Skip to main content

Computational Phantoms for Organ Dose Calculations in Radiation Protection and Imaging

  • Chapter
  • First Online:
The Phantoms of Medical and Health Physics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2482 Accesses

Abstract

Since the 1960s, computational phantoms have played an integral role in radiation dose calculations for radiation protection and imaging. This chapter reviews the historical development and latest research involving these phantoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attix, F. H. (1986). Introduction to radiological physics and radiation dosimetry (Vol. 14). London: Wiley.

    Google Scholar 

  2. Hubbell, J. H. (1969). Photon cross sections, attenuation coefficients and energy absorption coefficients from 10 keV to 100 GeV. NSRDS-NBS 29.

    Google Scholar 

  3. Storm, L., & Israel, H. (1970). Photon cross sections from 1 keV to 100 MeV for elements Z=1 to Z=100. Atomic Data and Nuclear Data Tables, 7, 565–681.

    Google Scholar 

  4. Dimbylow, P. J. (1996). The development of realistic voxel phantoms for electromagnetic field dosimetry. In Proceedings Workshop on Voxel Phantom Development, Chilton, UK.

    Google Scholar 

  5. Xu, X. G. (2009). Chapter 1. Computational phantoms for radiation dosimetry: A 40-year history of evolution. In Handbook of anatomical models for radiation dosimetry. Taylor & Francis, 2009.

    Google Scholar 

  6. Agostinelli, S., et al. (2003). Geant4 a simulation toolkit. Nuclear instruments and methods in physics research section A, 506, 250–303.

    ADS  Google Scholar 

  7. Geant4 Team. (2013). Geant4 user’s guide for application developers http://geant4.web.cern.ch/geant4/G4UsersDocuments/UsersGuides/ForApplicationDeveloper/html, Last Accessed Oct 2013.

  8. Leyton, M. (2001). A generative theory of shape. Berlin: Springer.

    MATH  Google Scholar 

  9. Stroud, I. (2006). Boundary representation modeling techniques. London: Springer. ISBN: 978-1-84628-312-3.

    Google Scholar 

  10. Caon, M. (2004). Voxel-based computational models of real human anatomy: A review. Radiation and Environmental Biophysics, 42, 229–235.

    Google Scholar 

  11. Zaidi, H., & Xu, X. G. (2007). Computational anthropomorphic models of the human anatomy: The path to realistic Monte Carlo modeling in radiological sciences. Annual Review of Biomedical Engineering, 9, 471–500.

    Google Scholar 

  12. Marinelli, L. D. (1942). Dosage determination with radioactive isotopes. American Journal of Roentgenology, 47, 210.

    Google Scholar 

  13. ICRP. (1959). Report of committee II on permissible dose for internal radiation. Oxford, UK: Pergamon Press.

    Google Scholar 

  14. Loevinger, R., Japha, E. M., & Brownell, G. L. (1965a). Discrete radioisotope sources. In Hine G. J. & Brownell G. L. (Eds.) Radiation dosimetry. New York: Academic Press.

    Google Scholar 

  15. Loevinger, R., Hiolt, J. G., & Hine, G. J. (1965b). Internally administered radionuclides. In Hine G. J. & Brownell G. L. (Eds.) Radiation dosimetry. New York: Academic Press.

    Google Scholar 

  16. Loevinger, R. (1969). Distributed radionuclide sources. In Attix F. H., & Tochilin (Eds.) Radiation dosimetry (2nd ed., Vol. 3). New York: Academic Press

    Google Scholar 

  17. Marinelli, L. D., Quimby, E. H., & Hine, G. J. (1948). Dosage determination with radioactive isotopes II. Practical considerations in therapy and protection. American Journal of Roentgenology, 59, 260.

    Google Scholar 

  18. Quimby, E. H. (1970). The development of radiation dosimetry in nuclear medicine. Medical Radionuclides: Radiation Dose and Effects, AEC Symposium Series 20.

    Google Scholar 

  19. Fisher, H. L. J., & Snyder, W. S. (1966). Variation of dose delivered by 137Cs as a function of body size from infancy to adulthood. ORNL-4007.

    Google Scholar 

  20. Fisher, H. L. J., & Snyder, W. S. (1967). Distribution of dose in the body from a source of gamma rays distributed uniformly in an organ. ORNL-4168.

    Google Scholar 

  21. Snyder, W. S. (1968). Variation of dose in man from exposure to a point source of gamma rays of Congres International sur la Radioprotection dans l’Utilisation Industrielle des Radioelements (pp. 7–11), Paris, 13–15 Decembre 1965. Paris, Service Centra de Protection Contre les Rayonnements Io.

    Google Scholar 

  22. Kereiakes, J. G., Seltzer, R. A., Blackburn, B., & Saenger, E. L. (1965). Radionuclide doses to infants and children: A plea for a standard child. Health Physics, 11, 999–1004.

    Google Scholar 

  23. Snyder, W. S., Fisher, H. L., Ford, M. R., & Warner, G. G. (1969). Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. Journal of Nuclear Medicine, 3(Suppl), 7–52.

    Google Scholar 

  24. Snyder, W. S., Ford, M. R., & Warner, G. G. (1978). Estimates of specific absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet, 5, Revised.

    Google Scholar 

  25. Jones, R. M. et al. (1976) The development and use of a fifteen-year-old equivalent mathematical phantom for internal dose calculations. ORNL/TM-5278.

    Google Scholar 

  26. Deus, S. F., & Poston, J. W. (1976). The development of a mathematical phantom representing a 10-year-old for use in internal dose calculations. In Proceedings of the Symposium on Radiopharmaceutical Dosimetry HEW Publication (FDA) 76-8044, Oak Ridge, TN.

    Google Scholar 

  27. Cristy, M. (1980). Mathematical phantoms representing children of various ages for use in estimates of internal dose.

    Google Scholar 

  28. Cristy, M. & Eckerman, K.F. (1987). Specific absorbed fractions of energy at various ages from internal photon sources I: Methods, ORNL/TM-8381/V1.

    Google Scholar 

  29. Bouchet, L. G., Bolch, W. E., Weber, D. A., Atkins, H. L., & Poston, J. W. (1999). MIRD Pamphlet No. 15: Radionuclide S values in a revised dosimetric model of the adult head and brain. Medical internal radiation dose. Journal of Nuclear Medicine, 40, 62S–101S.

    Google Scholar 

  30. Markovic, V. M., Krstic, D., & Nikezic, D. (2009). Gamma and beta doses in human organs due to radon progeny in human lung. Radiation Protection Dosimetry, 135, 197–202.

    Google Scholar 

  31. Takahashi, F., Shigemori, Y., & Seki, A. (2009). Accurate dose assessment system for an exposed person utilising radiation transport calculation codes in emergency response to a radiological accident. Radiation Protection Dosimetry, 133, 35–43.

    Google Scholar 

  32. Kramer, R. et al. (1982). The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods: Part I. The male (ADAM) and female (EVA) adult mathematical phantoms. GSF-Report S-885.

    Google Scholar 

  33. Pretorius, P. H., Xia, W., King, M. A., Tsui, B. M., Pan, T. S., & Villegas, B. J. (1997). Evaluation of right and left ventricular volume and ejection fraction using a mathematical cardiac torso phantom. Journal of nuclear medicine official publication Society of Nuclear Medicine, 38, 1528–1535.

    Google Scholar 

  34. Tsui, B. M. W., Zhao, X. D., Gregoriou, G. K., Lalush, D. S., Frey, E. C., Johnston, R. E., et al. (1994). Quantitative cardiac SPECT reconstruction with reduced image degradation due to patient anatomy. Nuclear Science, IEEE Transactions on, 41, 2838–2844.

    ADS  Google Scholar 

  35. Tsui, B. M., Terry, J. A., & Gullberg, G. T. (1993). Evaluation of cardiac cone-beam single photon emission computed tomography using observer performance experiments and receiver operating characteristic analysis. Investigative Radiology, 28, 1101–1112.

    Google Scholar 

  36. Billings, M. P., & Yucker, W. R. (1973). The Computerized Anatomical Man CAM Model, NASA CR-134043. Washington, DC: Government Printing Office.

    Google Scholar 

  37. Park, S., Lee, J. K., & Lee, C. (2006). Development of a Korean adult male computational phantom for internal dosimetry calculation. Radiation Protection Dosimetry, 121, 257–264.

    Google Scholar 

  38. Hirata, A., Ito, N., Osamu, Fujiwara, Nagaoka, T., & Watanabe, S. (2008). Conservative estimation of whole-body-averaged SARs in infants with a homogeneous and simple-shaped phantom in the GHz region. Physics in Medicine & Biology, 53, 7215–7223.

    ADS  Google Scholar 

  39. Qiu, R., Li, J., Zhang, Z., Wu, Z., Zeng, Z., & Fan, J. (2008). Photon SAF calculation based on the Chinese mathematical phantom and comparison with the ORNL phantoms. Health Physics, 95, 716–724.

    Google Scholar 

  40. Kim, J. S., Ha, W. H., Jeong, J. H., Cho, K.-W., & Ki, Lee Jai. (2010). Use of photographic images to construct voxel phantoms for use in whole-body counting. Radiation Protection Dosimetry, 138, 119–122.

    Google Scholar 

  41. Bento, J., Barros, S., Teles, P., Neves, M., Gonçalves, I., Corisco, J., & Vaz, P. (2011). Monte carlo simulation of the movement and detection efficiency of a whole-body counting system using a BOMAB phantom. Radiation Protection Dosimetry, 1–11.

    Google Scholar 

  42. Bhati, S., Patni, H. K., Ghare, V. P., Singh, I. S., & Nadar, M. Y. (2011). Monte carlo calculations for efficiency calibration of a whole-body monitor using BOMAB phantoms of different sizes. Radiation Protection Dosimetry, 1–6.

    Google Scholar 

  43. ICRU. (1992). Phantoms and computational models in therapy, diagnosis and protection. ICRU Report 48. Bethesda: International Commission on Radiation Units and Measurements.

    Google Scholar 

  44. Gu, J. W., Bednarz, B., Xu, X. G., & Jiang, S. (2008). Assessment of patient organ doses and effective doses using the VIP-Man adult male phantom for selected cone-beam CT imaging procedures during image guided radiation therapy. Radiation Protection Dosimetry, 131, 431–443.

    Google Scholar 

  45. Stovall, M., Smith, S. A., & Rosenstein, M. (1988). Tissue doses from radiotherapy of cancer of the uterine cervix. Medical Physics, 16, 726–733.

    ADS  Google Scholar 

  46. Xu, X. G., Chao, T. C., & Bozkurt, A. (2000). VIP-Man: An image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations. Health Physics, 78, 476–486.

    Google Scholar 

  47. Gibbs, S., & Pujol, J. (1982). A Monte Carlo method for patient dosimetry from diagnostic x-ray. Dentomaxillofac Radiol, 11, 25.

    Google Scholar 

  48. Gibbs, S. J., Pujol, A., Chen, T. S., Malcolm, A. W., & James, A. E. (1984). Patient risk from interproximal radiography. Oral Surgery, Oral Medicine, Oral Pathology, 58, 347–354.

    Google Scholar 

  49. Gibbs, S. et al. (1987). Radiation doses to sensitive organs from intraoral dental radiography. Dentomaxillofac Radiol, 16.

    Google Scholar 

  50. Fill, U. A., Zankl, M., Petoussi-Henss, N., Siebert, M., & Regulla, D. (2004). Adult female voxel models of different stature and photon conversion coefficients for radiation protection. Health Physics, 86, 253–272.

    Google Scholar 

  51. Zeng, Z., et al. (2007). Dose assessment for space radiation using a proton differential dose spectrum. Journal of Tsinghua University (Science and Technology), 46, 374.

    Google Scholar 

  52. Williams, G., Zankl, M., Abmayr, W., Veit, R., & Drexler, G. (1986). The calculation of dose from external photon exposures using reference and realistic human phantoms and Monte Carlo methods. Physics in Medicine & Biology, 31, 449–452.

    ADS  Google Scholar 

  53. Zankl, M., Veit, R., Williams, G., Schneider, K., Fendel, H., Petoussi, N., et al. (1988). The construction of computer tomographic phantoms and their application in radiology and radiation protection. Radiation and Environmental Biophysics, 27, 153–164.

    Google Scholar 

  54. Zanki, M., Fill, U., Petoussi-Henss, N., & Regulla, D. (2002). Organ dose conversion coefficients for external photon irradiation of male and female voxel models. Physics in Medicine & Biology, 47, 2367–2385.

    ADS  Google Scholar 

  55. Zankl, M. et al. (2005). GSF male and female adult voxel models representing ICRP Reference Man–the present status. In Proceedings of The Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World, Chattanooga, TN, American Nuclear Society, A Grange Park, USA.

    Google Scholar 

  56. ICRP. (2009). Adult reference computational phantoms. ICRP publication, 110. Pergamon Press.Oxford, UK: Pergamon Press.

    Google Scholar 

  57. Schlattl, H., Zankl, M., & Petoussi-Henss, N. (2007). Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures. Physics in Medicine & Biology, 52, 2123–2145.

    ADS  Google Scholar 

  58. Zubal, I. G., Harrell, C. R., Smith, E. O., Rattner, Z., Gindi, G., & Hoffer, P. B. (1994). Computerized three-dimensional segmented human anatomy. Medical Physics, 21, 299–302.

    ADS  Google Scholar 

  59. Dawson, T. W., Caputa, K., & Stuchly, M. A. (1997). A comparison of 60 Hz uniform magnetic and electric induction in the human body. Physics in Medicine & Biology, 42, 2319–2329.

    ADS  Google Scholar 

  60. Sjögreen, K., Ljungberg, M., Wingårdh, K., Erlandsson, K., & Strand, S. E. (2001). Registration of emission and transmission whole-body scintillation-camera images. Journal of Nuclear Medicine, 42, 1563–1570.

    Google Scholar 

  61. Kramer, R., Vieira, J. W., Khoury, H. J., Lima, F. R. A., & Fuelle, D. (2003). All about MAX: A male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry. Physics in Medicine & Biology, 48, 1239–1262.

    ADS  Google Scholar 

  62. Kramer, R., Khoury, H. J., Vieira, J. W., Loureiro, E. C. M., Lima, V. J. M., Lima, F. R. A., et al. (2004). All about FAX: A Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry. Physics in Medicine & Biology, 49, 5203–5216.

    ADS  Google Scholar 

  63. Dimbylow, P. J. (1997). FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz. Physics in Medicine & Biology, 42, 479–490.

    ADS  Google Scholar 

  64. Jones, D. G. (1997). A realistic anthropomorphic phantom for calculating organ doses arising from external photon irradiation. Radiat Prot Dosimetry, 72, 21–29.

    Google Scholar 

  65. Dimbylow, P. (2005). Development of the female voxel phantom, NAOMI, and its application to calculations of induced current densities and electric fields from applied low frequency magnetic and electric fields. Physics in Medicine & Biology, 50, 1047–1070.

    ADS  Google Scholar 

  66. Dimbylow, P. (2005). Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI. Physics in Medicine & Biology, 50, 4053–4063.

    ADS  Google Scholar 

  67. Ferrari, P., & Gualdrini, G. (2005). An improved MCNP version of the NORMAN voxel phantom for dosimetry studies. Physics in Medicine & Biology, 50, 4299–4316.

    ADS  Google Scholar 

  68. Dimbylow, P. (2006). Development of pregnant female, hybrid voxel-mathematical models and their application to the dosimetry of applied magnetic and electric fields at 50 Hz. Physics in Medicine & Biology, 51, 2383–2394.

    ADS  Google Scholar 

  69. Caon, M., Bibbo, G., & Pattison, J. (2000). Monte carlo calculated effective dose to teenage girls from computed tomography examinations. Radiation Protection Dosimetry, 90, 445–448.

    Google Scholar 

  70. Caon, M., Bibbo, G., & Pattison, J. (1999). An EGS4-ready tomographic computational model of a 14-year-old female torso for calculating organ doses from CT examinations. Physics in Medicine & Biology, 44, 2213–2225.

    ADS  Google Scholar 

  71. Lee, C., Nagaoka, T., & LEE, J. K. (2006). Implementation of Japanese male and female tomographic phantoms to multi-particle Monte Carlo code for ionizing radiation dosimetry. Journal of Nuclear Science and Technology, 43, 937–945.

    Google Scholar 

  72. Nipper, J. C., Williams, J. L., & Bolch, W. E. (2002). Creation of two tomographic voxel models of paediatric patients in the first year of life. Physics in Medicine & Biology, 47, 3143–3164.

    ADS  Google Scholar 

  73. Lee, C., Williams, J. L., Lee, C., & Bolch, W. E. (2005). The UF series of tomographic computational phantoms of pediatric patients. Medical Physics, 32, 3537–3548.

    ADS  Google Scholar 

  74. Shi, C., & Xu, X. G. (2004). Development of a 30-week-pregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations. Medical Physics, 31, 2491–2497.

    ADS  Google Scholar 

  75. Saito, K., Wittmann, A., Koga, S., Ida, Y., Kamei, T., Funabiki, J., et al. (2001). Construction of a computed tomographic phantom for a Japanese male adult and dose calculation system. Radiation and Environmental Biophysics, 40, 69–75.

    Google Scholar 

  76. Sato, K., Noguchi, H., Emoto, Y., Koga, S., & Saito, K. (2007). Japanese adult male voxel phantom constructed on the basis of CT images. Radiation Protection Dosimetry, 123, 337–344.

    Google Scholar 

  77. Sato, K., Noguchi, H., Endo, A., Emoto, Y., Koga, S., & Saito, K. (2007). Development of a voxel phantom of Japanese adult male in upright posture. Radiation Protection Dosimetry, 127, 205–208.

    Google Scholar 

  78. Saito, K. et al. (2008). Construction of a voxel phantom based on CT data for a Japanese female adult and its use for calculation of organ doses from external electrons, Japanese. Journal of Health Physics, 43(2), 122–130.

    Google Scholar 

  79. Nagaoka, T., Watanabe, S., Sakurai, K., Kunieda, E., Watanabe, S., Taki, M., et al. (2004). Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry. Physics in Medicine & Biology, 49, 1–15.

    ADS  Google Scholar 

  80. Takahashi, M., Kinase, S., & Kramer, R. (2011). Evaluation of counting efficiencies of a whole-body counter using Monte Carlo simulation with voxel phantoms. Radiation Protection Dosimetry, 144, 407–410.

    Google Scholar 

  81. Choi, S. H. et al. (2006). Construction of a high-definition ‘Reference Korean’ voxel phantom fro organ and tissue radiation dose calculation. In World Congress on Medical Physics and Biomedical Engineering, Seoul, Korea

    Google Scholar 

  82. Kim, C. H., Choi, S. H., Jeong, J. H., Choonsik, Lee, & Chung, M. S. (2008). HDRK-Man: A whole-body voxel model based on high-resolution color slice images of a Korean adult male cadaver. Physics in Medicine & Biology, 53, 4093–4106.

    ADS  Google Scholar 

  83. Lee, B., Shin, G., Kang, S., Shin, B., Back, I., Park, H., Park, C., Lee, Jeongwoo., Lee, W., Choi, J., Park, R., Kim, Y. (2011). Dose evaluation of selective collimation effect in cephalography by measurement and Monte Carlo simulation. Radiation Protection Dosimetry, 1–7.

    Google Scholar 

  84. Zhang, B., Ma, J., Liu, L., & Cheng, J. (2007). CNMAN: A Chinese adult male voxel phantom constructed from color photographs of a visible anatomical data set. Radiation Protection Dosimetry, 124, 130–136.

    Google Scholar 

  85. Zhang, G., Liu, Q., & Luo, Q. (2007). Monte Carlo simulations for external neutron dosimetry based on the visible Chinese human phantom. Physics in Medicine & Biology, 52, 7367–7383.

    ADS  Google Scholar 

  86. Zhang, G., Liu, Q., Zeng, S., & Luo, Q. (2008). Organ dose calculations by Monte Carlo modeling of the updated VCH adult male phantom against idealized external proton exposure. Physics in Medicine & Biology, 53, 3697–3722.

    ADS  Google Scholar 

  87. Zhang, G., Luo, Q., Zeng, S., & Liu, Q. (2008). The development and application of the visible Chinese human model for Monte Carlo dose calculations. Health Physics, 94, 118–125.

    Google Scholar 

  88. Li, J.L., Qiu, R., Zhang, Z., Liu, L.Y., Zeng, Z., Bi, L., & Li, W.Q. (2009). Organ dose conversion coefficients for external photon irradiation using the Chinese voxel phantom (CVP). Radiation Protection Dosimetry, 135, 33–42.

    Google Scholar 

  89. Alziar, I., Bonniaud, G., Couanet, D., Ruaud, J. B., Vicente, C., Giordana, G., et al. (2009). Individual radiation therapy patient whole-body phantoms for peripheral dose evaluations: Method and specific software. Physics in Medicine & Biology, 54, N375–N383.

    ADS  Google Scholar 

  90. Ferrari, P. (2010). Development of an integrated couple of anthropomorphic models for dosimetric studies. Radiation Protection Dosimetry, 142, 191–200.

    Google Scholar 

  91. Patni, H. K., Nadar, M. Y., Akar, D. K., Bhati, S., & Sarkar, P. K. (2010). Selected organ dose conversion coefficients for external photons calculated using Icrp adult voxel phantoms and Monte Carlo code fluka. Radiation Protection Dosimetry, 1–11.

    Google Scholar 

  92. Courageot, E., Huet, C., Clairand, I., Bottollier-Depois, J. F., & Gourmelon, P. (2011). Numerical dosimetric reconstruction of a radiological accident in South America in April 2009. Radiation Protection Dosimetry, 144, 540–542.

    Google Scholar 

  93. Courageot, E., Sayah, R., & Huet, C. (2010). Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: Implementation in SESAME tool. Physics in Medicine & Biology, 55, N231–N241.

    ADS  Google Scholar 

  94. Tung, C. J., Tsai, S. F., Tsai, H. Y., & Chen, I. J. (2011). Determination of voxel phantom for reference Taiwanese adult from CT image analyses. Radiation Protection Dosimetry, 146, 186–190.

    Google Scholar 

  95. Beck, P., Zechner, A., Rollet, S., Berger, T., Bergmann, R., Hajek, M., et al. (2011). MATSIM : Development of a voxel model of the MATROSHKA astronaut dosimetric phantom, 58, 1921–1926.

    Google Scholar 

  96. Akkurt H., Bekar K. B., & Eckerman K. F. (2008). VOXMAT: Phantom model with combination of voxel and mathematical geometry, 53rd Annual Health Physics Society Meeting, Pittsburgh, PA, July 13–17.

    Google Scholar 

  97. Mofrad, F. B., Zoroofi, R. A., Tehrani-Fard, A. A., Akhlahpoor, S., Hori, M., Chen, Y. W., et al. (2010). Statistical construction of a Japanese male liver phantom for internal radionuclide dosimetry. Radiation Protection Dosimetry, 141, 140–148.

    Google Scholar 

  98. Segars, W. P. (2001). Ph.D thesis, University of North Carolina at Chapel Hill, pp. 243.

    Google Scholar 

  99. Segars, W. P., Tsui Benjamin, M. W., Frey Eric, C., Johnson, G. A., & Berr, S. S. (2004). Development of a 4-D digital mouse phantom for molecular imaging research. Molecular Imaging and Biology MIB the Official Publication of the Academy of Molecular Imaging, 6, 149–159.

    Google Scholar 

  100. Segars, W., & Tsui, B. (2007). 4D MOBY and NCAT phantoms for medical imaging simulation of mice and men. Society of Nuclear Medicine Annual Meeting Abstracts, 48, 203.

    Google Scholar 

  101. Segars Paul, W., Lalush David, S., Frey Eric, C., Manocha, D., King, Ma., & Tsui Benjamin, M. W. (2009). Improved dynamic cardiac phantom based on 4D NURBS and tagged MRI. IEEE Transactions on Nuclear Science, 56, 2728–2738.

    ADS  Google Scholar 

  102. Segars, W. P., Sturgeon, G. M., Ward, D. J., Ratnanather, J. T., Miller, M. I., & Tsui, B.M. W. (2010). The New XCAT Series of Digital Phantoms for Multi-Modality Imaging. Journal of the Acoustical Society of America, 2392–2395.

    Google Scholar 

  103. Tabary, J., Marache-Francisco, S., Valette, S., Segars, W.P., & Lartizien, C. (2009). Realistic X-ray CT simulation of the XCAT phantom with SINDBAD. In 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (pp. 3980–3983).

    Google Scholar 

  104. Niu, X., Yang, Y., Jin, M., Wernick, M. N., & King, Ma. (2010). Regularized Fully 5D Reconstruction of Cardiac Gated Dynamic SPECT Images. IEEE Transactions on Nuclear Science, 57, 1085–1095.

    ADS  Google Scholar 

  105. Peroni, M., Spadea, M. F., Riboldi, M., Baroni, G., Chen, G. T. Y., Sharp, G. C., Medicine, C., & Magna, S. (2009). Validation of an automatic contour propagation method for lung cancer 4D adaptive radiation therapy. Boston, MA: Department of Radiation Oncology, Massachusetts General Hospital, 4 Harvard Medical Methods, pp. 1071–1074

    Google Scholar 

  106. Veress, A. I., Segars, W. P., Tsui Benjamin, B. M., & Gullberg, G. T. (2011). Incorporation of a left ventricle finite element model defining infarction into the XCAT imaging phantom. IEEE Transactions on Medical Imaging, 30, 915–927.

    Google Scholar 

  107. Tward, D. J., Ceritoglu, C., Sturgeon, G., Segars, W. P., Miller, M. I., & Ratnanather, J. T. (2011). Generating patient-specific dosimetry phantoms with whole-body diffeomorphic image registration. In Bioengineering Conference (NEBEC), 2011 IEEE 37th Annual Northeast (pp. 1–2). IEEE.

    Google Scholar 

  108. Xu, X. G., Taranenko, V., Zhang, J., & Shi, C. (2007). A boundary-representation method for designing whole-body radiation dosimetry models: Pregnant females at the ends of three gestational periods–RPI-P3, -P6 and -P9. Physics in Medicine & Biology, 52, 7023–7044.

    ADS  Google Scholar 

  109. Hegenbart, L., Na, Y. H., Zhang, J. Y., Urban, M., & Xu, X. G. (2008). A Monte Carlo study of lung counting efficiency for female workers of different breast sizes using deformable phantoms. Physics in Medicine & Biology, 53, 5527–5538.

    ADS  Google Scholar 

  110. Xu, X. G., Zhang, J. Y., & Na, Y. H. (2008). Preliminary data for mesh-based deformable phantom development: Is it possible to design person-specific phantoms on-demand. The International Conference on Radiation Shielding-11.

    Google Scholar 

  111. Na, Y. H., Zhang, B., Zhang, J., Caracappa, P. F., & Xu, X. G. (2010). Deformable adult human phantoms for radiation protection dosimetry: Anthropometric data representing size distributions of adult worker populations and software algorithms. Physics in Medicine & Biology, 55, 3789–3811.

    ADS  Google Scholar 

  112. Ding, A., Mille, M. M., Liu, T., Caracappa, P. F., & Xu, X. G. (2012). Extension of RPI-adult male and female computational phantoms to obese patients and a monte carlo study on the effects on CT imaging dose. Physics in Medicine & Biology, 57, 2441–2459.

    ADS  Google Scholar 

  113. Gu, J., Bednarz, B., Caracappa, P. F., & Xu, X. G. (2009). The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations. Physics in Medicine & Biology, 54, 2699–2717.

    ADS  Google Scholar 

  114. Lee, C., Lodwick, D., Hasenauer, D., Williams, J. L., Lee, C., & Bolch, W. E. (2007). Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models. Physics in Medicine & Biology, 52, 3309–3333.

    ADS  Google Scholar 

  115. Lee, C., Lodwick, D., Williams, J. L., & Bolch, W. E. (2008). Hybrid computational phantoms of the 15-year male and female adolescent: Applications to CT organ dosimetry for patients of variable morphometry. Medical Physics, 35, 2366–2382.

    ADS  Google Scholar 

  116. Maynard, M. R., Geyer, J. W., Aris, J. P., Shifrin, R. Y., & Bolch, W. (2011). The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry. Physics in Medicine & Biology, 56, 4839–4879.

    ADS  Google Scholar 

  117. Johnson, P., Choonsik, Lee, Johnson, K., Siragusa, D., & Bolch Wesley, E. (2009). The influence of patient size on dose conversion coefficients: A hybrid phantom study for adult cardiac catheterization. Physics in Medicine & Biology, 54, 3613–3629.

    ADS  Google Scholar 

  118. Pafundi, D., Lee, C., Watchman, C., Bourke, V., Aris, J., Shagina, N., et al. (2009). An image-based skeletal tissue model for the ICRP reference newborn. Physics in Medicine & Biology, 54, 4497–4531.

    ADS  Google Scholar 

  119. Pafundi, D., Rajon, D., Jokisch, D., Lee, Choonsik, & Bolch, W. (2010). An image-based skeletal dosimetry model for the ICRP reference newborn–internal electron sources. Physics in Medicine & Biology, 55, 1785–1814.

    ADS  Google Scholar 

  120. Hough, M., Johnson, P., Rajon, D., Jokisch, D., Lee, C., & Bolch, W. (2011). An image-based skeletal dosimetry model for the ICRP reference adult male–internal electron sources. Physics in Medicine & Biology, 56, 2309–2346.

    ADS  Google Scholar 

  121. Dimbylow, P., Bolch, W., & Lee, C. (2010). SAR calculations from 20 MHz to 6 GHz in the University of Florida newborn voxel phantom and their implications for dosimetry. Physics in Medicine & Biology, 55, 1519–1530.

    ADS  Google Scholar 

  122. Bahadori, A. A., Van Baalen, M., Shavers, M. R., Dodge, C., Semones, E. J., & Bolch Wesley, E. (2011). The effect of anatomical modeling on space radiation dose estimates: A comparison of doses for NASA phantoms and the 5th, 50th, and 95th percentile male and female astronauts. Physics in Medicine & Biology, 56, 1671–1694.

    ADS  Google Scholar 

  123. Stabin, M., Emmons, M. A., Segars, W. P., Fernald, M., & Brill, A. B. (2008). ICRP-89 based adult and pediatric phantom series. Society of Nuclear Medicine Annual Meeting Abstracts, 49, 14.

    Google Scholar 

  124. Stabin, M. G., Xu, X. G., Emmons, M. A., Segars, W. P., Shi, C., & Fernald, M. J. (2012). RADAR reference adult, pediatric and pregnant female phantom series for internal and external dosimetry. Journal of Nuclear Medicine, 53(11), 1807–1813.

    Google Scholar 

  125. Christ, A., Kainz, W., Hahn, E. G., Honegger, K., Zefferer, M., Neufeld, E., et al. (2010). The Virtual Family–development of surface-based anatomical models of two adults and two children for dosimetric simulations. Physics in Medicine & Biology, 55, N23–N38.

    ADS  Google Scholar 

  126. IT’IS. (2013). The virtual population: High-resolution anatomical models http://www.itis.ethz.ch/services/anatomical-models/virtual-population/ Last Accessed Dec 2013.

  127. de Melo Lima, V. J., Cassola, V. F., Kramer, R., de Oliveira Lira, C. A. B., Khoury, H. J., & Vieira, J. W. (2011). Development of 5- and 10-year-old pediatric phantoms based on polygon mesh surfaces. Medical Physics, 38, 4723.

    ADS  Google Scholar 

  128. Farah, J., Broggio, D., & Franck, D. (2011). Examples of Mesh and NURBS modelling for in vivo lung counting studies. Radiation Protection Dosimetry, 144, 344–348.

    Google Scholar 

  129. Broggio, D., Beurrier, J., Bremaud, M., Desbrée, a, Farah, J., Huet, C., et al. (2011). Construction of an extended library of adult male 3D models: Rationale and results. Physics in Medicine & Biology, 56, 7659–7692.

    ADS  Google Scholar 

  130. Kim, C. H., Jeong, J. H., Bolch Wesley, E., Cho, K.-W., & Hwang, S. B. (2011). A polygon-surface reference Korean male phantom (PSRK-Man) and its direct implementation in Geant4 Monte Carlo simulation. Physics in Medicine & Biology, 56, 3137–3161.

    ADS  Google Scholar 

  131. Chao, T. C., Bozkurt, A., & Xu, X. G. (2001). Conversion coefficients based on the VIP-Man anatomical model and EGS4-VLSI code for external monoenergetic photons from 10 keV to 10 MeV. Health Physics, 81, 163.

    Google Scholar 

  132. Chao, T. C., Bozkurt, A., & Xu, X. G. (2003). Correction to Conversion coefficients based on the VIP-Man anatomical model and EGS4-VLSI code for external monoenergetic photons from 10 keV to 10 MeV. Health Physics, 84(3), 390.

    Google Scholar 

  133. Bozkurt, A., Chao, T. C., & Xu, X. G. (2000). Fluence-to-dose conversion coefficients below 20 MeV based on the VIP-Man anatomical model. Physics in Medicine & Biology, 45, 3059.

    ADS  Google Scholar 

  134. Chao, T. C., Bozkurt, A., & Xu, X. G. (2001). Organ dose conversion coefficients for 0.1–10 MeV electrons calculated for the VIP-MAN tomographic model. Health Physics, 81, 203.

    Google Scholar 

  135. Bozkurt, A., Chao, T. C., & Xu, X. G. (2001). Fluence-to-dose conversion coefficients based on the VIP-Man anatomical model and MCNPX code for monoenergetic neutrons above 20 MeV. Health Physics, 81, 184.

    Google Scholar 

  136. Bozkurt, A., & Xu, X. G. (2004). Fluence-to-dose Conversion Coefficients for Monoenergetic Proton Beams Based on the VIP-Man Anatomical Model. Radiation Protection Dosimetry, 112(2), 219.

    Google Scholar 

  137. Chao, T. C., & Xu, X. G. (2001). Specific absorbed fractions from the image-based VIP-Man body model and EGS4-VLSI Monte Carlo code: Internal electron emitters. Physics in Medicine & Biology, 46, 901.

    ADS  Google Scholar 

  138. Xu, X. G., Chao, T. C., & Bozkurt, A. (2005). Comparison of effective doses from various monoenergetic particles based on the stylised and the VIP-Man tomographic models. Radiation Protection Dosimetry, 115, 530.

    Google Scholar 

  139. Chao, T. C., & Xu, X. G. (2004). S-values calculated from a tomographic head/brain model for brain imaging. Physics in Medicine & Biology, 49, 4971.

    ADS  Google Scholar 

  140. Winslow, M., Huda, W., Xu, X. G., Chao, T. C., Shi, C. Y., Ogden, K. M., et al. (2004). Use of the VIP-Man Model to Calculate Energy Impacted and Effective Dose for X-ray Examinations. Health Physics, 86, 174.

    Google Scholar 

  141. Son, I. Y., Winslow, M., Yazici, B., & Xu, X. G. (2006). X-ray imaging optimization using virtual phantoms and computerized observer modelling. Physics in Medicine & Biology, 51, 4289.

    ADS  Google Scholar 

  142. Bozkurt, A., & Bor, D. (2007). Simultaneous determination of equivalent dose to organs and tissues of the patient and of the physician in interventional radiology using the Monte Carlo method. Physics in Medicine & Biology, 52, 317.

    ADS  Google Scholar 

  143. Wang, B., Xu, X. G., Goorley, J. T., & Bozkurt, A. (2005a). The use of MCNP code for an extremely large voxel model VIP-Man. The Monte Carlo method: Versatility unbounded. In A dynamic computing world. American Nuclear Society (ISBN: 0-89448-695-0).

    Google Scholar 

  144. Jiang, H., Wang, B., Xu, X. G., Suit, H. D., & Paganetti, H. (2005). Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment. Physics in Medicine & Biology, 50, 4337.

    ADS  Google Scholar 

  145. Ding, A., Gu, J., Trofimov, A. V., & Xu, X. G. (2010). Monte Carlo calculation of imaging doses from diagnostic multidetector CT and kilovoltage cone-beam CT as part of prostate treatment plans. Medical Physics, 37, 6199–6204.

    ADS  Google Scholar 

  146. Han, B., Xu, X. G., & Chen, G. T. Y. (2011). Proton radiography and fluoroscopy of lung tumors: A Monte Carlo study using patient-specific 4DCT phantoms. Medical Physics, 38(4), 1903–1911.

    Google Scholar 

  147. Andreo, P. (1991). Monte Carlo techniques in medical radiation physics. Physics in Medicine & Biology, 36, 861–920.

    ADS  Google Scholar 

  148. Raeside, D. E. (1976). Monte Carlo principles and applications. Physics in Medicine & Biology, 21, 181–197.

    ADS  Google Scholar 

  149. Turner, J. E., Wright, H. A., & Hamm, R. N. (1985). A Monte Carlo primer for health physicists. Health Physics, 48, 717–733.

    Google Scholar 

  150. Pelowitz, D. B. (2005). MCNPX User’s Manual Version 2.5.0, Los Alamos National Laboratory report LA-CP-05-0369.

    Google Scholar 

  151. NRC. (2013). EGSnrc http://irs.inms.nrc.ca/software/egsnrc/ Last Accessed Dec 2013.

  152. Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce Dubois, P., Asai, M., et al. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53, 270–278.

    ADS  Google Scholar 

  153. NEA. (2013). Penelope2011, A code system for Monte-Carlo Simulation of Electron and Photon transport http://www.oecd-nea.org/tools/abstract/detail/NEA-1525/ Last Accessed Dec 2013.

  154. Salvat, F., Fernández-Varea, J. M., & Sempau, J. (2003). PENELOPE, a code system for Monte Carlo simulation of electron and photon transport. Simulation, 5, 253.

    Google Scholar 

  155. Badal, A., Kyprianou, I., Banh, D. P., Badano, A., & Josep, Sempau. (2009). penMesh–Monte Carlo radiation transport simulation in a triangle mesh geometry. IEEE Transactions on Medical Imaging, 28, 1894–1901.

    Google Scholar 

  156. Battistoni, G., Cerutti, F., Fassò, A., Ferrari, A., Muraroi, S., Ranft, J., et al. (2007). The FLUKA code: Description and benchmarking. Aip Conference Proceedings, 896, 31–49.

    ADS  Google Scholar 

  157. Fluka Team. (2013). FLUKA http://www.fluka.org/fluka.php Last Accessed Dec 2013.

  158. Wang, B., Xu, X. G., & Kim, C. H. (2004). A Monte Carlo CT model of the rando phantom. Transactions-American Nuclear Society, 90, 473.

    Google Scholar 

  159. Mazzurana, M., Sandrini, L., Vaccari, A., Malacarne, C., Cristoforetti, L., & Pontalti, R. (2003). A semi-automatic method for developing an anthropomorphic numerical model of dielectric anatomy by MRI. Physics in Medicine & Biology, 48, 3157–3170.

    ADS  Google Scholar 

  160. Cech, R., Leitgeb, N., & Pediaditis, M. (2007). Fetal exposure to low frequency electric and magnetic fields. Physics in Medicine & Biology, 52, 879–888.

    ADS  Google Scholar 

  161. Cech, R., Leitgeb, N., & Pediaditis, M. (2008). Current densities in a pregnant woman model induced by simultaneous ELF electric and magnetic field exposure. Physics in Medicine & Biology, 53, 177–186.

    ADS  Google Scholar 

  162. Doerfel, H., & Heide, B. (2007). Calibration of a phoswich type partial body counter by Monte Carlo simulation of low-energy photon transport. Radiation Protection Dosimetry, 123, 464–472.

    Google Scholar 

  163. Sachse, F.B. et al. (1997). MEET man—Models for simulation of electromagnetic, elastomechanic and thermic behavior of man. Erstellung und technische Parameter, Institut für Biomedizinische Technik: Universita¨t Karlsruhe.

    Google Scholar 

  164. Tinniswood, A. D., Furse, C. M., & Gandhi, O. P. (1998). Power deposition in the head and neck of an anatomically based human body model for plane wave exposures. Physics in Medicine & Biology, 43, 2361–2378.

    ADS  Google Scholar 

  165. Findlay, R. P., & Dimbylow, P. J. (2009). Spatial averaging of fields from half-wave dipole antennas and corresponding SAR calculations in the NORMAN human voxel model between 65 MHz and 2 GHz. Physics in Medicine & Biology, 54, 2437–2447.

    ADS  Google Scholar 

  166. Findlay, R. P., & Dimbylow, P. J. (2010). SAR in a child voxel phantom from exposure to wireless computer networks (Wi-Fi). Physics in Medicine & Biology, 55, N405–N411.

    ADS  Google Scholar 

  167. Wu, D., Shamsi, S., Chen, J., & Kainz, W. (2006). Evaluations of specific absorption rate and temperature increase within pregnant female models in magnetic resonance imaging birdcage coils. IEEE Transactions on Microwave Theory and Techniques, 54, 4472–4478.

    ADS  Google Scholar 

  168. Winslow, M., Xu, X. G., & Yazici, B. (2005). Development of a simulator for radiographic image optimization. Computer Methods and Programs in Biomedicine, 78(3), 179–190

    Google Scholar 

  169. Alderson, S. W., Lanzl, L. H., Rollins, M., & Spira, J. (1962). An instrumented phantom system for analog computation of treatment plans. The American journal of roentgenology, radium therapy, and nuclear medicine, 87, 185–195.

    Google Scholar 

  170. Anon. (1975). Report of the task group on reference man (Vol. 23). Ottawa: ICRP Publication.

    Google Scholar 

  171. Briesmeister, J. F. (2003). MCNP—A general monte carlo N-particle transport code LAUR031987.

    Google Scholar 

  172. Capello, K., Kedzior, S., & Kramer, G. H. (2012). Voxel phantoms: The new ICRP computational phantoms: how do they compare? Health Physics, 102(6), 626–630.

    Google Scholar 

  173. Caracappa, P. F., Chao, T. C. E., & Xu, X. G. (2009). A study of predicted bone marrow distribution on calculated marrow dose from external radiation exposures using two sets of image data for the same individual. Health Physics, 96, 661–674.

    Google Scholar 

  174. Carlo, M. (2010). Extension of the NCAT phantom for the investigation of intra-fraction respiratory motion in IMRT using 4D. Lung, 1475.

    Google Scholar 

  175. Cassola, V. F. (2010). FASH and MASH: Female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy. Physics in Medicine & Biology, 55(1), 133.

    Google Scholar 

  176. Cassola, V. F., Milian, F. M., Kramer, R., de Oliveira Lira, C., & Khoury, H. J. (2011). Standing adult human phantoms based on 10th, 50th and 90th mass and height percentiles of male and female Caucasian populations. Physics in Medicine & Biology, 56, 3749–3772.

    ADS  Google Scholar 

  177. CCHP. (2005). “Tomographic models for radiation protection dosimetry” Session, Monte Carlo 2005 Topical Meeting: The Monte Carlo Method: Versatility Unbounded In A Dynamic Computing World., Chattanooga, TN, USA, April 17–21, 2005.

    Google Scholar 

  178. Cheung, A. A., Niu, T., Faber, T. L., Segars, W. P., Zhu, L., & Chen, J. (2010). Simulation of left ventricular dyssynchrony using the XCAT phantom. In Nuclear Science Symposium Conference Record (NSS/MIC), 2010 IEEE (pp. 3187–3189).

    Google Scholar 

  179. CIRS. (2013). Tissue Simulation and Phantom Technology http://www.cirsinc.com Last Accessed Dec 2013.

  180. Coulot, J. (2003). Therapeutic applications of monte carlo calculations in nuclear medicine. Physics in Medicine & Biology, 48, 2575.

    ADS  Google Scholar 

  181. CMPWG. (2013). Phantoms http://cmpwg.ans.org/phantoms/camera.pdf Last Accessed July 2013.

  182. Farah, J., Broggio, D., & Franck, D. (2010). Female workers and in vivo lung monitoring: A simple model for morphological dependence of counting efficiency curves. Physics in Medicine & Biology, 55, 7377–7395.

    ADS  Google Scholar 

  183. Ferrari, A., Pelliccioni, M., & Pillon, M. (1997). Fluence to effective dose and effective dose equivalent conversion coefficients for electrons from 5 MeV to 10 GeV. Radiation Protection Dosimetry, 69, 97.

    Google Scholar 

  184. Furler, M. (2007). Methods of converting geometry. In CAD To MCNP Code. M.S. thesis. Rensselaer Polytechnic Institute.

    Google Scholar 

  185. Geant4 Team. (2013). Working groups http://geant4.web.cern.ch/geant4/collaboration/working_groups.shtml#wg.Run Last Accessed Dec 2013.

  186. Gjonaj, E., Bartsch, M., Clemens, M., Schupp, S., & Weiland, T. (2002). High-resolution human anatomy models for advanced electromagnetic field computations. IEEE Transactions on Magnetics, 38, 357–360.

    ADS  Google Scholar 

  187. Griffith, R., Dean, P., Anderson, A., & Fisher, J. (1978). Fabrication of a tissue-equivalent torso phantom for intercalibration of in vivo transuranic-nuclide counting facilities.

    Google Scholar 

  188. Gu, J., Dorgu, A., & Xu X. G. (2008). Comparison of main software packages for CT dose reporting. Review Literature And Arts Of The Americas.

    Google Scholar 

  189. Hwang, J. M. L., Shoup, R. L., & Poston, J. W. (1976). Mathematical description of a newborn human for use in dosimetry calculations ORNL/TM-5453.

    Google Scholar 

  190. ICRP. (1990). Recommendations of the international commission on radiological protection. ICRP Publication 60. Oxford, UK: Pergamon Press.

    Google Scholar 

  191. Jin, W., Lim, Y. J., Xu, X. G., Singh, T. P., & De, S. (2005). Improving the visual realism of virtual surgery. Proceedings of Medicine Meets Virtual Reality (Vol. 13) Long Beach CA, IOS Press. pp. 227.

    Google Scholar 

  192. Jones, A. K., Simon, T. A., Bolch, W. E., Holman, M. M., & Hintenlang, D. E. (2006). Tomographic physical phantom of the newborn child with real-time dosimetry I. Methods and techniques for construction. Medical Physics, 33, 3274–3282.

    ADS  Google Scholar 

  193. Katagiri, M., Hikoji, M., Kitaichi, M., Sawamura, S., & Aoki, Y. (2000). Effective dose and organ doses per unit fluence calculated for monoenergetic 0.1 MeV to 100 MeV electrons by the MIRD-5 phantom. Radiation Protection Dosimetry, 90(4), 393.

    Google Scholar 

  194. Kim, J. I., Choi, H., Lee, B. I., Lim, Y. K., Kim, C. S., Lee, J. K., et al. (2006). Physical phantom of typical Korean male for radiation protection purpose. Radiation Protection Dosimetry, 118, 131–136.

    Google Scholar 

  195. Kramer, G. H., Burns, L., & Noel, L. (1991). The BRMD BOMAB phantom family. Health Physics, 61, 895–902.

    Google Scholar 

  196. Kramer, R. (2010). FASH and MASH: Female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations. Physics in medicine & biology, 55(1), 163

    Google Scholar 

  197. Kramer, R., Khoury, H. J., Vieira, J. W., & Lima, V. J. M. (2006). MAX06 and FAX06: Update of two adult human phantoms for radiation protection dosimetry. Physics in Medicine & Biology, 51, 3331–3346.

    ADS  Google Scholar 

  198. Kyoto Kagaku co., LTD. (2013). Hands-on for Health Care Professionals—Simulators, Training Models, and Phantoms http://www.kyotokagaku.com/ Last Accessed Dec 2013.

  199. Lee, C., Lee, C., Williams, J. L., & Bolch, W. E. (2006). Whole-body voxel phantoms of paediatric patients–UF Series B. Physics in Medicine & Biology, 51, 4649–4661.

    ADS  Google Scholar 

  200. Lee, C., Lee, C., Park, S.-H., & Lee, J.-K. (2006). Development of the two Korean adult tomographic computational phantoms for organ dosimetry. Medical Physics, 33, 380–390.

    ADS  Google Scholar 

  201. Lee, C., Lee, J., & Lee, C. (2004). Korean adult male voxel model KORMAN segmented from magnetic resonance images. Medical Physics, 31, 1017–1022.

    ADS  Google Scholar 

  202. Lee, C., & Lee, J. (2005). Reference Korean human models: Past, present, and future, The Monte Carlo Method: versatility unbounded in a dynamic computing world, Chattanooga, Tennessee.

    Google Scholar 

  203. Liu, X. P., Luo, Y. T., & Tong, L. L. (2005). Development and application of MCNP auto-modeling tool: Mcam 3.0. Fusion Engineering and Design, 75, 1275–1279.

    Google Scholar 

  204. Marzocchi, O., Breustedt, B., Mostacci, D., Zankl, M., & Urban, M. (2011). Theoretical assessment of whole body counting performances using numerical phantoms of different gender and sizes. Radiation Protection Dosimetry, 144, 339–343.

    Google Scholar 

  205. Menzel, H.-G., Clement, C., & DeLuca, P. (2009). ICRP Publication 110. Realistic reference phantoms: An ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann ICRP, 39, 1–164.

    Google Scholar 

  206. Nagaoka, T., Togashi, T., Saito, K., Takahashi, M., Ito, K., Ueda, T., et al. (2006). An anatomically realistic voxel model of the pregnant woman and numerical dosimetry for a whole-body exposure to RF electromagnetic fields. International Conference of the IEEE, Engineering in Medicine & Biology Society, 1, 5463–5467.

    Google Scholar 

  207. Nagaoka, T., Kunieda, E., & Watanabe, S. (2008). Proportion-corrected scaled voxel models for Japanese children and their application to the numerical dosimetry of specific absorption rate for frequencies from 30 MHz to 3 GHz. Physics in Medicine & Biology, 53, 6695–6711.

    ADS  Google Scholar 

  208. Nagaoka, T., Togashi, T., Saito, K., Takahashi, M., Ito, K., & Watanabe, S. (2007). An anatomically realistic whole-body pregnant-woman model and specific absorption rates for pregnant-woman exposure to electromagnetic plane waves from 10 MHz to 2 GHz. Physics in Medicine & Biology, 52, 6731–6745.

    ADS  Google Scholar 

  209. NCRP. (1985). The experimental basis for absorbed-dose calculations in medical uses of radionuclides, NCRP Report No 83.

    Google Scholar 

  210. Niu, X., Yang, Y., & Wernick, M. N. (2011). Temporal regularization in fully 5D reconstruction of cardiac gated dynamic spect images, 1504–7.

    Google Scholar 

  211. Petoussi-Henss, N., Zanki, M., Fill, U., & Regulla, D. (2002). The GSF family of voxel phantoms. Physics in Medicine & Biology, 47, 89–106.

    ADS  Google Scholar 

  212. Phantom Laboratory. (2013). RANDO Phantoms http://www.phantomlab.com/rando.html Last Accessed Dec 2013.

  213. Qiu, R., Li, J., Zhang, Z., Liu, L., Bi, L., & Ren, L. (2009). Dose conversion coefficients based on the Chinese mathematical phantom and MCNP code for external photon irradiation. Radiation Protection Dosimetry, 134, 3–12.

    Google Scholar 

  214. Reiher, W., Hammersley, J. M., & Handscomb, D. C. (1966) Monte Carlo methods. London: Methuen & Co., New York: Wiley, 1964. VII+178 S., Preis: 25s Biom Z, 8, 209–209.

    Google Scholar 

  215. Sato, K., Noguchi, H., Emoto, Y., Koga, S., & Saito, K. (2009). Development of a Japanese adult female voxel phantom. Journal of Nuclear Science and Technology, 46, 907–913.

    ADS  Google Scholar 

  216. Segars, W. P., Mahesh, M., Beck, T. J., Frey, E. C., & Tsui, B. M. W. (2008). Realistic CT simulation using the 4D XCAT phantom. Medical Physics, 35, 3800.

    ADS  Google Scholar 

  217. Shypailo, R. J., & Ellis, K. J. (2011). Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data. Physics in Medicine & Biology, 56, 2979–2997.

    ADS  Google Scholar 

  218. Smans, K., Tapiovaara, M., Cannie, M., Struelens, L., Vanhavere, F., Smet, M., et al. (2008). Calculation of organ doses in x-ray examinations of premature babies. Medical Physics, 35, 556–568.

    ADS  Google Scholar 

  219. Smith, T. J., Petouissi, N., & Zankl, M. (2000). Comparison of internal radiation doses estimated by MIRD and voxel techniques for a “family” of phantoms. European Journal of Nuclear Medicine, 27, 1387.

    Google Scholar 

  220. Snyder, W. S., Ford, M. R., Warner, G. G., & Fisher, Jr H. L. (1969). Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom. Journal of Nuclear Medicine, 10.

    Google Scholar 

  221. Stabin, M. G., Sharkey, R. M., & Siegel, J. A. (2011). RADAR commentary: Evolution and current status of dosimetry in nuclear medicine. Journal of Nuclear Medicine, 52, 1156–1161.

    Google Scholar 

  222. Staton, R. J., Jones, A. K., Lee, C., Hintenlang, D. E., Arreola, M. M., Williams, J. L., et al. (2006). A tomographic physical phantom of the newborn child with real-time dosimetry. II. Scaling factors for calculation of mean organ dose in pediatric radiography. Medical Physics, 33, 3283–3289.

    ADS  Google Scholar 

  223. Takahashi, F., Sato, K., Endo, A., Ono, K., Yoshitake, T., Hasegawa, T., et al. (2011). Waza-Ari: Computational dosimetry system for X-Ray Ct examinations. I. radiation transport calculation for organ and tissue doses evaluation using Jm phantom. Radiation Protection Dosimetry, 146, 241–243.

    Google Scholar 

  224. Taranenko, V., Xu, X.G. (2009). Foetal dose conversion coefficients for ICRP-compliant pregnant models from idealised proton exposures. Radiation Protection Dosimetry, 133, 65–72.

    Google Scholar 

  225. Tresser, M. A., & Hintenlang, D. E. (1999). Construction of a newborn dosimetry phantom for measurement of effective dose. Health Physics, 76, S190.

    Google Scholar 

  226. Uusitupa, T. (2010). SAR variation study from 300 to 5,000 MHz for 15 voxel models including different postures. Radio Science, 1157.

    Google Scholar 

  227. Valentin, J. (2002). Anatomical and physiological data for use in radiological protection: Reference. Ann ICRP, 13, 2347–2350.

    Google Scholar 

  228. Wang, J., Fujiwara, O., Watanabe, S., & Yamanaka, Y. (2004). Computation with a parallel FDTD system of human-body effect on electromagnetic absorption for portable telephones. Microwave Theory and Techniques, IEEE Transactions on, 52, 53–58.

    ADS  Google Scholar 

  229. Wang, B., Xu, X. G., Goldstein, M., & Sahoo, N. (2005b). Adjoint Monte Carlo method for prostate external photon beam treatment planning: An application to 3-D patient anatomy. Physics in Medicine & Biology, 50, 923.

    ADS  Google Scholar 

  230. Xu, X. G. (2005). Preliminary development of a 4D anatomical model for Monte Carlo simulations. Medicine, 1–10.

    Google Scholar 

  231. Zhang, J., Na, Y., & Xu, X. G. (2008c). MO-E-AUD B-05: Development of whole-body phantoms representing an average adult male and female using surface-geometry methods. Medical Physics, 35, 2875.

    ADS  Google Scholar 

  232. Zhang, J., Xu, G. X., Shi, C., & Fuss, M. (2008d). Development of a geometry-based respiratory motion-simulating patient model for radiation treatment dosimetry. Journal of Applied Clinical Medical Physics, 9, 2700.

    Google Scholar 

  233. Ziriax, J. M., Smith, K. I., Nelson, D. A., Ryan, K. L., Gajsek, P., D’Andrea, J. A., et al. (2000). Effects of frequency, permittivity, and voxel size on predicted specific absorption rate values in biological tissue during electromagnetic-field exposure. IEEE Transactions on Microwave Theory and Techniques, 48, 2050–2058.

    ADS  Google Scholar 

  234. Hammersley, J.M., & Handscomb, D.C. (1964). Monte carlo methods. London: Chapman & Hall. ISBN:9780412158704.

    Google Scholar 

  235. Shi, C.Y. (2004). Development and application of a tomographic model from CT images for calculating internal dose to a pregnant woman. Dissertation, Rensselaer Polytechnic Institute, Troy, New York.

    Google Scholar 

  236. McGurk, R., Seco, J., Riboldi, M., Wolfgang, J., Segars, P., & Paganetti, H. (2010). Extension of the NCAT phantom for the investigation of intra-fraction respiratory motion in IMRT using 4D Monte Carlo. Physics in Medicine and Biology, 55, 1475–1490.

    Google Scholar 

  237. Kramer, R. (2010). FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations, 163.

    Google Scholar 

  238. Caracappa, P. (2006). Development and evaluation of a new algorithm for determining radiation dose to the red bone marrow. Dissertation, New York: Rensselaer Polytechnic Institute, Troy.

    Google Scholar 

  239. Zhang, J.Y. (2009). A pair of mesh-based phantoms representing ICRP-89 50th-percentile adult males and females for radiation protection dosimetry using Monte Carlo simulations. Dissertation, New York: Rensselaer Polytechnic Institute, Troy.

    Google Scholar 

  240. Na, Y.H. (2009). Deformable adult human phantoms for radiation protection dosimetry: methods for adjusting body and organ sizes to match population-based percentile data. Dissertation, New York: Rensselaer Polytechnic Institute, Troy.

    Google Scholar 

  241. Gu, J.W. (2010). Development of CT scanner models for patient organ dose calculations using Monte Carlo methods. Dissertation, New York: Rensselaer Polytechnic Institute, Troy.

    Google Scholar 

  242. Mille, M. (2013). A study of shape-dependent partial volume correction in pet imaging using ellipsoidal phantoms fabricated via rapid prototyping. Dissertation, New York: Rensselaer Polytechnic Institute, Troy.

    Google Scholar 

  243. Eckerman, K.F., Stabin, M.G. (2000). Electron absorbed fractions and dose conversion factors for marrow and bone by skeletal regions. Health Physics, 78, 199–214.

    Google Scholar 

  244. Xu, X.G., Eckerman, K.F. (2009). Computational phantoms for radiation dosimetry: a 40-year history of evolution. Handbook of Anatomical Models for Radiation Dosimetry. Boca Raton: Taylor & Francis, 1–40.

    Google Scholar 

  245. ICRP (1975). Report of the Task Group on Reference Man. ICRP Publication 23. Pergamon Press. Oxford, UK:Pergamon Press.

    Google Scholar 

  246. ICRP (2002). Basic anatomical and physiological data for use in radiological protection reference values. ICRP Publication 89. Oxford, UK: Pergamon Press.

    Google Scholar 

  247. Stabin, M.G., Watson, E.E., Cristy, M., Ryman, J.C., Eckerman, K.F., Davis, J.L., Marshall, D., Gehlen, M.K. (1995). Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy ORNL Report ORNL/TM 12907. Oak Ridge, TN: Oak Ridge National Laboratory.

    Google Scholar 

  248. Chen, J. (2004). Mathematical models of the embryo and fetus for use in radiological protection. Health Physics, 86, 285–295.

    Google Scholar 

  249. Hough, M., Johnson, P., Rajon, D., Jokisch, D., Lee, C., Bolch, W. (2011). An image-based skeletal dosimetry model for the ICRP reference adult male--internal electron sources. Physics in Medicine and Biology, 56, 2309–2346.

    Google Scholar 

  250. Xu, X.G., Shi, C.Y. (2005). Preliminary development of a 4D anatomical model for Monte Carlo simulations Monte Carlo 2005 Topical Meeting. Chattanooga, TN: American Nuclear Society, LaGrange Park (IL).

    Google Scholar 

Download references

Acknowledgments

Helpful discussions in the past decade with many colleagues, especially K Eckerman, W Bolch, M Stabin, A Brill, WP Segars, B Tsui, H Paganetti, IG Zubal, M Zankl, N Petoussi-Henss, R Kramer, Q Liu, J Li, CH Kim, and K Sato through the Consortium of Computation Human Phantoms (CCHP). This review article is based on several chapters of the “Handbook of Anatomical Models for Radiation Dosimetry” published in 2009. M Pinkert and Ashley Rhodes, undergraduate students at RPI, helped compile the recent literature information. Research at RPI, which is highlighted in this article, involved the following former PhD students: Bozkurt et al. [134, 132, 236], Winslow et al. [169, 144, 239] Bednarz (2008), [240242], Han et al. [147], Ding et al. [113, 243]. These research projects at RPI were supported by the following grants: National Science Foundation (BES-9875532), National Library of Medicine (R03LM007964, R01LM009362, and R01LM009362-03S1), National Cancer Institute (R01CA116743 and R42CA115122), National Institute of Biomedical Imaging and Bioengineering (R42EB010404), and National Institute of Standards and Technology (70NANB9H9198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. George Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

George Xu, X. (2014). Computational Phantoms for Organ Dose Calculations in Radiation Protection and Imaging. In: DeWerd, L., Kissick, M. (eds) The Phantoms of Medical and Health Physics. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8304-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8304-5_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8303-8

  • Online ISBN: 978-1-4614-8304-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics