Skip to main content

Applications of Computational Phantoms

  • Chapter
  • First Online:
  • 2405 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Significant progress has been made in the development of computational anthropomorphic phantoms over the last few decades. A historical overview and discussion on computational phantoms can be found in Chap. 12. Such progress would not have been possible without the availability of large amounts of affordable random access memory (RAM)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kurzweil, R. (2005). The singularity is near, when humans transcend biology. USA: Viking/Penguin Books.

    Google Scholar 

  2. Reddy, A. R., Ellett, W. H., & Brownell, G. L. (1967). Gamma-ray dosimetry of internal emitters, I. Monte Carlo calculations of absorbed doses for low-energy gamma-rays. Brit Journal de Radiologie, 42, 512.

    Article  Google Scholar 

  3. Loevinge, R., & Berman, M. (1968). A formalism for calculation of absorbed dose from radionuclides. Physics in Medicine and Biology, 13(2), 205.

    Article  ADS  Google Scholar 

  4. Fisher, H., & Snyder, W. (1967). Distribution of dose delivered in the body size from a source of gamma rays distributed uniformly in an organ (p. 245). Oak Ridge, TN: Oak Ridge National Laboratory.

    Google Scholar 

  5. ICRP, Report in the Task Group on Reference Man, in ICRP Report 231975, Oxford, UK: International Commission on Radiological Protection.

    Google Scholar 

  6. Xu, X. G., & Eckerman, K. (2010). Handbook of anatomical models for radiation dosimetry. Boca Raton, FL: Taylor & Francis Group.

    Google Scholar 

  7. Webb, S. (2003). The physical basis of IMRT and inverse planning. British Journal of Radiology, 76(910), 678–689.

    Article  Google Scholar 

  8. Xu, X., Bednarz, B., & Paganetti, H. (2008). A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Physics in Medicine and Biology, 53(13), R193–R241.

    Article  ADS  Google Scholar 

  9. Followill, D. (1997). Estimates of the whole-body dose equivalent produced by beam intensity modulated conformal therapy (vol 38, pg 667, 1997). International Journal of Radiation Oncology Biology Physics, 39(3), 783.

    Article  Google Scholar 

  10. Hall, E., & Wuu, C. (2003). Radiation-induced second cancers: The impact of 3D-CRT and IMRT. International Journal of Radiation Oncology Biology Physics, 56(1), 83–88.

    Article  Google Scholar 

  11. Kry, S., et al. (2005). Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy. International Journal of Radiation Oncology Biology Physics, 62(4), 1204–1216.

    Article  Google Scholar 

  12. Howell, R. M., et al. (2006). Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for 6 MV, 15 MV, and 18 MV beam energies. Medical Physics, 33(2), 360–368.

    Article  ADS  Google Scholar 

  13. Stovall, M., Smith, S. A., & Rosenstein, M. (1989). Tissue doses from radiotherapy of cancer of the uterine cervix. Medical Physics, 16(5), 726–733.

    Article  ADS  Google Scholar 

  14. Diallo, I., et al. (1996). Estimation of the radiation dose delivered to any point outside the target volume per patient treated with external beam radiotherapy. Radiotherapy and Oncology, 38(3), 269–271.

    Article  Google Scholar 

  15. Barquero, R., et al. (2005). Monte Carlo simulation estimates of neutron doses to critical organs of a patient undergoing 18 MV x-ray LINAC-based radiotherapy. Medical Physics, 32(12), 3579–3588.

    Article  ADS  Google Scholar 

  16. Rijkee, A. G., et al. (2006). Assessment of induction of secondary tumors due to various radiotherapy modalities. Radiation Protection Dosimetry, 118, 219–226.

    Article  Google Scholar 

  17. Mazonakis, M., et al. (2006). Scattered dose to thyroid from prophylactic cranial irradiation during childhood: A Monte Carlo study. Physics in Medicine and Biology, 51(8), N139–N145.

    Article  Google Scholar 

  18. Bednarz, B., & Xu, X. (2009). Monte Carlo modeling of a 6 and 18 MV Varian Clinac medical accelerator for in-field and out-of-field dose calculations: Development and validation. Physics in Medicine and Biology, 54(4), N43–N57.

    Article  ADS  Google Scholar 

  19. Bednarz, B., Hancox, C., & Xu, X. (2009). Calculated organ doses from selected prostate treatment plans using Monte Carlo simulations and an anatomically realistic computational phantom. Physics in Medicine and Biology, 54(17), 5271–5286.

    Article  ADS  Google Scholar 

  20. Bednarz, B., Athar, B., & Xu, X. (2010). A comparative study on the risk of second primary cancers in out-of-field organs associated with radiotherapy of localized prostate carcinoma using Monte Carlo-based accelerator and patient models. Medical Physics, 37(5), 1987–1994.

    Article  Google Scholar 

  21. Xu, X. G., et al. (2007). A boundary-representation method for designing whole-body radiation dosimetry models: Pregnant females at the ends of three gestational periods–RPI-P3, -P6 and -P9. Physics in Medicine and Biology, 52(23), 7023–7044.

    Article  ADS  Google Scholar 

  22. Bednarz, B., & Xu, X. G. (2008). A feasibility study to calculate unshielded fetal doses to pregnant patients in 6-MV photon treatments using Monte Carlo methods and anatomically realistic phantoms. Medical Physics, 35(7), 3054–3061.

    Article  ADS  Google Scholar 

  23. Han, B., Bednarz, B., & Xu, X. G. (2009). A study of the shielding used to reduce leakage and scattered radiation to the fetus in a pregnant patient treated with a 6-MV external X-ray beam. Health Physics, 97(6), 581–589.

    Article  Google Scholar 

  24. Jiang, H., et al. (2005). Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment. Physics in Medicine and Biology, 50(18), 4337–4353.

    Article  ADS  Google Scholar 

  25. Paganetti, H., et al. (2004). Monte Carlo simulations with time-dependent geometries to investigate effects of organ motion with high temporal resolution. International Journal of Radiation Oncology Biology Physics, 60(3), 942–950.

    Google Scholar 

  26. Zacharatou Jarlskog, C. (2008). Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms. Physics in Medicine and Biology, 53(3), 693–717.

    Article  ADS  Google Scholar 

  27. Athar, B. S., et al. (2010). Comparison of out-of-field photon doses in 6 MV IMRT and neutron doses in proton therapy for adult and pediatric patients. Physics in Medicine and Biology, 55(10), 2879–2891.

    Article  ADS  Google Scholar 

  28. Taddei, P. J., et al. (2009). Stray radiation dose and second cancer risk for a pediatric patient receiving craniospinal irradiation with proton beams. Physics in Medicine and Biology, 54(8), 2259–2275.

    Article  ADS  Google Scholar 

  29. Taddei, P. J., et al. (2010). Risk of second malignant neoplasm following proton versus intensity-modulated photon radiotherapies for hepatocellular carcinoma. Physics in Medicine and Biology, 55(23), 7055–7065.

    Article  ADS  Google Scholar 

  30. Mettler, F. A., et al. (2008). Effective doses in radiology and diagnostic nuclear medicine: A catalog. Radiology, 248(1), 254–263.

    Article  Google Scholar 

  31. Amis, E. S., et al. (2007). American College of radiology white paper on radiation dose in medicine. Journal of the American College of Radiology, 4(5), 272–284.

    Article  Google Scholar 

  32. ICRP. (2007). Managing patient dose in multi-detector computed tomography. Annals of the ICRP, 37(1), 1–79, iii.

    Google Scholar 

  33. McCollough, C., et al. (2008). The measurement, reporting and management of radiation dose in CT. College Park, MD: American Association of Physicists in Medicine.

    Google Scholar 

  34. NCRP. (2009). Ionizing radiation exposure of the population of the United States, Bethesda, MD: National Council of Radiation Protection and Measurements.

    Google Scholar 

  35. Stamm, G., & Nagel, H. D. (2002). CT-expo–a novel program for dose evaluation in CT. Rofo, 174(12), 1570–1576.

    Article  Google Scholar 

  36. Kalender, W. A., et al. (1999). A PC program for estimating organ dose and effective dose values in computed tomography. European Radiology, 9(3), 555–562.

    Article  Google Scholar 

  37. Khursheed, A., et al. (2002). Influence of patient age on normalized effective doses calculated for CT examinations. British Journal of Radiology, 75(898), 819–830.

    Google Scholar 

  38. DeMarco, J. J., et al. (2007). Estimating radiation doses from multidetector CT using Monte Carlo simulations: Effects of different size voxelized patient models on magnitudes of organ and effective dose. Physics in Medicine and Biology, 52(9), 2583–2597.

    Article  ADS  Google Scholar 

  39. Petoussi-Henss, N., et al. (2002). The GSF family of voxel phantoms. Physics in Medicine and Biology, 47(1), 89–106.

    Article  ADS  Google Scholar 

  40. Zankl, M., et al. (2002). Organ dose conversion coefficients for external photon irradiation of male and female voxel models. Physics in Medicine and Biology, 47(14), 2367–2385.

    Article  ADS  Google Scholar 

  41. Xu, X. G., Chao, T. C., & Bozkurt, A. (2000). VIP-Man: an image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations. Health Physics, 78(5), 476–486.

    Article  Google Scholar 

  42. Gu, J., et al. (2009). The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations. Physics in Medicine and Biology, 54(9), 2699–2717.

    Article  ADS  Google Scholar 

  43. Ding, A., et al. (2010). Monte Carlo calculation of imaging doses from diagnostic multidetector CT and kilovoltage cone-beam CT as part of prostate cancer treatment plans. Medical Physics, 37(12), 6199–6204.

    Article  ADS  Google Scholar 

  44. Cristy, M., & Eckerman, K. F. (1987). Specific-absorbed fractions of energy at various ages from internal photon sources. Oak Ridge, TN: Oak Ridge National Laboratory.

    Google Scholar 

  45. Stabin, M. G. (1996). MIRDOSE: Personal computer software for internal dose assessment in nuclear medicine. Journal of Nuclear Medicine, 37(3), 538–546.

    Google Scholar 

  46. Stabin, M., & Bardies, M. (2010). Radiation dose assessment in nuclear medicine. Handbook of anatomical models for radiation dosimetry. In X. Xu, & K. Eckerman (Eds.), United Kingdom: Taylor and Francis Group, LCC.

    Google Scholar 

  47. Stabin, M., Watson, E., & Cristy M. (1995). Mathematical models of the adult female at various stages of pregnancy. (ORNL/TM-12907) Oak Ridge, TN: Oak Ridge National Laboratory.

    Google Scholar 

  48. Chao, T. C., Bozkurt, A., & Xu, X. G. (2001). Conversion coefficients based on the VIP-Man anatomical model and EGS4. Health Physics, 81(2), 163–183.

    Article  Google Scholar 

  49. Chao, T. C., & Xu, X. G. (2001). Specific absorbed fractions from the image-based VIP-Man body model and EGS4-VLSI Monte Carlo code: Internal electron emitters. Physics in Medicine and Biology, 46(4), 901–927.

    Article  ADS  Google Scholar 

  50. Xu, X. G., & Chao, T. C. (2003). Calculations of specific absorbed fractions of the gastrointestinal tract using a realistic whole body tomographic model. Cancer Biotherapy and Radiopharmaceuticals, 18(3), 431–436.

    Article  MATH  Google Scholar 

  51. Smith, T. J., et al. (2001). Impact on internal doses of photon SAFs derived with the GSF adult male voxel phantom. Health Physics, 80(5), 477–485.

    Article  Google Scholar 

  52. Yoriyaz, H., Stabin, M. G., & dos Santos, A. (2001). Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry. Journal of Nuclear Medicine, 42(4), 662–669.

    Google Scholar 

  53. Zubal, I. G., et al. (1994). Computerized three-dimensional segmented human anatomy. Medical Physics, 21(2), 299–302.

    Article  ADS  Google Scholar 

  54. Mille, M. N. Y., Zhang, J., Xu, X. G., & Hegenbart, L. (2009). Deformable computational breast phantoms for Monte Carlo based calibrations of detector systems used for assessing internal radioactivity burden in the lungs. Medical Physics, 36, 2620.

    Article  ADS  Google Scholar 

  55. Hough, M., et al. (2011). An image-based skeletal dosimetry model for the ICRP reference adult male–internal electron sources. Physics in Medicine and Biology, 56(8), 2309–2346.

    Article  ADS  Google Scholar 

  56. Lee, C., et al. (2010). The UF family of reference hybrid phantoms for computational radiation dosimetry. Physics in Medicine and Biology, 55(2), 339–363.

    Article  ADS  Google Scholar 

  57. Shi, C., & Xu, X. G. (2004). Development of a 30-week-pregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations. Medical Physics, 31(9), 2491–2497.

    Article  ADS  Google Scholar 

  58. Wayson, M., et al. (2012). Internal photon and electron dosimetry of the newborn patient–a hybrid computational phantom study. Physics in Medicine and Biology, 57(5), 1433–1457.

    Article  ADS  Google Scholar 

  59. ICRP. (1977). Recommendations of the international commission on radiological protection. Oxford, UK: Pergamon Press.

    Google Scholar 

  60. ICRP. (1990). Recommendations of the international commission on radiological protection, 1991. Oxford, UK: Pergamon Press.

    Google Scholar 

  61. ICRP. (2007). The 2007 Recommendations of the International Commission on Radiological Protection. Oxford, UK: Pergamon Press.

    Google Scholar 

  62. ICRU. (1998). Conversion coefficients for use in radiological protection against external radiation. Bethesda, MD: International Commission on Radiation Units and Measurements.

    Google Scholar 

  63. NCRP. (1995). Use of personal monitors to estimate effective dose equivalent and effective dose to workers for external exposure to low-LET radiation. Bethesda, MD: National Council on Radiation Protection and Measurements.

    Google Scholar 

  64. Lakshmanan, A. R., Kher, R. K., & Supe, S. J. (1991). Estimation of effective dose equivalent using individual dosimeters. Radiation Protection Dosimetry, 35, 247.

    Google Scholar 

  65. Xu, X. G., Reece, W. D., & Poston, J. W. (1995). A study of the angular dependence problem in effective dose equivalent assessment. Health Physics, 68(2), 214–224.

    Article  Google Scholar 

  66. Kim, C. H., Reece, W. D., & Poston, J. W. (1999). Development of a two-dosimeter algorithm for better estimation of effective dose equivalent and effective dose. Radiation Protection Dosimetry, 81, 101.

    Article  ADS  Google Scholar 

  67. Reece, W. D., Poston, J. W., & Xu, X. G. (1993). Assessment of the effective dose equivalent for external photon radiation, volume 1: Calculational results for beam and point source geometries. Palo Alto, CA: Electric Power Research Institute.

    Google Scholar 

  68. Kim, C. H., et al. (2011). Development of new two-dosimeter algorithm for effective dose in ICRP publication 103. Health Physics, 100(5), 462–467.

    Article  Google Scholar 

  69. Eckerman, K. F., Wolbarst, A. B., & Richardson, A. C. B. (1988). Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion. Washington D.C: U.S. Environmental Protection Agency.

    Google Scholar 

  70. Hadid, L., et al. (2010). Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons. Physics in Medicine and Biology, 55(13), 3631–3641.

    Article  ADS  Google Scholar 

  71. Poston, J. W., & Synder, W. S. (1974). A model for exposure to a semi-infinite cloud of a photon emitter. Health Physics, 26(4), 287–293.

    Article  Google Scholar 

  72. Dillman, L. T. (1974). Absorbed gamma dose rate for immersion in a semi-infinite radioactive cloud. Health Physics, 27(6), 571–580.

    Article  Google Scholar 

  73. O’Brien, K., & Sanna, R. (1976). The distribution of absorbed dose-rates in humans from exposure to environmental gamma rays. Health Physics, 30(1), 71–78.

    Article  Google Scholar 

  74. Koblinger, L., & Nagy, G. (1985). Calculations on the relationship between gamma source distributions in the soil and external doses. Science of the Total Environment, 45, 357–364.

    Article  Google Scholar 

  75. Jacob, P., et al. (1986). Effective dose equivalents for photon exposures from plane sources on the ground. Radiation Protection Dosimetry, 14, 299.

    Google Scholar 

  76. Eckerman, K. F., & Ryan, J. C. (1993). External exposure of radionuclides in air, water, and soil. Oak Ridge, TN: Oak Ridge National Laboratory.

    Google Scholar 

  77. Saito, K., et al. (1991). Organ doses as a function of body-weight for environmental gamma-rays. Journal of Nuclear Science and Technology, 28(7), 627–641.

    Article  Google Scholar 

  78. Petoussi, N., et al. (1991). Organ doses for fetuses, babies, children and adults from environmental gamma-rays. Radiation Protection Dosimetry, 37, 31.

    Google Scholar 

  79. Jacob, P et al. (1990). Calculation of organ doses from environmental gamma rays using human phantoms and Monte Carlo methods, Part II: Radionuclides distributed in the air or deposited on the ground. Neuherberg, Germany: GSF—National Research Center for Environment and Health.

    Google Scholar 

  80. Schlattl, H., Zankl, M., & Petoussi-Henss, N. (2007). Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures. Physics in Medicine and Biology, 52(8), 2123–2145.

    Article  ADS  Google Scholar 

  81. Yamaguchi, Y. (1991). DEEP code to calculate dose equivalents in human phantoms for external photon exposure by Monte Carlo method. Ibaraki-Ken, Japan: Japan Energy Research Institute.

    Google Scholar 

  82. Yamaguchi, Y., & Yoshizawa, M. (1992). Angular dependence of organ doses and effective dose for external photon irradiation: Proceedings of 8th World Congress International Radiation Protection Association. International Radiation Protection Association: Montreal, Canada.

    Google Scholar 

  83. Yamaguchi, Y. (1994). Dose conversion coefficients for external photons based on ICRP 1990 recommendations. Journal of Nuclear Science and Technology, 31, 716–725.

    Article  Google Scholar 

  84. Nabelssi, B., & Hertel, N. (1993). Effective dose equivalents and effective doses for neutrons from 30 to 180 MEV. Radiation Protection Dosimetry, 48(3), 227–243.

    Google Scholar 

  85. Yamaguchi, Y. (1993). Effective dose for external neutron exposure. Radioisotopes, 42, 35–36.

    Article  Google Scholar 

  86. Stewart, R. D., Tanner, J. E., & Leonowich, J. A. (1993). An extended tabulation of effective dose equivalent from neutrons incident on a male anthropomorphic phantom. Health Physics, 65(4), 405–413.

    Article  Google Scholar 

  87. Morstin, K., Kopec, M., & Schmitz, T. (1992). Equivalent dose versus dose equivalent for neutrons based on new ICRP recommendations. Radiation Protection Dosimetry, 44(1–4), 159–164.

    Google Scholar 

  88. Leuthold, G., Mares, V., & Schraube, H. (1992). Calculation of the neutron ambient dose equivalent on the basis of the ICRP revised quality factors. Radiation Protection Dosimetry, 40(2), 77–84.

    Google Scholar 

  89. Hollnagel, R. (1990). Effective dose equivalent and organ doses for neutrons from thermal to 14 MEV. Radiation Protection Dosimetry, 30(3), 149–159.

    Google Scholar 

  90. Hollnagel, R. (1992). Calculated effective doses in anthropoid phantoms for broad neutron beams with energies from thermal to 19 MEV. Radiation Protection Dosimetry, 44(1–4), 155–158.

    Google Scholar 

  91. Bozkurt, A., Chao, T. C., & Xu, X. G. (2000). Fluence-to-dose conversion coefficients from monoenergetic neutrons below 20 MeV based on the VIP-man anatomical model. Physics in Medicine and Biology, 45(10), 3059–3079.

    Article  ADS  Google Scholar 

  92. Bozkurt, A., Chao, T. C., & Xu, X. G. (2001). Fluence-to-dose conversion coefficients based on the VIP-Man anatomical model and MCNPX code for monoenergetic neutrons above 20 MeV. Health Physics, 81(2), 184–202.

    Article  Google Scholar 

  93. Zhang, G., Liu, Q., & Luo, Q. (2007). Monte Carlo simulations for external neutron dosimetry based on the visible Chinese human phantom. Physics in Medicine and Biology, 52(24), 7367–7383.

    Article  ADS  Google Scholar 

  94. Zhang, G., et al. (2008). The development and application of the visible Chinese human model for Monte Carlo dose calculations. Health Physics, 94(2), 118–125.

    Article  Google Scholar 

  95. Liu, L., et al. (2009). Organ dose conversion coefficients on an ICRP-based Chinese adult male voxel model from idealized external photons exposures. Physics in Medicine and Biology, 54(21), 6645–6673.

    Article  ADS  Google Scholar 

  96. Taranenko, V., & Xu, X. G. (2008). Fluence-to-absorbed-dose conversion coefficients for neutron beams from 0.001 to 100 GeV calculated for a set of pregnant female and fetus models. Physics in Medicine and Biology, 53(5), 1425–1446.

    Article  ADS  Google Scholar 

  97. Taranenko, V., & Xu, X. G. (2008). Fluence to absorbed foetal dose conversion coefficients for photons in 50 keV–10 GeV calculated using RPI-P models. Radiation Protection Dosimetry, 131(2), 159–166.

    Article  Google Scholar 

  98. Taranenko, V., & Xu, X. G. (2009). Foetal dose conversion coefficients for ICRP-compliant pregnant models from idealised proton exposures. Radiation Protection Dosimetry, 133(2), 65–72.

    Article  Google Scholar 

  99. Zhang, J., et al. (2009). RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams. Physics in Medicine and Biology, 54(19), 5885–5908.

    Article  ADS  Google Scholar 

  100. Kim, C. H., Cho, S. H., & Xu, X. G. (2006). PRDC–a software package for personnel radiation dose calculation. Radiation Protection Dosimetry, 118(3), 243–250.

    Article  ADS  Google Scholar 

  101. Xu, X. G., Su, H., & Bushart, S. (2006). The EPRI EDE calculator–a software package for assessing effective dose equivalent from hot particles on the skin. Health Physics, 91(4), 373–378.

    Article  Google Scholar 

  102. Newhauser, W. D., & Durante, M. (2011). Assessing the risk of second malignancies after modern radiotherapy. Nature Reviews Cancer, 11(6), 438–448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Bednarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bednarz, B. (2014). Applications of Computational Phantoms. In: DeWerd, L., Kissick, M. (eds) The Phantoms of Medical and Health Physics. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8304-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8304-5_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8303-8

  • Online ISBN: 978-1-4614-8304-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics