Introduction to Phantoms of Medical and Health Physics

  • Larry A. DeWerd
  • Michael Lawless
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Phantoms, devices that represent the human body, have been used in medical physics and health physics since the beginning. Soon after the discovery of X-rays, news of the medical benefits of radiation quickly spread. The first X-ray image of a human was taken of Prof. Wilhelm Roentgen’s wife’s hand in 1896.


Image Phantom Radiographic Film Radiochromic Film Steep Dose Gradient Phantom Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Trevert, E. (1896). Something about X Rays for everybody. Lynn: Bubier Publishing.Google Scholar
  2. 2.
    Kienbock, R. (1906). On the quantimetric method. Arch Roentgen Ray, 11, 17.Google Scholar
  3. 3.
    Stacey, A. J., Bevan, A. R. & Dickens, C. W. (1961). A new phantom material employing depolymerised natural rubber. British Journal of Radiologoy, 34, 510–515.Google Scholar
  4. 4.
    Alderson, S. W., Lanzl, L. H., Rollins, M., & Spira, J. (1962). An instrumented phantom system for analog computation of treatment plans. The American Journal of Roentgenology, Radium Therapy, and Nuclear Medicine, 87, 185.Google Scholar
  5. 5.
    Xu, X.G., Chao, T.C., & Bozkurt, A. (2000). VIP-man: an image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations. Health Physics, 78(5), 476–486.Google Scholar
  6. 6.
    Hill, R., Holloway, L., & Baldock, C. (2005). A dosimetric evaluation of water equivalent phantoms for kilovoltage x-ray beams. Physics in Medicine and Biology, 50(21), N331–N334.CrossRefGoogle Scholar
  7. 7.
    Pantelis, E., Karlis, A. K., Kozicki, M., Papagiannis, P., Sakelliou, L., & Rosiak, J. M. (2004). Polymer gel water equivalence and relative energy response with emphasis on low photon energy dosimetry in brachytherapy. Physics in Medicine and Biology, 49(15), 3495–3514.CrossRefADSGoogle Scholar
  8. 8.
    Pernicka, F. (1990). CT dosimetry using a TL technique. Radiation Protection Dosimetry, 34(1–4), 271–274.Google Scholar
  9. 9.
    Somigliana, A., Cattaneo, G. M., Fiorino, C., Borelli, S., del Vecchio, A., Zonca, G., et al. (1999). Dosimetry of gamma knife and linac-based radiosurgery using radiochromic and diode detectors. Physics in Medicine and Biology, 44(4), 887–897.CrossRefADSGoogle Scholar
  10. 10.
    Han, Y., Shin, E. H., Lim, C., Kang, S. K., Park, S. H., Lah, J. E., et al. (2008). Dosimetry in an IMRT phantom designed for a remote monitoring program. Medical Physics, 35(6), 2519–2525.CrossRefADSGoogle Scholar
  11. 11.
    Low, D. A., Moran, J. M., Dempsey, J. F., Dong, L., & Oldham, M. (2011). Dosimetry tools and techniques for IMRT. Medical Physics, 38(3), 1313–1338.CrossRefGoogle Scholar
  12. 12.
    McEwen, M. R. (2010). Measurement of ionization chamber absorbed dose k factors in megavoltage photon beams. Medical Physics, 37(5), 2179–2193.CrossRefGoogle Scholar
  13. 13.
    Attix, F. H. (1968). Introduction to radiological physics and radiation dosimetry. Weinheim: Wiley.Google Scholar
  14. 14.
    Nunn, A. A., Davis, S. D., Micka, J. A., & DeWerd, L. A. (2008). LiF: Mg, Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20–250 kVp relative to Co. Medical Physics, 35(5), 1859–1869.CrossRefADSGoogle Scholar
  15. 15.
    Carrillo, R. E., Pearson, D. W., Deluca, P. M., Jr, Mackay, J. F., & Lagally, M. G. (1996). Response of calcium fluoride to 275–2,550 eV photons. Radiation Measurements, 26(1), 75–82.CrossRefGoogle Scholar
  16. 16.
    DeWerd, L., Bartol, L., & Davis, S. (2009). Thermoluminescence dosimetry. In D. W. O. Rogers & J. E. Cygler (Eds.), Clinical dosimetry measurements in radiotherapy (pp. 815–840). Madison: Medical Physics Publishing.Google Scholar
  17. 17.
    Pai, S., Das, I. J., Dempsey, J. F., Lam, K. L., LoSasso, T. J., Olch, A. J., et al. (2007). TG-69: Radiographic film for megavoltage beam dosimetry. Medical Physics, 34(6), 2228–2258.CrossRefADSGoogle Scholar
  18. 18.
    Niroomand-Rad, A., Blackwell, C. R., Coursey, B. M., Gall, K. P., Galvin, J. M., McLaughlin, W. L., et al. (1998). Radiochromic film dosimetry: Recommendations of AAPM radiation therapy committee task group 55. Medical Physics, 25(11), 2093–2115.CrossRefADSGoogle Scholar
  19. 19.
    ICRP. 2009. Adult reference computational phantoms. ICRP Publication 110. Annual of ICRP, 39(2).Google Scholar
  20. 20.
    Dimbylow, P. J. (1999). FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz. Physics in Medicine and Biology, 42(3), 479–490.CrossRefADSGoogle Scholar
  21. 21.
    Capello, K., Kedzior, S., & Kramer, G. H. (2012). Voxel phantoms: The new ICRP computational phantoms: How do they compare? Health Physics, 102(6), 626–630.Google Scholar
  22. 22.
    Schauer, D. A., & Linton, O. W. (2009). NCRP Report No. 160, ionizing radiation exposure of the population of the United States, medical exposure-are we doing less with more, and is there a role for health physicists? Health Physics, 97(1), 1–5.CrossRefGoogle Scholar
  23. 23.
    Ghetti, C., Ortenzia, O., & Serreli, G. (2012). CT iterative reconstruction in image space: A phantom study. Physica Medica, 28(2), 161–165.CrossRefGoogle Scholar
  24. 24.
    Yamaguchi, M., Fujita, H., Bessho, Y., Inoue, T., Asai, Y., & Murase, K. (2011). Investigation of optimal display size for detecting ground-glass opacity on high resolution computed tomography using a new digital contrast-detail phantom. European Journal of Radiology, 80(3), 845–850.CrossRefGoogle Scholar
  25. 25.
    Ihalainen, T. M., Lönnroth, N. T., Peltonen, J. I., Uusi-Simola, J. K., Timonen, M. H., Kuusela, L. J., et al. (2011). MRI quality assurance using the ACR phantom in a multi-unit imaging center. Acta Oncologica, 50(6), 966–972.CrossRefGoogle Scholar
  26. 26.
    DiFilippo, F. P., Price, J. P., Kelsch, D. N., & Muzic, R. F., Jr. (2004). Porous phantoms for PET and SPECT performance evaluation and quality assurance. Medical Physics, 31(5), 1183–1194.CrossRefADSGoogle Scholar
  27. 27.
    Madsen, E. L., Zagzebski, J. A., Macdonald, M. C., & Frank, G. R. (1991). Ultrasound focal lesion detectability phantoms. Medical Physics, 18(6), 1171–1180.CrossRefADSGoogle Scholar
  28. 28.
    Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 62(1), 10–29.Google Scholar
  29. 29.
    Sokole, E. B., Graham, L. S., Todd-Pokropek, A., Wegst, A., Robilotta, C. C., & Krisanachinda, A. (2003). IAEA quality control atlas for scintillation camera systems. Vienna: International Atomic Energy Agency.Google Scholar
  30. 30.
    Lima Ferreira, F. C., & Souza, D. D. N. (2011). Liver phantom for quality control and training in nuclear medicine. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 652(1), 791–793.CrossRefADSGoogle Scholar
  31. 31.
    Li, H. J., & Votaw, J. R. (1998). Optimization of PET activation studies based on the SNR measured in the 3-D Hoffman brain phantom. IEEE Transactions on Medical Imaging, 17(4), 596–605.CrossRefGoogle Scholar
  32. 32.
    Kramer, G. H., Burns, L., & Noel, L. (1991). The BRMD BOMAB phantom family. Health Physics, 61(6), 895.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Medical PhysicsUniversity of WisconsinMadisonUSA

Personalised recommendations