Skip to main content

Motion Phantoms for Radiotherapy

  • Chapter
  • First Online:
  • 2407 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

In both diagnostic and therapeutic applications of medical radiation, there are issues related to patient or organ motion. Motion can degrade image quality or interfere with the delivery of the desired dose distribution. In either case, phantoms are used to explore the issues related to motion before the procedure is applied to the patient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ICRU 50 (1993). Prescribing, recording, and reporting photon beam therapy. Report 50, International Commission on Radiation Units and Measurements.

    Google Scholar 

  2. ICRU 62 (1999). Prescribing, recording, and reporting photon beam therapy: Supplement to ICRU Report 50. Report 62, International Commission on Radiation Units and Measurements.

    Google Scholar 

  3. Tomé, W. A., & Fowler, J. F. (2002). On cold spots in tumor subvolumes. Medical Physics, 29, 1590–1598.

    Article  ADS  Google Scholar 

  4. McCall, K. C., Barbee, D. L., Kissick, M. W., & Jeraj, R. (2010). PET imaging for the quantification of biologically heterogeneous tumours: Measuring the effect of relative position on image-based quantification of dose painting-targets. Physics in Medicine and Biology, 55, 2789–2806.

    Article  ADS  Google Scholar 

  5. National Institutes of Health, (2012, December 27) National Library of Medicine. http://www.nlm.nih.gov.

  6. Langen, K. M., & Jones, D. T. L. (2001). Organ motion and its management. International Journal of Radiation Oncology Biology Physics, 50, 265–278.

    Article  Google Scholar 

  7. Roeske, J. C., Forman, J. D., Mesina, C. F., He, T., Pelizzari, C. A., Fontenla, E., et al. (1995). Evaluation and changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. International Journal of Radiation Oncology Biology Physics, 33, 1321–1329.

    Article  Google Scholar 

  8. Balter, J. M., Sandler, H. M., Lam, K., Bree, R. L., Lichter, A. S., & Haken, R. K. T. (1997). Measurement of prostate movement over the course of routine radiotherapy using implanted markers. International Journal of Radiation Oncology Biology Physics, 37, 205–212.

    Article  Google Scholar 

  9. Vigneault, E., Pouliot, J., Laverdiere, J., Roy, J., & Dorion, M. (1997). Electronic portal imaging device detection of radioopaque markers for the evaluation of prostate position during megavoltage irradiation: A clinical study. International Journal of Radiation Oncology Biology Physics, 37, 205–212.

    Article  Google Scholar 

  10. Schild, S. E., Casale, H. E., & Bellefontaine, L. P. (1993). Movements of the prostate due to rectal and bladder distension: Implications for radiotherapy. Medical Dosimetry, 18, 13–15.

    Google Scholar 

  11. Crook, J., Raymond, Y., Yang, H., & Esche, B. (1995). Prostate motion during radiotherapy as assessed by fiducial markers. Radiotherapy and Oncology, 37, 35–42.

    Article  Google Scholar 

  12. Althof, V. G. M., Hoekstra, C. J. M., & te Loo, H. J. (1996). Variation in prostate position relative to bony anatomy. International Journal of Radiation Oncology Biology Physics, 34, 709–715.

    Article  Google Scholar 

  13. Patel, R. R., Orton, N., Tomé, W. A., Chappell, R., & Ritter, M. A. (2003). Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer. Radiotherapy and Oncology, 67, 285–294.

    Article  Google Scholar 

  14. Lujan, A. E., Balter, J. M., & Haken, R. K. T. (2003). A method for incorporating organ motion due to breathing into 3D dose calculation in the liver: Sensitivity to variations in motion. Medical Physics, 30, 2643–2649.

    Article  ADS  Google Scholar 

  15. George, R., Vedam, S. S., Chung, T. D., Ramakrishnan, V., & Keall, P. J. (2005). The application of the sinusoidal model to lung cancer patient respiratory motion. Medical Physics, 32, 2850–2861.

    Article  ADS  Google Scholar 

  16. Malinowski, K., Noel, C., Lu, W., Lechleiter, K., Hubenschmidt, J., Low, D., & Parikh, P. (2007). Development of the 4D phantom for patient-specific, end-to-end radiation therapy QA. In Proceedings of SPIE Medical Imaging Conference, 6510.

    Google Scholar 

  17. Kissick, M. W., Mo, X., McCall, K. C., Schubert, L. K., Westerly, D. C., & Mackie, T. R. (2010). A phantom model demonstration of tomotherapy dose painting delivery, including managed respiratory motion without motion management. Physics in Medicine and Biology, 55, 2983–2995.

    Article  ADS  Google Scholar 

  18. Kashani, R., Lam, K., Litzenberg, D., & Balter, J. (2007). Technical note: A deformable phantom for dynamic modeling in radiation therapy. Medical Physics, 34, 199–201.

    Article  ADS  Google Scholar 

  19. Seppenwoolde, Y., Shirato, H., Kitamura, K., Shimizu, S., van Herk, M., Lebesque, J. V., et al. (2002). Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. International Journal of Radiation Oncology Biology Physics, 53, 822–834.

    Article  Google Scholar 

  20. Bortfeld, T., Jokivarsi, K., Goitein, M., Kung, J., & Jiang, S. B. (2002). Effect of intra-fraction motion dose delivery: Statistical analysis and simulation. Physics in Medicine and Biology, 47, 2203–2220.

    Article  ADS  Google Scholar 

  21. Weiss, P. H., Baker, J. M., & Potchen, E. J. (1972). Assessment of hepatic respiratory excursion. Journal of Nuclear Medicine, 37, 21–29.

    Google Scholar 

  22. Harauz, G., & Bronskill, M. J. (1979). Comparison of the liver’s respiratory motion in supine and upright positions: Concise communication. Journal of Nuclear Medicine, 20, 733–735.

    Google Scholar 

  23. Balter, J. M., Ten Haken, R. K., Lawrence, T. S., Lam, K. L., & Robertson, J. M. (1996). Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. International Journal of Radiation Oncology Biology Physics, 36, 167–174.

    Article  Google Scholar 

  24. Boswell, S., Tomé, W., Jeraj, R., Jaradat, H., & Mackie, T. R. (2006). Automatic registration of the setup verification process for the special case of a rigid head phantom. Medical Physics, 33, 4395–4404.

    Article  ADS  Google Scholar 

  25. Herk, V. (2004). Errors and margins in radiation therapy. Seminars in Radiation Oncology, 14, 52–64.

    Article  Google Scholar 

  26. Webb, S. (2006). Motion effects in (intensity modulated) radiation therapy: A review. Physics in Medicine and Biology, 51, R403–R425.

    Article  ADS  Google Scholar 

  27. Vedam, S. S., Keall, P. J., Kini, V. R., & Mohan, R. (2001). Determining parameters for respiration-gated radiotherapy. Medical Physics, 28, 2139–2146.

    Article  ADS  Google Scholar 

  28. Tomé, W. A., Mehta, M. P., Meeks, S. L., Buatti, J. M., Bova, F. J., & Friedman, W. A. (2000). Image guided fractionated stereotactic radiotherapy. Radiotherapy and Oncology, 56, S60.

    Google Scholar 

  29. Kitamura, K., Shirato, H., Seppenwoolde, Y., Onimura, R., Oda, M., Fujita, K., et al. (2002). Three-dimensional intrafractional movement of prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment positions. International Journal of Radiation Oncology Biology Physics, 53, 1117–1123.

    Article  Google Scholar 

  30. Lattanzi, J., McNeeley, S., Donnelly, S., Palacio, E., Hanlon, A., Schultheiss, T. E., et al. (2000). Ultrasound base stereotactic guidance in prostate cancer-quantification of organ motion and set-up errors in external beam radiotherapy. Computer Aided Surgery, 5, 289–295.

    Google Scholar 

  31. Jiang, S. B., & Doppke, K. (2001). Dosimetric effect of respiratory motion on the treatment of breast cancer with tangential fields. Medical Physics, 28, 1228.

    Google Scholar 

  32. Rietzel, E., Liu, A. K., Doppke, K. P., Wolfgang, J. A., Chen, A. B., Chen, G. T. Y., et al. (2006). Design of 4D treatment planning target volumes. International Journal of Radiation Oncology Biology Physics, 66, 287–298.

    Article  Google Scholar 

  33. Pan, T., Lee, T. Y., Rietzel, E., & Chen, T. Y. (2004). 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Medical Physics, 31, 333–340.

    Article  ADS  Google Scholar 

  34. Keall, P. J., Mageras, G. S., Balter, J. M., Emery, R. S., Forster, K. M., Jiang, S. B., et al. (2006). The management of respiratory motion in radiation oncology report of the AAPM Task Group 76. Medical Physics, 33, 3874–3900.

    Article  ADS  Google Scholar 

  35. Kissick, M. W., & Mackie, T. R. (2009). Task Group 76 Report on ‘The management of respiratory motion in radiation oncology’ [Medical physics 33, 3874–3900 (2006)]. Medical Physics, 36, 5721–5722.

    Article  ADS  Google Scholar 

  36. Yu, C. X., Jaffray, D. J., & Wong, J. W. (1998). The effects of intrafraction motion on the delivery of dynamic intensity modulation. Physics in Medicine and Biology, 43, 91–104.

    Article  ADS  Google Scholar 

  37. Kissick, M. W., Boswell, S. A., Jeraj, R., & Mackie, T. R. (2005). Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion. Medical Physics, 32, 2346–2350.

    Article  ADS  Google Scholar 

  38. Kissick, M. W., Flynn, R. T., Westerly, D. C., Hoban, P. W., Mo, X., Soisson, E. T., et al. (2008). On the impact of longitudinal breathing motion randomness for tomotherapy delivery. Physics in Medicine and Biology, 53, 4855–4873.

    Article  ADS  Google Scholar 

  39. Ehler, E. D., Nelms, B. E., & Tomé, W. A. (2007). On the dose to a moving target while employing different IMRT delivery mechanisms. Radiotherapy and Oncology, 83, 49–56.

    Article  Google Scholar 

  40. Keall, P. (2004). 4-Dimensional computed tomography imaging and treatment planning. Seminars in Radiation Oncology, 14, 81–90.

    Article  ADS  Google Scholar 

  41. Lu, W., Chen, M., Ruchala, K. J., Chen, Q., Langen, K. M., Kupelian, P. A., et al. (2009). Real-time motion-adaptive-optimization (MAO) in Tomotherapy. Physics in Medicine and Biology, 54, 4373–4398.

    Article  ADS  Google Scholar 

  42. Standard Imaging, Inc. (2012). Respiratory Gating Platform: Specifications. http://www.standardimaging.com.

  43. Ehler, E. D., & Tomé, W. A. (2010). On correlated sources of uncertainty in four dimensional computed tomography data sets. Technology in Cancer Research and Treatment, 9, 299–306.

    Google Scholar 

  44. Mancosu, P., Sghedoni, R., Bettinardi, V., Aquilina, M. A., Navarria, P., Cattaneo, G. M., et al. (2010). Semiautomatic technique for defining the internal gross tumor volume of lung tumors close to liver/spleen cupola by 4D-CT. Medical Physics, 37, 4572–4576.

    Article  ADS  Google Scholar 

  45. Modus Medical Devices, Inc. (2013). Modus: Respiratory Motion Platform. http://www.modusmed.com.

  46. Computerized Imaging Reference Systems, Inc. (2013). Dynamic Platform Model 008PL: ProductsCIRS. http://www.cirsinc.com.

  47. Chaudhari, S. R., Goddu, S. M., Rangaraj, D., Pechenaya, O. L., Lu, W., Kintzel, E., et al. (2009). Dosimetric variances anticipated from breathing-induced tumor motion during tomotherapy treatment delivery. Physics in Medicine and Biology, 54, 2541–2555.

    Article  ADS  Google Scholar 

  48. Smith, R. L., Lechleiter, K., Malinowski, K., Shepard, D. M., Housley, D. J., Afghan, M., et al. (2009). Evaluation of linear accelerator gating with real-time electromagnetic tracking. International Journal of Radiation Oncology Biology Physics, 74, 920–927.

    Article  Google Scholar 

  49. Santanam, L., Noel, C., Willoughby, T. R., Esthappan, J., Mutic, S., Klein, E. E., et al. (2009). Quality assurance for clinical implementation of an electromagnetic tracking system. Medical Physics, 36, 3477–3486.

    Article  ADS  Google Scholar 

  50. Wiersma, R. D., Riaz, N., Dieterich, S., Suh, Y., & Xing, L. (2009). Use of MV and kV imager correlation for maintaining continuous real-time 3D internal marker tracking during beam interruptions. Physics in Medicine and Biology, 54, 89–103.

    Article  ADS  Google Scholar 

  51. Santanam, L., Malinowski, K., Hubenshmidt, J., Dimmer, S., Mayse, M. L., Bradley, J., et al. (2008). Fiducial-based translational localization accuracy of electromagnetic tracking system and on-board kilovoltage imaging system. International Journal of Radiation Oncology Biology Physics, 70, 892–899.

    Article  Google Scholar 

  52. Liu, W., Wiersma, R. D., Mao, W., Luxton, G., & Xing, L. (2008). Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV-kV imaging. Physics in Medicine and Biology, 53, 7197–7213.

    Article  ADS  Google Scholar 

  53. Smith, R. L., Sawant, A., Santanam, L., Venkat, R. B., Newell, L. J., Cho, B., et al. (2009). Integration of real-time internal electromagnetic position monitoring coupled with dynamic multileaf collimator tracking: An intensity-modulated radiation therapy feasibility study. International Journal of Radiation Oncology Biology Physics, 74, 868–875.

    Article  Google Scholar 

  54. Modus Medical Devices, Inc. (2013). Modus: Respiratory Motion Phantom. http://www.modusmed.com.

  55. Cuijers, J. P., Verbakel, W. F. A. R., Slotman, B. J., & Senan, S. (2010). A novel simple approach for incorporation of respiratory motion in stereotactic treatments of lung tumors. Radiotherapy and Oncology, 97, 443–448.

    Article  Google Scholar 

  56. Nakamura, M., Narita, Y., Sawada, A., Matsugi, K., Nakata, M., Matsuo, Y., et al. (2009). Impact of motion velocity on four-dimensional target volumes: A phantom study. Medical Physics, 36, 1610–1617.

    Article  ADS  Google Scholar 

  57. Ong, C., Verbakel, W. F. A. R., Cuijers, J. P., Slotman, B. J., & Senan, S. (2011). Dosimetric impact of interplay effect on RapidArc lung stereotactic treatment delivery. International Journal of Radiation Oncology Biology Physics, 79, 305–311.

    Article  Google Scholar 

  58. Oliver, M., Gladwish, A., Staruch, R., Craig, J., Gaede, S., Chen, J., et al. (2008). Experimental measurements and Monte Carlo simulations for dosimetric evaluations of intrafraction motion for gated and ungated intensity modulated arc therapy deliveries. Physics in Medicine and Biology, 53, 6419–6436.

    Article  ADS  Google Scholar 

  59. Oliver, M., Staruch, R., Gladwish, A., Craig, J., Chen, J., & Wong, E. (2008). Monte Carlo dose calculation of segmental IMRT delivery to a moving phantom using dynamic MLC and gating log files. Physics in Medicine and Biology, 53, N187–N196.

    Article  ADS  Google Scholar 

  60. Cherpak, A., Ding, W., Hallil, A., & Cygler, J. E. (2009). Evaluation of a novel 4D in vivo dosimetry system. Medical Physics, 36, 1672–1679.

    Article  ADS  Google Scholar 

  61. Computerized Imaging Reference Systems, Inc. (2013). Dynamic Thorax Phantom Model 008A: ProductsCIRS. http://www.cirsinc.com.

  62. Tai, A., Christensen, J. D., Gore, E., Khamene, A., Boettger, T., & Li, X. A. (2010). Gated treatment delivery verification with on-line megavoltage fluoroscopy. International Journal of Radiation Oncology Biology Physics, 76, 1592–1598.

    Article  Google Scholar 

  63. Maurer, J., Godfrey, D., Wang, Z., & Yin, F. (2008). On-board four-dimensional digital tomosynthesis: First experimental results. Medical Physics, 35, 3574–3583.

    Article  ADS  Google Scholar 

  64. Chamberland, M., Wassenaar, R., Spencer, B., & Xu, T. (2011). Performance evaluation of real-time motion tracking using positron emission fiducial markers. Medical Physics, 38, 810–819.

    Article  ADS  Google Scholar 

  65. Aristophanous, M., Rottmann, J., Court, L. E., & Berbeco, R. I. (2011). EPID-guided 3D dose verification of lung SBRT. Medical Physics, 38, 495–503.

    Article  ADS  Google Scholar 

  66. Brady, S. L., Brown, W. E., Clift, C. G., Yoo, S., & Oldham, M. (2010). Investigation into the feasibility of using PRESAGE™/optical-CT dosimetry for the verification of gating treatments. Physics in Medicine and Biology, 55, 2187–2201.

    Article  ADS  Google Scholar 

  67. Boda-Heggemann, J., Fleckenstein, J., Lohr, F., Wertz, H., Nachit, M., Blessing, M., et al. (2011). Multiple breath-hold CBCT for online image guided radiotherapy of lung tumors: Simulation with a dynamic phantom and first patient data. Radiotherapy and Oncology, 98, 309–316.

    Article  Google Scholar 

  68. Rit, S., van Herk, M., Zijp, L., & Sonke, J. (2012). Quantification of the variability of diaphragm motion and implications for treatment margin construction. International Journal of Radiation Oncology Biology Physics, 82, e399–e407.

    Article  Google Scholar 

  69. Vergalasova, I., Maurer, J., & Yin, F. (2011). Potential underestimation of the internal target volume (ITV) from free-breathing CBCT. Medical Physics, 38, 4689–4699.

    Article  ADS  Google Scholar 

  70. Radiological Support Devices (2009). Radiology Support Devices | Dynamic Anatomical Respiring Humanoid Phantom. http://www.rsdphantoms.com/index.html.

  71. Court, L. E., Seco, J., Lu, X., Ebe, K., Mayo, C., Ionascu, D., et al. (2010). Use of a realistic breathing lung phantom to evaluate dose delivery errors. Medical Physics, 37, 5850–5857.

    Article  ADS  Google Scholar 

  72. Ford, E. C., Mageras, G. S., Yorke, E., & Ling, C. C. (2003). Respiration-correlated spiral CT: A method of measuring respiratory-induced anatomic motion for radiation treatment planning. Medical Physics, 30, 88–97.

    Article  ADS  Google Scholar 

  73. Keall, P. J., Kini, V. R., Vedam, S. S., & Mohan, R. (2001). Motion adaptive x-ray therapy: A feasibility study. Physics in Medicine and Biology, 46, 1–10.

    Article  ADS  Google Scholar 

  74. Kaganaki, B., Read, P. W., Molloy, J. A., Larner, J. M., & Sheng, K. (2007). A motion phantom study on helical tomotherapy: The dosimetric impacts of delivery technique and motion. Physics in Medicine and Biology, 52, 243–255.

    Article  ADS  Google Scholar 

  75. Jiang, S. B., Pope, C., Jarrah, K. M. A., Kung, J. H., Bortfeld, T., & Chen, G. T. Y. (2003). An experimental investigation on intra-fraction organ motion effects in lung IMRT treatments. Physics in Medicine and Biology, 48, 1773–1784.

    Article  ADS  Google Scholar 

  76. Fitzpatrick, M. J., Starkschall, G., Balter, P., Antolak, J. A., Guerrero, T., Nelson, C., et al. (2005). A novel platform simulating irregular motion to enhance assessment of respiration-correlated radiation therapy procedures. Journal of Applied Clinical Medical Physics, 6, 13–21.

    Article  Google Scholar 

  77. Litzenberg, D. W., Hadley, S. W., Lam, K. L., & Balter, J. M. (2007). A precision translation stage for reproducing measured target volume motions. Journal of Applied Clinical Medical Physics, 8, 111–118.

    Article  Google Scholar 

  78. Richter, A., Wilbert, J., & Flentje, M. (2011). Dosimetric evaluation of intrafractional tumor motion by means of a robot driven phantom. Medical Physics, 38, 5280.

    Article  ADS  Google Scholar 

  79. Nakayama, H., Mizowaki, T., Narita, Y., Kawada, N., Takahashi, K., Mihara, K., et al. (2008). Development of a three-dimensionally movable phantom system for dosimetric verifications. Medical Physics, 35, 1643–1650.

    Article  ADS  Google Scholar 

  80. Zhou,T., Tang, J., Dieterich, S., & Cleary, K. (2004). A robotic 3-D motion simulator for enhanced accuracy in CyberKnife stereotactic radiosurgery. International Congress Series, 323–328.

    Google Scholar 

  81. Kashani, R., Hub, M., Kessler, M. L., & Balter, J. M. (2007). Technical note: A physical phantom for assessment of accuracy of deformable alignment algorithms. Medical Physics, 34, 2785–2788.

    Article  ADS  Google Scholar 

  82. Serban, M., Heath, E., Stroian, G., Collins, D. L., & Seuntjens, J. (2008). A deformable phantom for 4D radiotherapy verification: Design and image registration evaluation. Medical Physics, 35, 1094–1102.

    Article  ADS  Google Scholar 

  83. Cherpak, A., Serban, M., Seuntjens, J., & Cygler, J. E. (2011). 4D dose-position verification in radiation therapy using the RADPOS system in a deformable lung phantom. Medical Physics, 38, 179–187.

    Article  ADS  Google Scholar 

  84. Nioutsikou, E., Symonds-Tayler, J. R. N., Bedford, J. L., & Webb, S. (2006). Quantifying the effect of respiratory motion on lung tumour dosimetry with the air of a breathing phantom with deforming lungs. Physics in Medicine and Biology, 51, 3359–3374.

    Article  ADS  Google Scholar 

  85. Vinogradskiy, Y. Y., Balter, P., Followill, D. S., Alvarez, P. E., White, R. A., & Starkschall, G. (2009). Verification of four-dimensional photon dose calculations. Medical Physics, 36, 3438–3447.

    Article  ADS  Google Scholar 

  86. Followill, D. S., Evans, D. R., Cherry, C., Molineu, A., Fisher, G., Hanson, W. F., et al. (2007). Design, development, and implementation of the Radiological Physics Center’s pelvis and thorax anthropomorphic quality assurance phantoms. Medical Physics, 34, 2070–2076.

    Article  ADS  Google Scholar 

  87. Vinogradskiy, Y. Y., Balter, P., Followill, D. S., Alvarez, P. E., White, R. A., & Starkschall, G. (2009). Comparing the accuracy of four-dimensional photon dose calculations with three-dimensional calculations using moving and deforming phantoms. Medical Physics, 36, 5000–5006.

    Article  ADS  Google Scholar 

  88. Steidl, P., Richter, D., Schuy, C., Schubert, E., Haberer, T., Durante, M., et al. (2012). A breathing thorax phantom with independently programmable 6D tumour motion for dosimetric measurements in radiation therapy. Physics in Medicine and Biology, 57, 2235–2250.

    Article  ADS  Google Scholar 

  89. Low, D. A., Moran, J. M., Dempsey, J. F., Dong, L., & Oldham, M. (2011). Dosimetry tools and techniques for IMRT. Medical Physics, 38, 1313–1338.

    Article  Google Scholar 

  90. Low, D. A., Harms, W. B., Mutic, S., & Purdy, J. A. (1998). A technique for the quantitative evaluation of dose distributions. Medical Physics, 25, 656–661.

    Article  ADS  Google Scholar 

  91. Nelms, B. E., Zhen, H., & Tomé, W. A. (2011). Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors. Medical Physics, 38, 1037–1044.

    Article  ADS  Google Scholar 

  92. Zhen, H., Nelms, B. E., & Tomé, W. A. (2011). Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA. Medical Physics, 38, 5477–5489.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kissick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kissick, M., McCaw, T. (2014). Motion Phantoms for Radiotherapy. In: DeWerd, L., Kissick, M. (eds) The Phantoms of Medical and Health Physics. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8304-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8304-5_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8303-8

  • Online ISBN: 978-1-4614-8304-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics