Skip to main content

Glial Communication via Gap Junction in Neuroinflammation

  • Chapter
  • First Online:
Neuron-Glia Interaction in Neuroinflammation

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 7))

Abstract

Gap junction is the major intercellular channel that facilitates direct signaling between cytoplasmic compartments of adjacent cells by transferring various small molecules (~1,000 Da) and ions. Gap junction consists of a pair of hemichannels, each of which is a hexameric cluster of protein subunits named connexin. Recent studies have revealed that uncoupled “free” hemichannels also facilitate two-way transfer of molecules between the cytosol and extracellular space. In the central nervous system (CNS), gap junctions and hemichannels form the neuron–glia network and contribute to the maintenance of homeostasis by propagating signals and buffering against toxins. Other evidence suggests that gap junctions and hemichannels—especially in glial cells—are also involved in the initiation and amplification of neuroinflammation in various neurological disorders. The purpose of this review is to summarize recent insights into the roles of gap junctions and hemichannels in the physiologic and pathologic conditions of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen K, Fuchs EC, Jaschonek H, Bannerman DM, Monyer H (2011) Gap junctions between interneurons are required for normal spatial coding in the hippocampus and short-term spatial memory. J Neurosci 31(17):6542–6552, Epub 2011/04/29

    PubMed  CAS  Google Scholar 

  • Altevogt BM, Paul DL (2004) Four classes of intercellular channels between glial cells in the CNS. J Neurosci 24(18):4313–4323, Epub 2004/05/07

    PubMed  CAS  Google Scholar 

  • Altevogt BM, Kleopa KA, Postma FR, Scherer SS, Paul DL (2002) Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci 22(15):6458–6470, Epub 2002/08/02

    PubMed  CAS  Google Scholar 

  • Al-Ubaidi MR, White TW, Ripps H, Poras I, Avner P, Gomes D et al (2000) Functional properties, developmental regulation, and chromosomal localization of murine connexin36, a gap-junctional protein expressed preferentially in retina and brain. J Neurosci Res 59(6):813–826, Epub 2000/03/04

    PubMed  CAS  Google Scholar 

  • Alvarez-Maubecin V, Garcia-Hernandez F, Williams JT, Van Bockstaele EJ (2000) Functional coupling between neurons and glia. J Neurosci 20(11):4091–4098, Epub 2000/05/20

    PubMed  CAS  Google Scholar 

  • Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32(1):1–14, Epub 2000/09/07

    PubMed  CAS  Google Scholar 

  • Anzini P, Neuberg DH, Schachner M, Nelles E, Willecke K, Zielasek J et al (1997) Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J Neurosci 17(12):4545–4551, Epub 1997/06/15

    PubMed  CAS  Google Scholar 

  • Bani-Yaghoub M, Bechberger JF, Underhill TM, Naus CC (1999a) The effects of gap junction blockage on neuronal differentiation of human NTera2/clone D1 cells. Exp Neurol 156(1):16–32, Epub 1999/04/08

    PubMed  CAS  Google Scholar 

  • Bani-Yaghoub M, Underhill TM, Naus CC (1999b) Gap junction blockage interferes with neuronal and astroglial differentiation of mouse P19 embryonal carcinoma cells. Dev Genet 24(1–2):69–81, Epub 1999/03/18

    PubMed  CAS  Google Scholar 

  • Barbe MT, Monyer H, Bruzzone R (2006) Cell-cell communication beyond connexins: the pannexin channels. Physiology (Bethesda) 21:103–114, Epub 2006/03/28

    CAS  Google Scholar 

  • Bittman KS, LoTurco JJ (1999) Differential regulation of connexin 26 and 43 in murine neocortical precursors. Cereb Cortex 9(2):188–195, Epub 1999/04/29

    PubMed  CAS  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69, Epub 2006/12/21

    PubMed  CAS  Google Scholar 

  • Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G et al (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392, Epub 2006/06/03

    PubMed  CAS  Google Scholar 

  • Bouskila Y, Dudek FE (1993) Neuronal synchronization without calcium-dependent synaptic transmission in the hypothalamus. Proc Natl Acad Sci U S A 90(8):3207–3210, Epub 1993/04/15

    PubMed  CAS  Google Scholar 

  • Brand-Schieber E, Werner P, Iacobas DA, Iacobas S, Beelitz M, Lowery SL et al (2005) Connexin43, the major gap junction protein of astrocytes, is down-regulated in inflamed white matter in an animal model of multiple sclerosis. J Neurosci Res 80(6):798–808, Epub 2005/05/18

    PubMed  CAS  Google Scholar 

  • Bukauskas FF, Jordan K, Bukauskiene A, Bennett MV, Lampe PD, Laird DW et al (2000) Clustering of connexin 43-enhanced green fluorescent protein gap junction channels and functional coupling in living cells. Proc Natl Acad Sci U S A 97(6):2556–2561, Epub 2000/03/08

    PubMed  CAS  Google Scholar 

  • Chang Q, Gonzalez M, Pinter MJ, Balice-Gordon RJ (1999) Gap junctional coupling and patterns of connexin expression among neonatal rat lumbar spinal motor neurons. J Neurosci 19(24):10813–10828, Epub 1999/12/14

    PubMed  CAS  Google Scholar 

  • Charles A (1998) Intercellular calcium waves in glia. Glia 24(1):39–49, Epub 1998/08/13

    PubMed  CAS  Google Scholar 

  • Christie MJ, Williams JT, North RA (1989) Electrical coupling synchronizes subthreshold activity in locus coeruleus neurons in vitro from neonatal rats. J Neurosci 9(10):3584–3589, Epub 1989/10/01

    PubMed  CAS  Google Scholar 

  • Contreras JE, Saez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci U S A 100(20):11388–11393, Epub 2003/09/18

    PubMed  CAS  Google Scholar 

  • Dahl G, Locovei S (2006) Pannexin: to gap or not to gap, is that a question? IUBMB Life 58(7):409–419, Epub 2006/06/28

    PubMed  CAS  Google Scholar 

  • de Pina-Benabou MH, Szostak V, Kyrozis A, Rempe D, Uziel D, Urban-Maldonado M et al (2005) Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia. Stroke 36(10):2232–2237, Epub 2005/09/24

    PubMed  Google Scholar 

  • De Vuyst E, Decrock E, De Bock M, Yamasaki H, Naus CC, Evans WH et al (2007) Connexin hemichannels and gap junction channels are differentially influenced by lipopolysaccharide and basic fibroblast growth factor. Mol Biol Cell 18(1):34–46, Epub 2006/11/03

    PubMed  Google Scholar 

  • Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31(3):477–485, Epub 2001/08/23

    PubMed  CAS  Google Scholar 

  • Dermietzel R, Traub O, Hwang TK, Beyer E, Bennett MV, Spray DC et al (1989) Differential expression of three gap junction proteins in developing and mature brain tissues. Proc Natl Acad Sci U S A 86(24):10148–10152, Epub 1989/12/01

    PubMed  CAS  Google Scholar 

  • Dermietzel R, Hertberg EL, Kessler JA, Spray DC (1991) Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci 11(5):1421–1432, Epub 1991/05/01

    PubMed  CAS  Google Scholar 

  • Dermietzel R, Gao Y, Scemes E, Vieira D, Urban M, Kremer M et al (2000) Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Res Brain Res Rev 32(1):45–56, Epub 2000/04/07

    PubMed  CAS  Google Scholar 

  • Eugenin EA, Eckardt D, Theis M, Willecke K, Bennett MV, Saez JC (2001) Microglia at brain stab wounds express connexin 43 and in vitro form functional gap junctions after treatment with interferon-gamma and tumor necrosis factor-alpha. Proc Natl Acad Sci U S A 98(7):4190–4195, Epub 2001/03/22

    PubMed  CAS  Google Scholar 

  • Eugenin EA, Basilio D, Saez JC, Orellana JA, Raine CS, Bukauskas F et al (2012) The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J Neuroimmune Pharmacol 7(3):499–518, Epub 2012/03/23

    PubMed  Google Scholar 

  • Flagg-Newton J, Simpson I, Loewenstein WR (1979) Permeability of the cell-to-cell membrane channels in mammalian cell junction. Science 205(4404):404–407, Epub 1979/07/27

    PubMed  CAS  Google Scholar 

  • Flower NE (1977) Invertebrate gap junctions. J Cell Sci 25:163–171, Epub 1977/06/01

    PubMed  CAS  Google Scholar 

  • Frank M, Eiberger B, Janssen-Bienhold U, de Sevilla Muller LP, Tjarks A, Kim JS et al (2010) Neuronal connexin-36 can functionally replace connexin-45 in mouse retina but not in the developing heart. J Cell Sci 123(Pt 20):3605–3615, Epub 2010/10/12

    PubMed  CAS  Google Scholar 

  • Frantseva MV, Kokarovtseva L, Perez Velazquez JL (2002) Ischemia-induced brain damage depends on specific gap-junctional coupling. J Cereb Blood Flow Metab 22(4):453–462, Epub 2002/03/29

    PubMed  Google Scholar 

  • Fushiki S, Perez Velazquez JL, Zhang L, Bechberger JF, Carlen PL, Naus CC (2003) Changes in neuronal migration in neocortex of connexin43 null mutant mice. J Neuropathol Exp Neurol 62(3):304–314, Epub 2003/03/18

    PubMed  CAS  Google Scholar 

  • Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW et al (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296(5567):503–507, Epub 2002/04/20

    PubMed  CAS  Google Scholar 

  • Garg S, Md Syed M, Kielian T (2005) Staphylococcus aureus-derived peptidoglycan induces Cx43 expression and functional gap junction intercellular communication in microglia. J Neurochem 95(2):475–483, Epub 2005/09/30

    PubMed  CAS  Google Scholar 

  • Giaume C, Tabernero A, Medina JM (1997) Metabolic trafficking through astrocytic gap junctions. Glia 21(1):114–123, Epub 1997/09/23

    PubMed  CAS  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934, Epub 2010/03/23

    PubMed  CAS  Google Scholar 

  • Goldberg GS, Lampe PD, Nicholson BJ (1999) Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1(7):457–459, Epub 1999/11/24

    PubMed  CAS  Google Scholar 

  • Goldberg GS, Moreno AP, Lampe PD (2002) Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J Biol Chem 277(39):36725–36730, Epub 2002/07/18

    PubMed  CAS  Google Scholar 

  • Goldberg GS, Valiunas V, Brink PR (2004) Selective permeability of gap junction channels. Biochim Biophys Acta 1662(1–2):96–101, Epub 2004/03/23

    PubMed  CAS  Google Scholar 

  • Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34(3):325–472, Epub 2002/02/13

    PubMed  CAS  Google Scholar 

  • Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94(1–2):120–143, Epub 2007/05/02

    PubMed  CAS  Google Scholar 

  • Hartfield EM, Rinaldi F, Glover CP, Wong LF, Caldwell MA, Uney JB (2011) Connexin 36 expression regulates neuronal differentiation from neural progenitor cells. PLoS One 6(3):e14746, Epub 2011/03/17

    PubMed  CAS  Google Scholar 

  • Hormuzdi SG, Pais I, LeBeau FE, Towers SK, Rozov A, Buhl EH et al (2001) Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31(3):487–495, Epub 2001/08/23

    PubMed  CAS  Google Scholar 

  • Hunter AW, Jourdan J, Gourdie RG (2003) Fusion of GFP to the carboxyl terminus of connexin43 increases gap junction size in HeLa cells. Cell Commun Adhes 10(4–6):211–214, Epub 2003/12/19

    PubMed  CAS  Google Scholar 

  • Jefferys JG (1995) Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev 75(4):689–723, Epub 1995/10/01

    PubMed  CAS  Google Scholar 

  • Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317, Epub 2012/08/11

    PubMed  CAS  Google Scholar 

  • Kawasaki A, Hayashi T, Nakachi K, Trosko JE, Sugihara K, Kotake Y et al (2009) Modulation of connexin 43 in rotenone-induced model of Parkinson’s disease. Neuroscience 160(1):61–68, Epub 2009/02/24

    PubMed  CAS  Google Scholar 

  • Kielian T (2008) Glial connexins and gap junctions in CNS inflammation and disease. J Neurochem 106(3):1000–1016, Epub 2008/04/16

    PubMed  CAS  Google Scholar 

  • Koulakoff A, Mei X, Orellana JA, Saez JC, Giaume C (2012) Glial connexin expression and function in the context of Alzheimer’s disease. Biochim Biophys Acta 1818(8):2048–2057, Epub 2011/10/20

    PubMed  CAS  Google Scholar 

  • Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394(Pt 3):527–543, Epub 2006/02/24

    PubMed  CAS  Google Scholar 

  • Laird DW (2010) The gap junction proteome and its relationship to disease. Trends Cell Biol 20(2):92–101, Epub 2009/12/01

    PubMed  CAS  Google Scholar 

  • Leithe E, Rivedal E (2007) Ubiquitination of gap junction proteins. J Membr Biol 217(1–3):43–51, Epub 2007/07/28

    PubMed  CAS  Google Scholar 

  • Lo CW, Waldo KL, Kirby ML (1999) Gap junction communication and the modulation of cardiac neural crest cells. Trends Cardiovasc Med 9(3–4):63–69, Epub 1999/12/01

    PubMed  CAS  Google Scholar 

  • Loewenstein WR (1967) On the genesis of cellular communication. Dev Biol 15(6):503–520, Epub 1967/06/01

    PubMed  CAS  Google Scholar 

  • Lopez P, Balicki D, Buehler LK, Falk MM, Chen SC (2001) Distribution and dynamics of gap junction channels revealed in living cells. Cell Commun Adhes 8(4–6):237–242, Epub 2002/06/18

    PubMed  CAS  Google Scholar 

  • Lutz SE, Raine CS, Brosnan CF (2012) Loss of astrocyte connexins 43 and 30 does not significantly alter susceptibility or severity of acute experimental autoimmune encephalomyelitis in mice. J Neuroimmunol 245(1–2):8–14, Epub 2012/02/22

    PubMed  CAS  Google Scholar 

  • Markoullis K, Sargiannidou I, Gardner C, Hadjisavvas A, Reynolds R, Kleopa KA (2012) Disruption of oligodendrocyte gap junctions in experimental autoimmune encephalomyelitis. Glia 60(7):1053–1066, Epub 2012/03/31

    PubMed  Google Scholar 

  • Masaki K, Suzuki SO, Matsushita T, Yonekawa T, Matsuoka T, Isobe N et al (2012) Extensive loss of connexins in Balo’s disease: evidence for an auto-antibody-independent astrocytopathy via impaired astrocyte-oligodendrocyte/myelin interaction. Acta Neuropathol 123(6):887–900, Epub 2012/03/23

    PubMed  Google Scholar 

  • Matsushita T, Masaki K, Suzuki S, Matsuoka T, Yonekawa T, Wu XM et al (2011) [Astrocytopathy in neuromyelitis optica, multiple sclerosis and Balo’s disease]. Rinsho Shinkeigaku 51(11):898–900

    PubMed  Google Scholar 

  • Menichella DM, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2003) Connexins are critical for normal myelination in the CNS. J Neurosci 23(13):5963–5973, Epub 2003/07/05

    PubMed  CAS  Google Scholar 

  • Menichella DM, Majdan M, Awatramani R, Goodenough DA, Sirkowski E, Scherer SS et al (2006) Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. J Neurosci 26(43):10984–10991, Epub 2006/10/27

    PubMed  CAS  Google Scholar 

  • Nadarajah B, Thomaidou D, Evans WH, Parnavelas JG (1996) Gap junctions in the adult cerebral cortex: regional differences in their distribution and cellular expression of connexins. J Comp Neurol 376(2):326–342, Epub 1996/12/09

    PubMed  CAS  Google Scholar 

  • Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32(1):29–44, Epub 2000/04/07

    PubMed  CAS  Google Scholar 

  • Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44(3):205–218, Epub 2003/11/07

    PubMed  CAS  Google Scholar 

  • Naus CC, Bechberger JF, Zhang Y, Venance L, Yamasaki H, Juneja SC et al (1997) Altered gap junctional communication, intercellular signaling, and growth in cultured astrocytes deficient in connexin43. J Neurosci Res 49(5):528–540, Epub 1997/09/25

    PubMed  CAS  Google Scholar 

  • Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C et al (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23(11):4549–4559, Epub 2003/06/14

    PubMed  CAS  Google Scholar 

  • Orellana JA, Saez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V et al (2009) Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 11(2):369–399, Epub 2008/09/26

    PubMed  CAS  Google Scholar 

  • Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Saez PJ et al (2011) Amyloid beta-induced death in neurons involves glial and neuronal hemichannels. J Neurosci 31(13):4962–4977, Epub 2011/04/01

    PubMed  CAS  Google Scholar 

  • Orthmann-Murphy JL, Freidin M, Fischer E, Scherer SS, Abrams CK (2007) Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J Neurosci 27(51):13949–13957, Epub 2007/12/21

    PubMed  CAS  Google Scholar 

  • Parenti R, Campisi A, Vanella A, Cicirata F (2002) Immunocytochemical and RT-PCR analysis of connexin36 in cultures of mammalian glial cells. Arch Ital Biol 140(2):101–108, Epub 2002/05/15

    PubMed  CAS  Google Scholar 

  • Paul DL (1995) New functions for gap junctions. Curr Opin Cell Biol 7(5):665–672, Epub 1995/10/01

    PubMed  CAS  Google Scholar 

  • Peracchia C (1980) Structural correlates of gap junction permeation. Int Rev Cytol 66:81–146, Epub 1980/01/01

    PubMed  CAS  Google Scholar 

  • Ransom B, Behar T, Nedergaard M (2003) New roles for astrocytes (stars at last). Trends Neurosci 26(10):520–522, Epub 2003/10/03

    PubMed  CAS  Google Scholar 

  • Rash JE, Yasumura T, Dudek FE, Nagy JI (2001) Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci 21(6):1983–2000, Epub 2001/03/14

    PubMed  CAS  Google Scholar 

  • Rash JE, Olson CO, Davidson KG, Yasumura T, Kamasawa N, Nagy JI (2007) Identification of connexin36 in gap junctions between neurons in rodent locus coeruleus. Neuroscience 147(4):938–956, Epub 2007/07/03

    PubMed  CAS  Google Scholar 

  • Rawanduzy A, Hansen A, Hansen TW, Nedergaard M (1997) Effective reduction of infarct volume by gap junction blockade in a rodent model of stroke. J Neurosurg 87(6):916–920, Epub 1997/12/31

    PubMed  CAS  Google Scholar 

  • Retamal MA, Schalper KA, Shoji KF, Bennett MV, Saez JC (2007) Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci U S A 104(20):8322–8327, Epub 2007/05/15

    PubMed  CAS  Google Scholar 

  • Revel JP, Yee AG, Hudspeth AJ (1971) Gap junctions between electrotonically coupled cells in tissue culture and in brown fat. Proc Natl Acad Sci U S A 68(12):2924–2927, Epub 1971/12/01

    PubMed  CAS  Google Scholar 

  • Rouach N, Avignone E, Meme W, Koulakoff A, Venance L, Blomstrand F et al (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94(7–8):457–475, Epub 2003/02/05

    PubMed  CAS  Google Scholar 

  • Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907):1551–1555, Epub 2008/12/06

    PubMed  CAS  Google Scholar 

  • Rufer M, Wirth SB, Hofer A, Dermietzel R, Pastor A, Kettenmann H et al (1996) Regulation of connexin-43, GFAP, and FGF-2 is not accompanied by changes in astroglial coupling in MPTP-lesioned, FGF-2-treated parkinsonian mice. J Neurosci Res 46(5):606–617, Epub 1996/12/01

    PubMed  CAS  Google Scholar 

  • Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83(4):1359–1400, Epub 2003/09/25

    PubMed  CAS  Google Scholar 

  • Scemes E, Dermietzel R, Spray DC (1998) Calcium waves between astrocytes from Cx43 knockout mice. Glia 24(1):65–73, Epub 1998/08/13

    PubMed  CAS  Google Scholar 

  • Schwarzmann G, Wiegandt H, Rose B, Zimmerman A, Ben-Haim D, Loewenstein WR (1981) Diameter of the cell-to-cell junctional membrane channels as probed with neutral molecules. Science 213(4507):551–553, Epub 1981/07/31

    PubMed  CAS  Google Scholar 

  • Sohl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6(3):191–200, Epub 2005/03/02

    PubMed  Google Scholar 

  • Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419(2):261–272, Epub 2009/03/25

    PubMed  CAS  Google Scholar 

  • Sung JY, Lee HJ, Jeong EI, Oh Y, Park J, Kang KS et al (2007) Alpha-synuclein overexpression reduces gap junctional intercellular communication in dopaminergic neuroblastoma cells. Neurosci Lett 416(3):289–293, Epub 2007/03/06

    PubMed  CAS  Google Scholar 

  • Sutor B, Schmolke C, Teubner B, Schirmer C, Willecke K (2000) Myelination defects and neuronal hyperexcitability in the neocortex of connexin 32-deficient mice. Cereb Cortex 10(7):684–697, Epub 2000/07/25

    PubMed  CAS  Google Scholar 

  • Tabernero A, Medina JM, Giaume C (2006) Glucose metabolism and proliferation in glia: role of astrocytic gap junctions. J Neurochem 99(4):1049–1061, Epub 2006/08/11

    PubMed  CAS  Google Scholar 

  • Takeuchi H (2010) Neurotoxicity by microglia: mechanisms and potential therapeutic strategy. Clin Exp Neuroimmunol 1(1):12–21

    CAS  Google Scholar 

  • Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R et al (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368, Epub 2006/05/25

    PubMed  CAS  Google Scholar 

  • Takeuchi H, Jin S, Suzuki H, Doi Y, Liang J, Kawanokuchi J et al (2008) Blockade of microglial glutamate release protects against ischemic brain injury. Exp Neurol 214(1):144–146, Epub 2008/09/09

    PubMed  CAS  Google Scholar 

  • Takeuchi H, Mizoguchi H, Doi Y, Jin S, Noda M, Liang J et al (2011) Blockade of gap junction hemichannel suppresses disease progression in mouse models of amyotrophic lateral sclerosis and Alzheimer’s disease. PLoS One 6(6):e21108, Epub 2011/06/30

    PubMed  CAS  Google Scholar 

  • Tamura K, Alessandri B, Heimann A, Kempski O (2011) The effect of a gap-junction blocker, carbenoxolone, on ischemic brain injury and cortical spreading depression. Neuroscience 194:262–271, Epub 2011/08/16

    PubMed  CAS  Google Scholar 

  • Teubner B, Odermatt B, Guldenagel M, Sohl G, Degen J, Bukauskas F et al (2001) Functional expression of the new gap junction gene connexin47 transcribed in mouse brain and spinal cord neurons. J Neurosci 21(4):1117–1126, Epub 2001/02/13

    PubMed  CAS  Google Scholar 

  • Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Sohl G et al (2003) Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12(1):13–21, Epub 2002/12/20

    PubMed  CAS  Google Scholar 

  • Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312(5775):924–927

    PubMed  CAS  Google Scholar 

  • Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S et al (2005) Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol 568(Pt 2):459–468, Epub 2005/07/23

    PubMed  CAS  Google Scholar 

  • Wallraff A, Odermatt B, Willecke K, Steinhauser C (2004) Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia 48(1):36–43, Epub 2004/08/25

    PubMed  Google Scholar 

  • Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26(20):5438–5447, Epub 2006/05/19

    PubMed  CAS  Google Scholar 

  • Walz W, Hertz L (1983) Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Prog Neurobiol 20(1–2):133–183, Epub 1983/01/01

    PubMed  CAS  Google Scholar 

  • Wang J, Ma M, Locovei S, Keane RW, Dahl G (2007) Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol 293(3):C1112–C1119, Epub 2007/07/27

    PubMed  CAS  Google Scholar 

  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M et al (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383(5):725–737, Epub 2002/07/11

    PubMed  CAS  Google Scholar 

  • Wong RO, Chernjavsky A, Smith SJ, Shatz CJ (1995) Early functional neural networks in the developing retina. Nature 374(6524):716–718, Epub 1995/04/20

    PubMed  CAS  Google Scholar 

  • Xu X, Li WE, Huang GY, Meyer R, Chen T, Luo Y et al (2001) Modulation of mouse neural crest cell motility by N-cadherin and connexin 43 gap junctions. J Cell Biol 154(1):217–230, Epub 2001/07/13

    PubMed  CAS  Google Scholar 

  • Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH et al (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11(3):251–253, Epub 2008/02/05

    PubMed  CAS  Google Scholar 

  • Yawata I, Takeuchi H, Doi Y, Liang J, Mizuno T, Suzumura A (2008) Macrophage-induced neurotoxicity is mediated by glutamate and attenuated by glutaminase inhibitors and gap junction inhibitors. Life Sci 82(21–22):1111–1116, Epub 2008/05/03

    PubMed  CAS  Google Scholar 

  • Yeager M, Harris AL (2007) Gap junction channel structure in the early 21st century: facts and fantasies. Curr Opin Cell Biol 19(5):521–528, Epub 2007/10/20

    PubMed  CAS  Google Scholar 

  • Zlomuzica A, Reichinnek S, Maxeiner S, Both M, May E, Worsdorfer P et al (2010) Deletion of connexin45 in mouse neurons disrupts one-trial object recognition and alters kainate-induced gamma-oscillations in the hippocampus. Physiol Behav 101(2):245–253, Epub 2010/05/18

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO); grants from the Ministry of Health, Labour and Welfare of Japan; a grant-in-aid for Scientific Research on Innovative Areas; and a grant-in-aid for the Global Center of Excellence Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflicts of interest The author has no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Takeuchi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takeuchi, H. (2013). Glial Communication via Gap Junction in Neuroinflammation. In: Suzumura, A., Ikenaka, K. (eds) Neuron-Glia Interaction in Neuroinflammation. Advances in Neurobiology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8313-7_8

Download citation

Publish with us

Policies and ethics