Skip to main content

The Blood–Brain Barrier in Neuroinflammation

  • Chapter
  • First Online:
Neuron-Glia Interaction in Neuroinflammation

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 7))

Abstract

The blood–brain barrier (BBB) is brain-specific capillary barrier that restricts the movement of soluble mediators and leukocytes from the blood to the central nervous system (CNS). The pathological breakdown of the BBB may be the initial key step of various neuroinflammatory CNS diseases including multiple sclerosis, bacterial meningitis, and neuroAIDS. This review describes an update of the biology of the cell comprising the BBB, and highlights the pathology and pathomechanisms of BBB breakdown in neuroinflammatory diseases. The human immortalized cell lines of BBB origin established in our laboratory will facilitate the future development of BBB research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    PubMed  CAS  Google Scholar 

  • Alafuzoff I, Adolfsson R, Grundke-Iqbal I, Winblad B (1987) Blood-brain barrier in Alzheimer dementia and in non-demented elderly. An immunocytochemical study. Acta Neuropathol 73:160–166

    PubMed  CAS  Google Scholar 

  • Algotsson A, Winblad B (2007) The integrity of the blood-brain barrier in Alzheimer’s disease. Acta Neurol Scand 115:403–408

    PubMed  CAS  Google Scholar 

  • Alvarez JI, Cayrol R, Prat A (1812) Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta 2011:252–264

    Google Scholar 

  • András IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M (2003) HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 74:255–265

    PubMed  Google Scholar 

  • Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A 106: 1977–1982

    PubMed  CAS  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    PubMed  CAS  Google Scholar 

  • Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 21:7724–7732

    PubMed  CAS  Google Scholar 

  • Badovinac V, Mostarica-Stojković M, Dinarello CA, Stosić-Grujicić S (1998) Interleukin-1 receptor antagonist suppresses experimental autoimmune encephalomyelitis (EAE) in rats by influencing the activation and proliferation of encephalitogenic cells. J Neuroimmunol 85:87–95

    PubMed  CAS  Google Scholar 

  • Bailey TL, Rivara CB, Rocher AB, Hof PR (2004) The nature and effects of cortical microvascular pathology in aging and Alzheimer’s disease. Neurol Res 26:573–578

    PubMed  Google Scholar 

  • Bauer AT, Bürgers HF, Rabie T, Marti HH (2010) Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab 30:837–848

    PubMed  CAS  Google Scholar 

  • Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood–brain barrier. Prog Drug Res 61:40–78

    Google Scholar 

  • Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113

    PubMed  CAS  Google Scholar 

  • Bencurova E, Mlynarcik P, Bhide M (2011) An insight into the ligand-receptor interactions involved in the translocation of pathogens across blood-brain barrier. FEMS Immunol Med Microbiol 63:297–318

    PubMed  CAS  Google Scholar 

  • Bernas MJ, Cardoso FL, Daley SK, Weinand ME, Campos AR, Ferreira AJ, Hoying JB, Witte MH, Brites D, Persidsky Y, Ramirez SH, Brito MA (2010) Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat Protocol 5:1265–1272

    CAS  Google Scholar 

  • Blum MS, Toninelli E, Anderson JM, Balda MS, Zhou J, O’Donnell L, Pardi R, Bender JR (1997) Cytoskeletal rearrangement mediates human microvascular endothelial tight junction modulation by cytokines. Am J Physiol 273:286–294

    Google Scholar 

  • Bolton SJ, Anthony DC, Perry VH (1998) Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience 86:1245–1257

    PubMed  CAS  Google Scholar 

  • Bowman GL, Kaye JA, Moore M, Waichunas D, Carlson NE, Quinn JF (2007) Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology 68:1809–1814

    PubMed  CAS  Google Scholar 

  • Braun L, Ghebrehiwet B, Cossart P (2000) gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J 19:1458–1466

    PubMed  CAS  Google Scholar 

  • Calabresi PA, Prat A, Biernacki K, Rollins J, Antel JP (2001) T lymphocytes conditioned with Interferon beta induce membrane and soluble VCAM on human brain endothelial cells. J Neuroimmunol 115:161–167

    PubMed  CAS  Google Scholar 

  • Chang YC, Stins MF, McCaffery MJ, Miller GF, Pare DR, Dam T, Paul-Satyaseela M, Kim KS, Kwon-Chung KJ (2004) Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun 72:4985–4995

    PubMed  CAS  Google Scholar 

  • Chi F, Jong TD, Wang L, Ouyang Y, Wu C, Li W, Huang SH (2010) Vimentin-mediated signalling is required for IbeA+ E. coli K1 invasion of human brain microvascular endothelial cells. Biochem J 427:79–90

    PubMed  CAS  Google Scholar 

  • Chrétien F, Lortholary O, Kansau I, Neuville S, Gray F, Dromer F (2002) Pathogenesis of cerebral Cryptococcus neoformans infection after fungemia. J Infect Dis 186:522–530

    PubMed  Google Scholar 

  • Chung JW, Hong SJ, Kim KJ, Goti D, Stins MF, Shin S, Dawson VL, Dawson TM, Kim KS (2003) 37-kDa laminin receptor precursor modulates cytotoxic necrotizing factor 1-mediated RhoA activation and bacterial uptake. J Biol Chem 278:16857–16862

    PubMed  CAS  Google Scholar 

  • Coisne C, Lyck R, Engelhardt B (2007) Therapeutic targeting of leukocyte trafficking across the blood-brain barrier. Inflamm Allergy Drug Targets 6:210–222

    PubMed  CAS  Google Scholar 

  • Correale J, Villa A (2007) The blood-brain-barrier in multiple sclerosis: functional roles and therapeutic targeting. Autoimmunity 40:148–160

    PubMed  CAS  Google Scholar 

  • Coureuil M, Mikaty G, Miller F, Lécuyer H, Bernard C, Bourdoulous S, Duménil G, Mège RM, Weksler BB, Romero IA, Couraud PO, Nassif X (2009) Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science 325:83–87

    PubMed  CAS  Google Scholar 

  • Craig A, Scherf A (2001) Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Mol Biochem Parasitol 115:129–143

    PubMed  CAS  Google Scholar 

  • Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI (1995) Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377:435–438

    PubMed  CAS  Google Scholar 

  • D’Andrea MR (2003) Evidence linking neuronal cell death to autoimmunity in Alzheimer’s disease. Brain Res 982:19–30

    PubMed  Google Scholar 

  • Dalkara T, Gursoy-Ozdemir Y, Yemisci M (2011) Brain microvascular pericytes in health and disease. Acta Neuropathol 122:1–9

    PubMed  Google Scholar 

  • Das A, Asatryan L, Reddy MA, Wass CA, Stins MF, Joshi S, Bonventre JV, Kim KS (2001) Differential role of cytosolic phospholipase A2 in the invasion of brain microvascular endothelial cells by Escherichia coli and Listeria monocytogenes. J Infect Dis 184:732–737

    PubMed  CAS  Google Scholar 

  • Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9:907–913

    PubMed  CAS  Google Scholar 

  • Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Xu F, Parisi M, LaRue B, Hu HW, Spijkers P, Guo H, Song X, Lenting PJ, Van Nostrand WE, Zlokovic BV (2004) LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 43:333–344

    PubMed  CAS  Google Scholar 

  • Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV (2008) apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 118:4002–4013

    PubMed  CAS  Google Scholar 

  • Deane R, Bell RD, Sagare A, Zlokovic BV (2009) Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol Disord Drug Targets 8:16–30

    PubMed  CAS  Google Scholar 

  • Deli MA, Abrahám CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25:59–127

    PubMed  Google Scholar 

  • Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y (2005) Brain pericytes contribute to the induction and up-regulation of blood brain barrier functions through transforming growth factor-beta production. Brain Res 1038:208–215

    PubMed  CAS  Google Scholar 

  • Doran KS, Engelson EJ, Khosravi A, Maisey HC, Fedtke I, Equils O, Michelsen KS, Arditi M, Peschel A, Nizet V (2005) Blood–brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J Clin Invest 115:2499–2507

    PubMed  CAS  Google Scholar 

  • Engelhardt B (2008) The blood-central nervous system barriers actively control immune cell entry into the central nervous system. Curr Pharm Des 14:1555–1565

    PubMed  CAS  Google Scholar 

  • Engelhardt B (2010) T cell migration into the central nervous system during health and disease: different molecular keys allow access to different central nervous system compartments. Clin Exp Neuroimmunol 1:79–93

    CAS  Google Scholar 

  • Engelhardt B, Kappos L (2008) Natalizumab: targeting alpha4-integrins in multiple sclerosis. Neurodegener Dis 5:16–22

    PubMed  CAS  Google Scholar 

  • Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26:485–495

    PubMed  CAS  Google Scholar 

  • Etienne-Manneville S, Manneville JB, Adamson P, Wilbourn B, Greenwood J, Couraud PO (2000) ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol 165:3375–3383

    PubMed  CAS  Google Scholar 

  • Fantuzzi L, Spadaro F, Vallanti G, Canini I, Ramoni C, Vicenzi E et al (2003) Endogenous CCL2 (monocyte chemotactic protein-1) modulates human immunodeficiency virus type-1 replication and affects cytoskeleton organization in human monocyte-derived macrophages. Blood 102:2334–2337

    PubMed  CAS  Google Scholar 

  • Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611

    PubMed  CAS  Google Scholar 

  • Faucheux BA, Bonnet AM, Agid Y, Hirsch EC (1999) Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet 353:981–982

    PubMed  CAS  Google Scholar 

  • Ferrieri P, Burke B, Nelson J (1980) Production of bacteremia and meningitis in infant rats with group B streptococcal serotypes. Infect Immun 27:1023–1032

    PubMed  CAS  Google Scholar 

  • Gendelman HE (2005) The neurology of AIDS. Oxford University Press, New York

    Google Scholar 

  • Gloor SM, Wachtel M, Bolliger MF, Ishihara H, Landmann R, Frei K (2001) Molecular and cellular permeability control at the blood-brain barrier. Brain Res Rev 36:258–264

    PubMed  CAS  Google Scholar 

  • Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, Mummidi S et al (2002) HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A 99:13795–13800

    PubMed  CAS  Google Scholar 

  • Gordon SB, Walsh AL, Chaponda M, Gordon MA, Soko D, Mbwvinji M, Molyneux ME, Read RC (2000) Bacterial meningitis in Malawian adults: pneumococcal disease is common, severe, and seasonal. Clin Infect Dis 31:53–57

    PubMed  CAS  Google Scholar 

  • Graber J, Zhan M, Ford D, Kursch F, Francis G, Bever C, Panitch H, Calabresi PA, Dhib-Jalbut S (2005) Interferon-beta-1a induces increases in vascular cell adhesion molecule: implications for its mode of action in multiple sclerosis. J Neuroimmunol 161:169–176

    PubMed  CAS  Google Scholar 

  • Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B (2011) Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 37:24–39

    PubMed  CAS  Google Scholar 

  • Greiffenberg L, Goebel W, Kim KS, Weiglein I, Bubert A, Engelbrecht F, Stins M, Kuhn M (1998) Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: InlB-dependent invasion, long-term intracellular growth, and spread from macrophages to endothelial cells. Infect Immun 66:5260–5267

    PubMed  CAS  Google Scholar 

  • Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE (1998) Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol 8:65–72

    PubMed  CAS  Google Scholar 

  • Gupta A, Pansari K (2003) Inflammation and Alzheimer’s disease. Int J Clin Pract 57:36–39

    PubMed  CAS  Google Scholar 

  • Harhaj NS, Antonetti DA (2004) Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 36:1206–1237

    PubMed  CAS  Google Scholar 

  • Hart CA, Thomson AP (2006) Meningococcal disease and its management in children. BMJ 333:685–690

    PubMed  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    PubMed  CAS  Google Scholar 

  • Hohlfeld R, Wekerle H (2004) Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci U S A 101:14599–14606

    PubMed  CAS  Google Scholar 

  • Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, Furuuchi K, Kokai Y, Nakagawa T, Mori M, Sawada N (1999) Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier. Biochem Biophys Res Commun 261:108–112

    PubMed  CAS  Google Scholar 

  • Ivey NS, MacLean AG, Lackner AA (2009) Acquired immunodeficiency syndrome and the blood-brain barrier. J Neurovirol 15:111–122

    PubMed  Google Scholar 

  • Jones MV, Bell JE, Nath A (2000) Immunolocalization of HIV envelope gp120 in HIV encephalitis with dementia. AIDS 14:2709–2713

    PubMed  CAS  Google Scholar 

  • Jong AY, Stins MF, Huang SH, Chen SH, Kim KS (2001) Traversal of Candida albicans across human blood–brain barrier in vitro. Infect Immun 69:4536–4544

    PubMed  CAS  Google Scholar 

  • Jong AY, Chen SH, Stins MF, Kim KS, Tuan TL, Huang SH (2003) Binding of Candida albicans enolase to plasmin (ogen) results in enhanced invasion of human brain microvascular endothelial cells. J Med Microbiol 52:615–622

    PubMed  CAS  Google Scholar 

  • Kalaria RN, Hedera P (1995) Differential degeneration of the cerebral microvasculature in Alzheimer’s disease. Neuroreport 6:477–480

    PubMed  CAS  Google Scholar 

  • Kalaria RN, Premkumar DR, Pax AB, Cohen DL, Lieberburg I (1996) Production and increased detection of amyloid beta protein and amyloidogenic fragments in brain microvessels, meningeal vessels and choroid plexus in Alzheimer’s disease. Brain Res Mol Brain Res 35:58–68

    PubMed  CAS  Google Scholar 

  • Kallstrom H, Liszewski MK, Atkinson JP, Jonsson AB (1997) Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Mol Microbiol 25:639–647

    PubMed  CAS  Google Scholar 

  • Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175

    PubMed  CAS  Google Scholar 

  • Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, Duquette P, Prat A (2009) Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol 66:390–402

    PubMed  CAS  Google Scholar 

  • Kerfoot SM, Kubes P (2002) Overlapping roles of P-selectin and alpha 4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J Immunol 169:1000–1006

    PubMed  CAS  Google Scholar 

  • Kerfoot SM, Norman MU, Lapointe BM, Bonder CS, Zbytnuik L, Kubes P (2006) Treatment of experimental autoimmune encephalomyelitis. J Immunol 176:6225–6234

    PubMed  CAS  Google Scholar 

  • Khan NA, Wang Y, Kim KJ, Chung JW, Wass CA, Kim KS (2002) Cytotoxic necrotizing factor-1 contributes to Escherichia coli K1 invasion of the central nervous system. J Biol Chem 277:15607–15612

    PubMed  CAS  Google Scholar 

  • Kim KS (2002) Strategy of Escherichia coli for crossing the blood–brain barrier. J Infect Dis 186:220–224

    Google Scholar 

  • Kim KS (2003) Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci 4:376–385

    PubMed  CAS  Google Scholar 

  • Kim KS (2006) Microbial translocation of the blood–brain barrier. Int J Parasitol 36:607–614

    PubMed  CAS  Google Scholar 

  • Kim BY, Kang J, Kim KS (2005) Invasion processes of pathogenic Escherichia coli. Int J Med Microbiol 295:463–470

    PubMed  CAS  Google Scholar 

  • Kirchner M, Heuer D, Meyer TF (2005) CD46-independent binding of neisserial type IV pili and the major pilus adhesin, PilC, to human epithelial cells. Infect Immun 73:3072–3082

    PubMed  CAS  Google Scholar 

  • Kniesel U, Wolburg H (2000) Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20:57–76

    PubMed  CAS  Google Scholar 

  • Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57:176–179

    PubMed  CAS  Google Scholar 

  • Kramer-Hämmerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R (2005) Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111:194–213

    PubMed  Google Scholar 

  • Kraus J, Ling AK, Hamm S, Voigt K, Oschmann P, Engelhardt B (2004) Interferon-beta stabilizes barrier characteristics of brain endothelial cells in vitro. Ann Neurol 56:192–205

    PubMed  CAS  Google Scholar 

  • Kraus J, Voigt K, Schuller AM, Scholz M, Kim KS, Schilling M, Schäbitz WR, Oschmann P, Engelhardt B (2008) Interferon-beta stabilizes barrier characteristics of the blood-brain barrier in four different species in vitro. Mult Scler 14:843–852

    PubMed  CAS  Google Scholar 

  • Kuo YM, Emmerling MR, Lampert HC, Hempelman SR, Kokjohn TA, Woods AS, Cotter RJ, Roher AE (1999) High levels of circulating Abeta42 are sequestered by plasma proteins in Alzheimer’s disease. Biochem Biophys Res Commun 257:787–791

    PubMed  CAS  Google Scholar 

  • Kuo YM, Kokjohn TA, Watson MD, Woods AS, Cotter RJ, Sue LI, Kalback WM, Emmerling MR, Beach TG, Roher AE (2000) Elevated abeta42 in skeletal muscle of Alzheimer disease patients suggests peripheral alterations of AbetaPP metabolism. Am J Pathol 156:797–805

    PubMed  CAS  Google Scholar 

  • Larochelle C, Alvarez JI, Prat A (2011) How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 585:3770–3880

    PubMed  CAS  Google Scholar 

  • Lavi E, Kolson DL, Ulrich AM, Fu L, González-Scarano F (1998) Chemokine receptors in the human brain and their relationship to HIV infection. J Neurovirol 4:301–311

    PubMed  CAS  Google Scholar 

  • Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    PubMed  CAS  Google Scholar 

  • Lyck R, Reiss Y, Gerwin N, Greenwood J, Adamson P, Engelhardt B (2003) T-cell interaction with ICAM-1/ICAM-2 double-deficient brain endothelium in vitro: the cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. Blood 102:3675–3683

    PubMed  CAS  Google Scholar 

  • Mahad DJ, Lawry J, Howell SJ, Woodroofe MN (2003) Longitudinal study of chemokine receptor expression on peripheral lymphocytes in multiple sclerosis: CXCR3 upregulation is associated with relapse. Mult Scler 9:189–198

    PubMed  CAS  Google Scholar 

  • Mairey E, Genovesio A, Donnadieu E, Bernard C, Jaubert F, Pinard E, Seylaz J, Olivo-Marin JC, Nassif X, Duménil G (2006) Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood–brain barrier. J Exp Med 203:1939–1950

    PubMed  CAS  Google Scholar 

  • Man S, Ubogu EE, Ransohoff RM (2007) Inflammatory cell migration into the central nervous system: a few new twists on an old tale. Brain Pathol 17:243–250

    PubMed  CAS  Google Scholar 

  • McArthur JC (2004) HIV dementia: an evolving disease. J Neuroimmunol 157:3–10

    PubMed  CAS  Google Scholar 

  • Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GP, Libonati MA, Willmer-Hulme AJ, Dalton CM, Miszkiel KA, O’Connor PW (2003) A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 348:15–23

    PubMed  CAS  Google Scholar 

  • Miller DH, Soon D, Fernando KT, MacManus DG, Barker GJ, Yousry TA, Fisher E, O’Connor PW, Phillips JT, Polman CH, Kappos L, Hutchinson M, Havrdova E, Lublin FD, Giovannoni G, Wajgt A, Rudick R, Lynn F, Panzara MA, Sandrock AW, AFFIRM Investigators (2007) MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology 68:1390–1401

    PubMed  CAS  Google Scholar 

  • Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202:13–23

    PubMed  CAS  Google Scholar 

  • Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263

    PubMed  CAS  Google Scholar 

  • Nassif X (2000) Microbiology. A furtive pathogen revealed. Science 287:1767–1768

    PubMed  CAS  Google Scholar 

  • Natté R, de Boer WI, Maat-Schieman ML, Baelde HJ, Vinters HV, Roos RA, van Duinen SG (1999) Amyloid beta precursor protein-mRNA is expressed throughout cerebral vessel walls. Brain Res 828:179–183

    PubMed  Google Scholar 

  • Nizet V, Kim KS, Stins M, Jonas M, Chi EY, Nguyen D, Rubens CE (1997) Invasion of brain microvascular endothelial cells by group B streptococci. Infect Immun 65:5074–5081

    PubMed  CAS  Google Scholar 

  • Nusrat A, Turner JR, Madara JL (2000) Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol 279:851–857

    Google Scholar 

  • Obeso JA, Rodríguez-Oroz MC, Rodríguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23:8–19

    Google Scholar 

  • Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, Abouseada N, Oldfield NJ, Self T, Ala’Aldeen DA, Tuomanen EI (2009) Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 119:1638–1646

    PubMed  CAS  Google Scholar 

  • Pino P, Vouldoukis I, Kolb JP, Mahmoudi N, Desportes-Livage I, Bricaire F, Danis M, Dugas B, Mazier D (2003) Plasmodium falciparum-infected erythrocyte adhesion induces caspase activation and apoptosis in human endothelial cells. J Infect Dis 187:1283–1290

    PubMed  CAS  Google Scholar 

  • Prasadarao NV, Srivastava PK, Rudrabhatla RS, Kim KS, Huang SH, Sukumaran SK (2003) Cloning and expression of the Escherichia coli K1 outer membrane protein A receptor, a gp96 homologue. Infect Immun 71:1680–1688

    PubMed  CAS  Google Scholar 

  • Pron B, Taha MK, Rambaud C, Fournet JC, Pattey N, Monnet JP, Musilek M, Beretti JL, Nassif X (1997) Interaction of Neisseria meningitidis with the components of the blood-brain barrier correlates with an increased expression of PilC. J Infect Dis 176:1285–1292

    PubMed  CAS  Google Scholar 

  • Radin JN, Orihuela CJ, Murti G, Guglielmo C, Murray PJ, Tuomanen EI (2005) beta-Arrestin 1 participates in platelet-activating factor receptor-mediated endocytosis of Streptococcus pneumoniae. Infect Immun 73:7827–7835

    PubMed  CAS  Google Scholar 

  • Rappaport J, Joseph J, Croul S, Alexander G, Del Valle L, Amini S, Khalili K (1999) Molecular pathway involved in HIV-1-induced CNS pathology: role of viral regulatory protein, Tat. J Leukoc Biol 65:458–465

    PubMed  CAS  Google Scholar 

  • Reddy MA, Wass CA, Kim KS, Schlaepfer DD, Prasadarao NV (2000) Involvement of focal adhesion kinases in Escherichia coli invasion of human brain microvascular endothelial cells. Infect Immun 68:6423–6430

    PubMed  CAS  Google Scholar 

  • Rénia L, Wu Howland S, Claser C, Charlotte Gruner A, Suwanarusk R, Hui Teo T, Russell B, Ng LF (2012) Cerebral malaria: mysteries at the blood-brain barrier. Virulence 3:193–201

    PubMed  Google Scholar 

  • Reuss B, Dono R, Unsicker K (2003) Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood-brain barrier permeability: evidence from mouse mutants. J Neurosci 23:6404–6412

    PubMed  CAS  Google Scholar 

  • Ring A, Weiser JN, Tuomanen EI (1998) Pneumococcal trafficking across the blood–brain barrier. Molecular analysis of a novel bi-directional pathway. J Clin Invest 102:347–360

    PubMed  CAS  Google Scholar 

  • Rite I, Machado A, Cano J, Venero JL (2007) Blood-brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J Neurochem 101:1567–1582

    PubMed  CAS  Google Scholar 

  • Roses AD (1996) The Alzheimer diseases. Curr Opin Neurobiol 6:644–650

    PubMed  CAS  Google Scholar 

  • Sa E, Cunha C, Griffiths NJ, Virji M (2010) Neisseria meningitidis Opc invasin binds to the sulphated tyrosines of activated vitronectin to attach to and invade human brain endothelial cells. PLoS Pathog 6:e1000911

    Google Scholar 

  • Sano Y, Shimizu F, Abe M et al (2010) Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood-brain barrier function. J Cell Physiol 225:519–528

    PubMed  CAS  Google Scholar 

  • Sardi F, Fassina L, Venturini L, Inguscio M, Guerriero F, Rolfo E, Ricevuti G (2011) Alzheimer’s disease, autoimmunity and inflammation. The good, the bad and the ugly. Autoimmun Rev 11:149–153

    PubMed  CAS  Google Scholar 

  • Sariola H, Saarma M (2003) Novel functions and signaling pathways for GDNF. J Cell Sci 116:3855–3862

    PubMed  CAS  Google Scholar 

  • Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5:722–735

    PubMed  CAS  Google Scholar 

  • Sevigny JJ, Albert SM, McDermott MP, McArthur JC, Sacktor N, Conant K, Schifitto G, Selnes OA, Stern Y, McClernon DR, Palumbo D, Kieburtz K, Riggs G, Cohen B, Epstein LG, Marder K (2004) Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated dementia. Neurology 63:2084–2090

    PubMed  CAS  Google Scholar 

  • Shen Y, Naujokas M, Park M, Ireton K (2000) InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103:501–510

    PubMed  CAS  Google Scholar 

  • Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038

    PubMed  CAS  Google Scholar 

  • Shimizu F, Sano Y, Maeda T, Abe MA, Nakayama H, Takahashi R, Ueda M, Ohtsuki S, Terasaki T, Obinata M, Kanda T (2008) Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells. J Cell Physiol 217:388–399

    PubMed  CAS  Google Scholar 

  • Shimizu F, Sano Y, Abe MA, Maeda T, Ohtsuki S, Terasaki T, Kanda T (2011) Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol 226:255–266

    PubMed  CAS  Google Scholar 

  • Shimizu F, Sano Y, Takahashi T, Haruki H, Saito K, Koga M, Kanda T (2012a) Sera from neuromyelitis optica patients disrupt the blood-brain barrier. J Neurol Neurosurg Psychiatry 83:288–297

    PubMed  Google Scholar 

  • Shimizu F, Sano Y, Saito K, Abe MA, Maeda T, Haruki H, Kanda T (2012b) Pericyte-derived glial cell line-derived neurotrophic factor increase the expression of claudin-5 in the blood-brain barrier and the blood-nerve barrier. Neurochem Res 37:401–409

    PubMed  CAS  Google Scholar 

  • Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM (2001) Endothelial cell laminin isoforms, laminin 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol 153:933–946

    PubMed  CAS  Google Scholar 

  • Sonobe Y, Takeuchi H, Kataoka K, Li H, Jin S, Mimuro M, Hashizume Y, Sano Y, Kanda T, Mizuno T, Suzumura A (2009) Interleukin-25 expressed by brain capillary endothelial cells maintains blood-brain barrier function in a protein kinase Cepsilon-dependent manner. J Biol Chem 284:31834–31842

    PubMed  CAS  Google Scholar 

  • Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki H, Jadhav V, Nishizawa S, Zhang JH (2009) Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke 40:2519–2525

    PubMed  CAS  Google Scholar 

  • Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV (2006) Inflammation and brain edema: new insights into the role of chemokines and their receptors. Acta Neurochir 96:444–450

    CAS  Google Scholar 

  • Stamatovic SM, Keep RF, Wang MM, Jankovic I, Andjelkovic AV (2009) Caveolae-mediated internalization of occludin and claudin-5 during CCL2-induced tight junction remodeling in brain endothelial cells. J Biol Chem 284:19053–19066

    PubMed  CAS  Google Scholar 

  • Stewart PA, Hayakawa K, Akers MA, Vinters HV (1992) A morphometric study of the blood-brain barrier in Alzheimer’s disease. Lab Invest 67:734–742

    PubMed  CAS  Google Scholar 

  • Stolp HB, Dziegielewska KM (2009) Review: role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol Appl Neurobiol 35:132–146

    PubMed  CAS  Google Scholar 

  • Sun YX, Minthon L, Wallmark A, Warkentin S, Blennow K, Janciauskiene S (2003) Inflammatory markers in matched plasma and cerebrospinal fluid from patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 16:136–144

    PubMed  CAS  Google Scholar 

  • Swords WE, Ketterer MR, Shao J, Campbell CA, Weiser JN, Apicella MA (2001) Binding of the non-typeable Haemophilus influenzae lipooligosaccharide to the PAF receptor initiates host cell signalling. Cell Microbiol 3:525–536

    PubMed  CAS  Google Scholar 

  • Tang K, Hynan LS, Baskin F, Rosenberg RN (2006) Platelet amyloid precursor protein processing: a bio-marker for Alzheimer’s disease. J Neurol Sci 240:53–58

    PubMed  CAS  Google Scholar 

  • Taoufiq Z, Gay F, Balvanyos J, Ciceron L, Tefit M, Lechat P, Mazier D (2008) Rho kinase inhibition in severe malaria: thwarting parasite-induced collateral damage to endothelia. J Infect Dis 197:1062–1073

    PubMed  Google Scholar 

  • Tardieu M (1999) HIV-1-related central nervous system diseases. Curr Opin Neurol 12:377–381

    PubMed  CAS  Google Scholar 

  • Toescu EC (2005) Normal brain ageing: models and mechanisms. Philos Trans R Soc Lond B Biol Sci 360:2347–2354

    PubMed  CAS  Google Scholar 

  • Tripathi AK, Sullivan DJ, Stins MF (2007) Plasmodium falciparum-infected erythrocytes decrease the integrity of human blood-brain barrier endothelial cell monolayers. J Infect Dis 195:942–950

    PubMed  Google Scholar 

  • Trojanowski JQ, Shin RW, Schmidt ML, Lee VM (1995) Relationship between plaques, tangles, and dystrophic processes in Alzheimer’s disease. Neurobiol Aging 16:335–340

    PubMed  CAS  Google Scholar 

  • Ujiie M, Dickstein DL, Carlow DA, Jefferies WA (2003) Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 10:463–470

    PubMed  CAS  Google Scholar 

  • Unkmeir A, Latsch K, Dietrich G, Wintermeyer E, Schinke B, Schwender S, Kim KS, Eigenthaler M, Frosch M (2002) Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Mol Microbiol 46:933–946

    PubMed  CAS  Google Scholar 

  • Wang Y, Kim KS (2002) Role of OmpA and IbeB in Escherichia coli K1 invasion of brain microvascular endothelial cells in vitro and in vivo. Pediatr Res 51:559–563

    PubMed  CAS  Google Scholar 

  • Ward SG, Marelli-Berg FM (2009) Mechanisms of chemokine and antigen-dependent T-lymphocyte navigation. Biochem J 418:13–27

    PubMed  CAS  Google Scholar 

  • Waubant E (2006) Biomarkers indicative of blood-brain barrier disruption in multiple sclerosis. Dis Markers 22:235–244

    PubMed  CAS  Google Scholar 

  • Weeks BS, Lieberman DM, Johnson B, Roque E, Green M, Loewenstein P, Oldfield EH, Kleinman HK (1995) Neurotoxicity of the human immunodeficiency virus type 1 tat transactivator to PC12 cells requires the Tat amino acid 49-58 basic domain. J Neurosci Res 42:34–40

    PubMed  CAS  Google Scholar 

  • Wenk GL (2003) Neuropathologic changes in Alzheimer’s disease. J Clin Psychiatry 64:7–10

    PubMed  Google Scholar 

  • Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150:963–976

    PubMed  CAS  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337

    PubMed  CAS  Google Scholar 

  • Wu DT, Woodman SE, Weiss JM, McManus CM, D’Aversa TG, Hesselgesser J, Major EO, Nath A, Berman JW (2000) Mechanisms of leukocyte trafficking into the CNS. J Neurovirol 6:S82–S85

    PubMed  CAS  Google Scholar 

  • Yadav A, Collman RG (2009) CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J Neuroimmune Pharmacol 4:430–447

    PubMed  Google Scholar 

  • Yong VW, Chabot S, Stuve O, Williams G (1998) Interferon beta in the treatment of multiple sclerosis: mechanisms of action. Neurology 51:682–689

    PubMed  CAS  Google Scholar 

  • Youakim A, Ahdieh M (1999) Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am J Physiol 276:1279–1288

    Google Scholar 

  • Yu AS, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD, Schneeberger EE (2005) Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol 288:1231–1241

    Google Scholar 

  • Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, Vitek MP, Hovanesian V, Stopa EG (2007) Microvascular injury and blood-brain barrier leakage in Alzheimer’s disease. Neurobiol Aging 28:977–986

    PubMed  CAS  Google Scholar 

  • Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    PubMed  CAS  Google Scholar 

  • Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738

    PubMed  CAS  Google Scholar 

  • Zotova E, Nicoll JA, Kalaria R, Holmes C, Boche D (2010) Inflammation in Alzheimer’s disease: relevance to pathogenesis and therapy. Alzheimers Res Ther 2:1

    PubMed  Google Scholar 

Download references

Conflict of Interest

Fumitaka Shimizu declares that he has no conflict of interest. Takashi Kanda declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kanda M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shimizu, F., Kanda, T. (2013). The Blood–Brain Barrier in Neuroinflammation. In: Suzumura, A., Ikenaka, K. (eds) Neuron-Glia Interaction in Neuroinflammation. Advances in Neurobiology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8313-7_10

Download citation

Publish with us

Policies and ethics