Skip to main content

Mammography Phantoms

  • Chapter
  • First Online:
The Phantoms of Medical and Health Physics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2472 Accesses

Abstract

Mammography is considered the preferred technique for early detection of the breast cancer. Due the similarity on the elemental composition of the normal and abnormal tissues that comprise the breast, and also due the small size of the breast nodules in the early stage, the optimization of image quality (IQ) and dose in mammography is a critical factor [69].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ACR. (1999). Mammography quality control manual. Reston: American College of Radiology.

    Google Scholar 

  2. Almeida, C. D., Coutinho, C. M. C., Dantas, B. M., Peixoto, J. E., & Koch, H. A. (2012). A new mammography dosimetric phantom. Radiation Protection Dosimetry, 151, 196–198.

    Article  Google Scholar 

  3. Argo, W. P., Hintenlang, K., & Hintenlang, A. D. E. (2004). A tissue-equivalent phantom series for mammography dosimetry. Journal of Applied Clinical Medical Physics, 5, 112–119.

    Article  Google Scholar 

  4. Baldelli, P., Bravin, A., Di Maggio, C., Gennaro, G., Sarnelli, A., Taibi, A., et al. (2006). Evaluation of the minimum iodine concentration for contrast-enhanced subtraction mammography. Physics in Medicine and Biology, 51, 4233–4251.

    Article  ADS  Google Scholar 

  5. Baldelli, P., Phelan, N., & Egan, G. (2010). Investigation of the effect of anode/filter materials on the dose and image quality of a digital mammography system based on an amorphous selenium flat panel detector. British Journal of Radiology, 83, 290–295.

    Article  Google Scholar 

  6. Barnes, G. T., & Hendrick, R. E. (1994). Mammography accreditation and equipment performance. Radiographics, 14, 129–138.

    Article  Google Scholar 

  7. Berns, E. A., Hendrick, R. E., & Cutter, G. R. (2003). Optimization of technique factors for a silicon diode array full-field digital mammography system and comparison to screen-film mammography with matched average glandular dose. Medical Physics, 30, 334–340.

    Article  ADS  Google Scholar 

  8. Bijkerk, K. R., Lindeijer, J. M., & Thijssen, M. A. O. P. (1993). The CDMAM phantom: A contrast-detail phantom specifically for mammography. Radiology, 185, 395–399.

    Google Scholar 

  9. Bliznakova, K., Kolitsi, Z., Speller, R. D., Horrocks, J. A., Tromba, G., & Pallikarakis, N. (2010). Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry. Medical Physics, 37, 1893–1903.

    Article  Google Scholar 

  10. Boone, J. M. (1999). Glandular breast dose for monoenergetic and high-energy x-ray beams: Monte Carlo assessment. Radiology, 213, 23–37.

    Article  Google Scholar 

  11. Caldwell, C. B., & Yaffe, M. J. (1990). Development of an anthropomorphic breast phantom. Medical Physics, 17, 273–280.

    Article  ADS  Google Scholar 

  12. Carton, A. K., Bakic, P., Ullberg, C., Derand, H., & Maidment, A. D. A. (2011). Development of a physical 3D anthropomorphic breast phantom. Medical Physics, 38, 891–896.

    Article  ADS  Google Scholar 

  13. Carton, A. K., Gavenonis, S. C., Currivan, J. A., Conant, E. F., Schnall, M. D., & Maidment, A. D. A. (2010). Dual-energy contrast-enhanced digital breast tomosynthesis—a feasibility study. British Journal of Radiology, 83, 344–350.

    Article  Google Scholar 

  14. Chakraborty, D. P., & Eckert, M. P. (1995). Quantitative versus subjective evaluation of mammography accreditation phantom images. Medical Physics, 22, 133–143.

    Article  ADS  Google Scholar 

  15. Cohen, G., McDaniel, D. L., & Wagner, L. K. (1984). Analysis of variations in contrast-detail experiments. Medical Physics, 11, 469–473.

    Article  ADS  Google Scholar 

  16. Cowen, A. R., Brettle, D. S., Coleman, N. J., & Parkin, G. J. S. (1992). A preliminary investigation of the imaging performance of photostimulable phosphor computed radiography using a new design of mammographic quality-control test object. British Journal of Radiology, 65, 528–535.

    Article  Google Scholar 

  17. Cowen, A. R., & Coleman, N. J. (1991). Physics in diagnostic radiology. Design of test objects and phantoms for quality control in mammographic screening. York, UK, IPEM. IPSM Report 61.

    Google Scholar 

  18. Cunha, D. M., Tomal, A., & Poletti, M. E. (2012). Optimization of x-ray spectra in digital mammography through Monte Carlo simulations. Physics in Medicine and Biology, 57, 1919–1935.

    Article  ADS  Google Scholar 

  19. Dance, D. R. (1990). Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Physics in Medicine and Biology, 35, 1211–1219.

    Article  ADS  Google Scholar 

  20. Dance, D. R., Skinner, C. L., & Carlsson, G. A. (1999). Breast dosimetry. Applied Radiation and Isotopes, 50, 185–203.

    Article  Google Scholar 

  21. Darambara, D. G., Taibi, A., & Speller, R. D. (2002). Image-quality performance of an a-Si: H-based X-ray imaging system for digital mammography. Nuclear Instruments and Methods in Physical Research Section A, 477, 521–526.

    Article  ADS  Google Scholar 

  22. DeWerd, L. A., Wochos, J., & Cameron, J. (1979). ACR phantom based upon a random phantom “Wisconsin mammogrpahy phantoms”. In W. Logan & E. P. Muntz (Eds.), Reduced dose mammography. New York: Masson.

    Google Scholar 

  23. DeWerd, L. A., Micka, J. A., Laird, R. W., Pearson, D. W., O’Brien, M., & Lamperti, P. (2002). The effect of spectra on calibration and measurement with mammographic ionization chambers. Medical Physics, 29, 2649–2654.

    Article  ADS  Google Scholar 

  24. Dougherty, G. (1998). Computerized evaluation of mammographic image quality using phantom images. Computerized Medical Imaging and Graphics, 22, 365–373.

    Article  Google Scholar 

  25. EC (1996). European guidelines on quality criteria for diagnostic radiographic images. EUR 16260. Luxembourg: European Commission.

    Google Scholar 

  26. EC (2006). European Guidelines for Quality Assurance in Mammography Screening. Report EUR 14821. Luxembourg: European Commission.

    Google Scholar 

  27. Egan, R. L., & Fenn, J. O. (1968). Phantoms for evaluating mammography techniques and roentgenographic detail. American Journal of Roentgenology, 102, 936–939.

    Google Scholar 

  28. Faulkner, K., & Law, J. (1994). A comparison of mammographic phantoms. Brit J Radiol, 67, 174–180.

    Article  Google Scholar 

  29. Fitzgerald, M., White, D. R., White, E., & Young, J. (1981). Mammographic practice and dosimetry in Britain. British Journal of Radiology, 54, 212–220.

    Article  Google Scholar 

  30. Freed, M., Badal, A., Jennings, R. J., de las Heras, H., Myers, K. J., & Badano, A. (2011). X-ray properties of an anthropomorphic breast phantom for MRI and x-ray imaging. Phys Med Biol, 56, 3513–3533.

    Google Scholar 

  31. Geise, R. A., & Palchevsky, A. (1996). Composition of mammographic phantom materials. Radiology, 198, 347–350.

    Google Scholar 

  32. Gennaro, G., Ferro, F., Contento, G., Fornasin, F., & di Maggio, C. (2007). Automated analysis of phantom images for the evaluation of long-term reproducibility in digital mammography. Physics in Medicine and Biology, 52, 1387–1407.

    Article  ADS  Google Scholar 

  33. Hammerstein, G. R., Miller, D. W., White, D. R., Masterson, M. E., Woodard, H. Q., & Laughlin, J. S. (1979). Absorbed radiation-dose in mammography. Radiology, 130, 485–491.

    Google Scholar 

  34. Hendrick, R. E. (1992). Quality assurance in mammography—accreditation, legislation, and compliance with quality assurance standards. Radiologic Clinics of North America, 30, 243–255.

    Google Scholar 

  35. Hessler, C., Depeursinge, C., Grecescu, M., Pochon, Y., Raimondi, S., & Valley, J. F. (1985). Objective assessment of mammography systems: 1. Method. Radiology, 156, 215–219.

    Google Scholar 

  36. Huda, W., Qu, G. Y., Jing, Z. X., Steinbach, B. G., & Honeyman, J. C. (2000). How does observer training affect imaging performance in digital mammography? In E. A. Krupinski (Ed.), Medical imaging 2000: Image perception and performance (Vol. 1, pp. 259–266).

    Google Scholar 

  37. Huda, W., Sajewicz, A. M., Ogden, K. M., Scalzetti, E. M., & Dance, D. R. (2002). How good is the ACR accreditation phantom for assessing image quality in digital mammography? Academic Radiology, 9, 764–772.

    Article  Google Scholar 

  38. IAEA (2007). Dosimetry in diagnostic radiology: An international code of practice, technical reports series No. 457. International Atomic Energy Agency. Vienna, Austria, International Atomic Energy Agency.

    Google Scholar 

  39. IAEA (2011). Quality assurance programme for digital mammography. IAEA human health series No 17. Vienna: International Atomic Energy Agency.

    Google Scholar 

  40. ICRU. (1989). Tissue substitutes in radiation dosimetry and measurement. Bethesda: International Commission on Radiation Units and Measurements.

    Google Scholar 

  41. Kimme-Smith, C., Bassett, L. W., & Gold, R. H. (1989). A review of mammography test objects for the calibration of resolution, contrast, and exposure. Medical Physics, 16, 758–765.

    Article  ADS  Google Scholar 

  42. Kosanetzky, J., Knoerr, B., Harding, G., & Neitzel, U. (1987). X-ray diffraction measurements of some plastic materials and body tissues. Medical Physics, 14, 526–532.

    Article  ADS  Google Scholar 

  43. Kotre, C. J., & Porter, D. J. T. (2005). A printed image quality test phantom for mammography. British Journal of Radiology, 78, 746–748.

    Article  Google Scholar 

  44. Law, J. (1991). A new phantom for mammography. British Journal of Radiology, 64, 116–120.

    Article  Google Scholar 

  45. Law, J., Faulkner, K., & Smith, S. (1989). Variation of image quality with x-ray tube potential in mammography. British Journal of Radiology, 62, 192–192.

    Article  Google Scholar 

  46. Liu, X., Lai, C.-J., Whitman, G. J., Geiser, W. R., Shen, Y., Yi, Y., et al. (2011). Effects of exposure equalization on image signal-to-noise ratios in digital mammography: A simulation study with an anthropomorphic breast phantom. Medical Physics, 38, 6489–6501.

    Article  ADS  Google Scholar 

  47. McLean, D., Eckert, M., Heard, R., & Chan, W. (1997). Review of the first 50 cases completed by the RACR mammography QA programme: Phantom image quality, processor control and dose considerations. Australasian Radiology, 41, 387–391.

    Google Scholar 

  48. McLelland, R., Hendrick, R. E., Zinninger, M. D., & Wilcox, P. A. (1991). The American-college of radiology mammography accreditation program. American Journal of Roentgenology, 157, 473–479.

    Article  Google Scholar 

  49. NCRP (2004). A Guide to Mammography and Other Breast Imaging Procedures, NCRP Report 149. Bethesda: National Council on Radiation Protection and Measurements.

    Google Scholar 

  50. Ng, K. H., DeWerd, L. A., & Schmidt, R. C. (2000). Mammographic image quality and exposure in South East Asia. Australasian Physical and Engineering Sciences, 23, 135–137.

    Google Scholar 

  51. Ng, K. H., Aus, R. J., DeWerd, L. A., & Vetter, J. R. (1997). Entrance skin exposure and mean glandular dose: Effect of scatter and field gradient at mammography. Radiology, 205, 395–398.

    Google Scholar 

  52. Obenauer, S., Hermann, K. P., & Grabbe, E. (2003). Dose reduction in full-field digital mammography: An anthropomorphic breast phantom study. British Journal of Radiology, 76, 478–482.

    Article  Google Scholar 

  53. Oliveira, M., Nogueira, M. S., Guedes, E., Andrade, M. C., Peixoto, J. E., Joana, G. S., et al. (2007). Average glandular dose and phantom image quality in mammography. Nuclear Instruments and Methods in Physical Research Section A, 580, 574–577.

    Article  ADS  Google Scholar 

  54. Pachoud, M., Lepori, D., Valley, J. F., & Verdun, F. R. (2004). A new test phantom with different breast tissue compositions for image quality assessment in conventional and digital mammography. Physics in Medicine and Biology, 49, 5267–5281.

    Article  ADS  Google Scholar 

  55. Park, S., Liu, H., Jennings, R., Leimbach, R., Kyprianou, I., Badanoa, A., et al. (2009). A task-based evaluation method for x-ray breast imaging systems using variable-background phantoms. Proceedings of SPIE, 7258, L1–L9.

    Google Scholar 

  56. Poletti, M. E., Gonçalves, O. D., & Mazzaro, I. (2002). X-ray scattering from human breast tissues and breast-equivalent materials. Physics in Medicine and Biology, 47, 47–63.

    Article  ADS  Google Scholar 

  57. Prionas, N. D., Burkett, G. W., McKenney, S. E., Chen, L., Stern, R. L., & Boone, J. M. (2012). Development of a patient-specific two-compartment anthropomorphic breast phantom. Physics in Medicine and Biology, 57, 4293–4307.

    Article  ADS  Google Scholar 

  58. Ranger, N. T., Lo, J. Y., & Samei, E. (2010). A technique optimization protocol and the potential for dose reduction in digital mammography. Medical Physics, 37, 962–969.

    Article  ADS  Google Scholar 

  59. Robson, K. J., Kotre, C. J., & Faulkner, K. (1995). The use of a contrast-detail test object in the optimization of optical-density in mammography. British Journal of Radiology, 68, 277–282.

    Article  Google Scholar 

  60. Sharma, R., Sharma, S. D., & Mayya, Y. S. (2012). A survey on performance status of mammography machines: Image quality and dosimetry studies using a standard mammography imaging phantom. Radiation Protection Dosimetry, 150, 325–333.

    Article  Google Scholar 

  61. Sharma, R., Sharma, S. D., Mayya, Y. S., & Chourasiya, G. (2012). Mammography dosimetry using an in-house developed polymethyl methacrylate phantom. Radiation Protection Dosimetry, 151, 379–385.

    Article  Google Scholar 

  62. Song, S. E., Seo, B. K., Yie, A., Ku, B. K., Kim, H.-Y., Cho, K. R., et al. (2012). Which phantom is better for assessing the image quality in full-field digital mammography? American college of radiology accreditation phantom versus digital mammography accreditation phantom. Korean Journal of Radiology, 13, 776–783.

    Article  Google Scholar 

  63. Suryanarayanan, S., Karellas, A., Vedantham, S., Sechopoulos, I., & D’Orsi, C. J. (2007). Detection of simulated microcalcifications in a phantom with digital mammography: Effect of pixel size. Radiology, 244, 130–137.

    Article  Google Scholar 

  64. Taibi, A., Fabbri, S., Baldelli, P., di Maggio, C., Gennaro, G., Marziani, M., et al. (2003). Dual-energy imaging in full-field digital mammography: A phantom study. Physics in Medicine and Biology, 48, 1945–1956.

    Article  ADS  Google Scholar 

  65. Theodorakou, C., Horrocks, J. A., Marshall, N. W., & Speller, R. D. (2004). A novel method for producing x-ray test objects and phantoms. Physics in Medicine and Biology, 49, 1423–1438.

    Article  ADS  Google Scholar 

  66. Thompson, S. R., & Faulkner, K. (1991). A phantom for the measurement of contrast detail performance in film-screen mammography. British Journal of Radiology, 64, 1049–1055.

    Article  Google Scholar 

  67. Tomal, A., Cunha, D. M., & Poletti, M. E. (2013). Optimal x-ray spectra selection in digital mammography: A semi-analytical study. IEEE Transactions on Nuclear Science, 60, 728–734.

    Google Scholar 

  68. White, D. R. (1977). Formulation of tissue substitute materials using basic interaction data. Physics in Medicine and Biology, 22, 889–899.

    Article  ADS  Google Scholar 

  69. White, D. R., & Tucker, A. K. (1980). A test object for assessing image quality in mammography. British Journal of Radiology, 53, 331–335.

    Article  Google Scholar 

  70. Woodard, H. Q., & White, D. R. (1986). The composition of body-tissues. British Journal of Radiology, 59, 1209–1219.

    Article  Google Scholar 

  71. Wu, X., Barnes, G. T., & Tucker, D. M. (1991). Spectral dependence of glandular tissue dose in screen-film mammography. Radiology, 176, 143–148.

    Google Scholar 

  72. Yaffe, M. J., Boone, J. M., Packard, N., Alonzo-Proulx, O., Huang, S.-Y., Peressotti, C. L., et al. (2009). The myth of the 50-50 breast. Medical Physics, 36, 5437–5443.

    Article  ADS  Google Scholar 

  73. Yaffe, M. J., Byng, J. W., Caldwell, C. B., & Bennett, N. R. (1993). Anthropomorphic radiological phantoms for mammography. Medical Progress Through Technology, 19, 23–30.

    Google Scholar 

  74. Young, K. C., & Ramsdale, M. L. (1993). Evaluation of mammography image quality phantoms. Radiation Protection Dosimetry, 49, 171–173.

    Google Scholar 

  75. Young, K. C., Ramsdale, M. L., Bignell, F. (1998). Review of dosimetric methods for mammography in the UK breast screening programme. Radiation Protection Dosimetry, 80, 183–186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Tomal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tomal, A. (2014). Mammography Phantoms. In: DeWerd, L., Kissick, M. (eds) The Phantoms of Medical and Health Physics. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8304-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8304-5_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8303-8

  • Online ISBN: 978-1-4614-8304-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics