early rheumatoid arthritis are chaperones and citrullinated glycolytic enzymes. Arthritis Res Ther 11(2):R38

    Article  PubMed  Google Scholar 

  • Grant JE, Hu J, Liu T, Jain MR, Elkabes S, Li H (2007) Post-translational modifications in the rat lumbar spinal cord in experimental autoimmune encephalomyelitis. J Proteome Res 6(7):2786–2791

    Article  PubMed  CAS  Google Scholar 

  • Guan S, Marshall AG (1995) Ion traps for FT-ICR/MS: principles of mass spectrometry. Mass Spectrom Ion Proc 146(147):261–296

    Article  Google Scholar 

  • Gyorgy B, Erszebet T, Tarcsa E, Falus A, Buzas EI (2006) Citrullination: a post-translational modification in health and disease. Int J Biochem Cell Biol 38:1662–1677

    Article  PubMed  Google Scholar 

  • Hagiwara T, Hidaka Y, Yamada M (2005) Deimination of histone H2A and H4 at arginine 3 in HL-60 granulocytes. Biochemistry 44(15):5827–5834

    Article  PubMed  CAS  Google Scholar 

  • Hao G, Wang D, Gu J, Shen Q, Gross SS, Wang Y (2009) Citrullination of synthetic peptides by MS MS isocyanate loss. J Am Soc Mass Spectrom 20(4):723–727

    Article  PubMed  CAS  Google Scholar 

  • Hardman M, Makarov A (2003) Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal Chem 75(7):1699–1705

    Article  PubMed  CAS  Google Scholar 

  • Hermansson M, Artemenko K, Ossipova E, Eriksson H, Lengqvist L, Makrygiannakis D, Catrina AI, Nicholas AP, Klareskog L (2010) MS analysis of rheumatoid arthritic synovial tissue identifies specific citrullination sites on fibrinogen. Proteomics Clin Appl 4:511–518

    PubMed  CAS  Google Scholar 

  • Holm A, Rise F, Sessler N, Sollid LM, Undheim K, Fleckstein B (2006) Specific modification of peptide-bound citrulline residues. Anal Biochem 352(1):68–76

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Noll RJ, Li H, Makarov A, Hardmanc M, Cooks RG (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40(4):430–443

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Qian J, Borisov O, Pan SQ, Li Y, Liu T, Deng LW, Wannemacher K, Kurnellas M, Patterson C, Elkabes S, Li H (2006) Optimized proteomic analysis of a mouse model of cerebellar dysfunction using amine-specific isobaric tags. Proteomics 6(15):4321–4334

    Article  PubMed  CAS  Google Scholar 

  • Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinforma 7:234–243

    Article  Google Scholar 

  • Kinlock A, Lundberg K et al (2008) Antibodies to citrullinated alpha-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. Arthritis Rheum 58(10):3009–3019

    Article  Google Scholar 

  • Knipp M, Vasak M (2000) A colorimetric 96-well microtiter plate assay for the determination of enzymatically formed citulline. Anal Biochem 286(2):257–264

    Article  PubMed  CAS  Google Scholar 

  • Kubota K, Yoneyama-Takazawa T, Ichikawa K (2005) Determination of sites citrullinated by peptidylarginine deiminase using 18O stable isotope labeling and mass spectrometry. Rapid Commun Mass Spectrom 19(5):683–688

    Article  PubMed  CAS  Google Scholar 

  • Kumari S, Stevens D, Kind T, Denkert C, Fiehn O (2011) Applying in-silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC-TOF mass spectrometry. Anal Chem 83(15):5895–5902

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Donahue KC, Hu J, Kurnellas MP, Grant JE, Li H, Elkabes S (2007) Identification of differentially expressed proteins in experimental autoimmune encephalomyelitis (EAE) by proteomic analysis of the spinal cord. J Proteome Res 6(7):2565–2575

    Article  PubMed  CAS  Google Scholar 

  • Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72(6):1156–1162

    Article  PubMed  CAS  Google Scholar 

  • Makarov A, Denisov E, Lange O, Horning S (2006a) Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J Am Soc Mass Spectrom 17(7):977–982

    Article  PubMed  CAS  Google Scholar 

  • Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006b) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 78(7):2113–2120

    Article  PubMed  CAS  Google Scholar 

  • Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17(1):1–35

    Article  PubMed  CAS  Google Scholar 

  • Moscarello MA, Mastronardi FG, Wood DD (2007) The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem Res 32(2):251–256

    Article  PubMed  CAS  Google Scholar 

  • Musse AA, Boggs JM, Harauz G (2006) Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope. Proc Natl Acad Sci U S A 103(12):4422–4427

    Article  PubMed  CAS  Google Scholar 

  • Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6(1):67–70

    Article  PubMed  CAS  Google Scholar 

  • Ross PL, Huang YLN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  PubMed  CAS  Google Scholar 

  • Sack TM, Lapp RL, Gross ML, Kimble B (1984) A method for the statistical evaluation of accurate mass measurement quality. Intl J Mass Spectrom. Ion Process 61:191–213

    CAS  Google Scholar 

  • Senshu T, Sato T, Inoue T, Akiyama K, Asaga H (1992) Detection of citrulline residues in deiminated proteins on polyvinylidene difluoride membrane. Anal Biochem 203(1):94–100

    Article  PubMed  CAS  Google Scholar 

  • Senshu T, Akiyama K, Kan S, Asaga H, Ishigami A, Manabe M (1995) Detection of deiminated proteins in rat skin: probing with a monospecific antibody after modification of citrulline residues. J Invest Dermatol 105(2):163–169

    Article  PubMed  CAS  Google Scholar 

  • Seward RJ, Drouin EE, Steere AC, Costello CE (2011) Peptides presented by HLA-DR molecules in synovia of patients with rheumatoid arthritis or antibiotic-refractory Lyme arthritis. Mol Cell Proteomics 10(3):M110.002477

    Article  PubMed  Google Scholar 

  • Siuzdak G (2006) The expanding role of mass spectrometry in biotechnology, 2nd edn. MCC Press, San Diego, pp 1–252

    Google Scholar 

  • Smith RD, Anderson GA, Lipton MS, Pasa-Tolic L, Shen Y, Conrads TP, Veenstra TD, Udseth HR (2002) An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2(5):513–523

    Article  PubMed  CAS  Google Scholar 

  • Stanley JR, Adkins JN, Slysz GWM, Monroe E, Purvine SO, Karpievitch YV, Anderson GA, Smith RD, Dabney AR (2011) A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics. Anal Chem 83(16):6135–6140

    Article  PubMed  CAS  Google Scholar 

  • Stensland ME, Pollmann S, Molberg O, Sollid LM, Fleckenstein B (2009) Primary sequence, together with other factors, influence peptide deimination by peptidylarginine deiminase-4. Biol Chem 390(2):99–107

    Article  PubMed  CAS  Google Scholar 

  • Sugawara K, Yoshizawa Y, Tzeng S, Epstein WL, Fukuyama K (1998) Colorimetric determination of citrulline residues in proteins. Anal Biochem 265(1):92–96

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Yamada R, Yamamoto K (2007) Citrullination by peptidylarginine deiminase in rheumatoid arthritis. Ann N Y Acad Sci 1108:323–339

    Article  PubMed  CAS  Google Scholar 

  • Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533

    Article  PubMed  CAS  Google Scholar 

  • Tutturen AEV, Holm A, Jorgensen M, Stadtmuller P, Rise F, Fleckenstein B (2010) A technique for the specific enrichment of citrulline-containing peptides. Anal Biochem 403(1–2):43–51

    Article  PubMed  CAS  Google Scholar 

  • Van Beers J, Raijmakers R, Alexander LE, Stammen-Vogelzangs J, Lokate AMC, Heck A, Schasfoort RBM, Pruijn GJM (2010) Mapping of citrullinated fibrinogen B-cell epitopes in rheumatoid arthritis by imaging surface plasmon resonance. Arthritis Res Ther 12(6):R219

    Article  PubMed  Google Scholar 

  • van Venrooij WJ, Pruijn GJ (2000) Citrullination: a small change for a protein with great consequences for rheumatoid arthritis. Arthritis Res 2(4):249–251

    Article  PubMed  Google Scholar 

  • Wanczek KP (1989) ICR spectrometry—a review of new developments in theory, instrumentation, and applications. I. 1983–1986. Int J Mass Spectrom Ion Proc 95:1–38

    Article  CAS  Google Scholar 

  • Webb K, Bristow T, Sargent M, Stein B (2004) Methodology for accurate mass measurement of small molecules. Best practice guide. LGC Limited, Tddington, pp 1–8

    Google Scholar 

  • Zimmer JSD, Monroe ME, Qian WJ, Smith RD (2006) Advances in proteomics data analysis and display using an accurate mass and time tag approach. Mass Spectrom Rev 25(3):450–482

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Amy Harms, Ph.D. (Leiden University) and Martha Vestling, Ph.D. (University of Wisconsin-Madison) for critical review of this article. The authors are grateful for funding support from NIH/NINDS grant NS046593 to H.L. for the continued support of a NINDS NeuroProteomics Core Facility at Rutgers University-New Jersey Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer E. Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grant, J.E., Li, H. (2014). Identifying Citrullination Sites by Mass Spectrometry. In: Nicholas, A., Bhattacharya, S. (eds) Protein Deimination in Human Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8317-5_19

Download citation

Publish with us

Policies and ethics