Skip to main content

Cross Resistance: Treatment and Modeling

  • Chapter
  • First Online:
Targeted Cancer Treatment in Silico

Abstract

We have so far considered combination therapy under the assumption that resistance against one drug does not confer resistance to any of the other drugs in use. While this applies to many of the point mutations that induce resistance against imatinib, dastinib, and nilotinib, one mutation, T315I, confers resistance to all three drugs, i.e., there is complete cross-resistance. This chapter examines the effectiveness of combination therapy in the presence of the cross-resistant T315I mutation. The combination of two drugs is found to increase the probability of treatment success despite this cross-resistance. Combining more than two drugs, however, does not provide further advantages. Hence, according to the model, only the two most effective drugs should be used in combination for the prevention of drug resistance. We also discuss possible combinations involving inhibitors under development that aim to overcome the T315I mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rix, U., Hantschel, O., Dürnberger, G., Rix, L., Planyavsky, M., Fernbach, N., Kaupe, I., Bennett, K., Valent, P., Colinge, J., et al.: Chemical proteomic profiles of the bcr-abl inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110(12), 4055–4063 (2007)

    Article  Google Scholar 

  2. O’Hare, T., Eide, C., Deininger, M.: Bcr-abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 110(7), 2242–2249 (2007)

    Article  Google Scholar 

  3. Kantarjian, H., Giles, F., Wunderle, L., Bhalla, K., O’Brien, S., Wassmann, B., Tanaka, C., Manley, P., Rae, P., Mietlowski, W., et al.: Nilotinib in imatinib-resistant cml and philadelphia chromosome-positive all. N. Engl. J. Med. 354(24), 2542–2551 (2006)

    Article  Google Scholar 

  4. Deguchi, Y., Kimura, S., Ashihara, E., Niwa, T., Hodohara, K., Fujiyama, Y., Maekawa, T.: Comparison of imatinib, dasatinib, nilotinib and inno-406 in imatinib-resistant cell lines. Leuk. Res. 32(6), 980–983 (2008)

    Article  Google Scholar 

  5. Quintas-Cardama, A., Kantarjian, H., Jones, D., Nicaise, C., O’Brien, S., Giles, F., Talpaz, M., Cortes, J.: Dasatinib (bms-354825) is active in philadelphia chromosome-positive chronic myelogenous leukemia after imatinib and nilotinib (amn107) therapy failure. Blood 109(2), 497–499 (2007)

    Article  Google Scholar 

  6. Vajpai, N., Strauss, A., Fendrich, G., Cowan-Jacob, S., Manley, P., Grzesiek, S., Jahnke, W.: Solution conformations and dynamics of abl kinase-inhibitor complexes determined by nmr substantiate the different binding modes of imatinib/nilotinib and dasatinib. J. Biol. Chem. 283(26), 18,292–18,302 (2008)

    Google Scholar 

  7. Hantschel, O., Rix, U., Superti-Furga, G.: Target spectrum of the bcr-abl inhibitors imatinib, nilotinib and dasatinib. Leuk. Lymphoma 49(4), 615–619 (2008)

    Article  Google Scholar 

  8. Bradeen, H., Eide, C., O’Hare, T., Johnson, K., Willis, S., Lee, F., Druker, B., Deininger, M.: Comparison of imatinib mesylate, dasatinib (bms-354825), and nilotinib (amn107) in an n-ethyl-n-nitrosourea (enu)-based mutagenesis screen: High efficacy of drug combinations. Blood 108(7), 2332–2338 (2006)

    Article  Google Scholar 

  9. O’Hare, T., Eide, C., Tyner, J., Corbin, A., Wong, M., Buchanan, S., Holme, K., Jessen, K., Tang, C., Lewis, H., et al.: Sgx393 inhibits the cml mutant bcr-ablt315i and preempts in vitro resistance when combined with nilotinib or dasatinib. Proc. Nat. Acad. Sci. 105(14), 5507–5512 (2008)

    Article  Google Scholar 

  10. Talpaz, M., Shah, N., Kantarjian, H., Donato, N., Nicoll, J., Paquette, R., Cortes, J., O’Brien, S., Nicaise, C., Bleickardt, E., et al.: Dasatinib in imatinib-resistant philadelphia chromosome-positive leukemias. N. Engl. J. Med. 354(24), 2531–2541 (2006)

    Article  Google Scholar 

  11. Deininger, M.: Optimizing therapy of chronic myeloid leukemia. Exp. Hematol. 35(4), 144–154 (2007)

    Article  MathSciNet  Google Scholar 

  12. Weisberg, E., Manley, P., Cowan-Jacob, S., Hochhaus, A., Griffin, J.: Second generation inhibitors of bcr-abl for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer 7(5), 345–356 (2007)

    Article  Google Scholar 

  13. Gontarewicz, A., Brümmendorf, T.: Danusertib (formerly pha-739358)-a novel combined pan-aurora kinases and third generation bcr-abl tyrosine kinase inhibitor. Small Molecules in Oncology, pp. 199–214. Springer, Heidelberg (2010)

    Google Scholar 

  14. Winter, G., Rix, U., Carlson, S., Gleixner, K., Grebien, F., Gridling, M., Müller, A., Breitwieser, F., Bilban, M., Colinge, J., et al.: Systems-pharmacology dissection of a drug synergy in imatinib-resistant cml. Nat. Chem. Biol. 8(11), 905–912 (2012)

    Article  Google Scholar 

  15. Pinilla-Ibarz, J., Flinn, I.: The expanding options for front-line treatment in patients with newly diagnosed cml. Crit. Rev. Oncol. Hematol. (2012)

    Google Scholar 

  16. Burley, S.: Application of fasttm fragment-based lead discovery and structure-guided design to discovery of small molecule inhibitors of bcr-abl tyrosine kinase active against the t315i imatinib-resistant mutant. In: Proceedings of the American Association for Cancer Research, 2006(1), pp. 1139 (2006)

    Google Scholar 

  17. Carter, T., Wodicka, L., Shah, N., Velasco, A., Fabian, M., Treiber, D., Milanov, Z., Atteridge, C., Biggs III, W., Edeen, P., et al.: Inhibition of drug-resistant mutants of abl, kit, and egf receptor kinases. In: Proceedings of the National Academy of Sciences of the United States of America, 102(31), pp. 11,011–11,016 (2005)

    Google Scholar 

  18. Melo, J., Chuah, C.: Resistance to imatinib mesylate in chronic myeloid leukaemia. Cancer Lett. 249(2), 121–132 (2007)

    Article  Google Scholar 

  19. Harrington, E., Bebbington, D., Moore, J., Rasmussen, R., Ajose-Adeogun, A., Nakayama, T., Graham, J., Demur, C., Hercend, T., Diu-Hercend, A., et al.: Vx-680, a potent and selective small-molecule inhibitor of the aurora kinases, suppresses tumor growth in vivo. Nat. Med. 10(3), 262–267 (2004)

    Article  Google Scholar 

  20. Young, M., Shah, N., Chao, L., Seeliger, M., Milanov, Z., Treiber, D., Patel, H., Zarrinkar, P., Lockhart, D., et al.: Structure of the kinase domain of an imatinib-resistant abl mutant in complex with the aurora kinase inhibitor vx-680. Cancer Res. 66(2), 1007–1014 (2006)

    Article  Google Scholar 

  21. Duncan, E., Goetz, C., Stein, S., Mayo, K., Skaggs, B., Ziegelbauer, K., Sawyers, C., Baldwin, A.: I\(\kappa \)b kinase \(\beta \) inhibition induces cell death in imatinib-resistant and t315i dasatinib-resistant bcr-abl+ cells. Mol. Cancer Ther. 7(2), 391–397 (2008)

    Article  Google Scholar 

  22. Komarova, N., Wodarz, D.: Combination therapies against chronic myeloid leukemia: short-term versus long-term strategies. Cancer Res. 69(11), 4904–4910 (2009)

    Article  Google Scholar 

  23. Wicha, M., Liu, S., Dontu, G.: Cancer stem cells: an old ideaa paradigm shift. Cancer Res. 66(4), 1883–1890 (2006)

    Article  Google Scholar 

  24. Reya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L.: Stem cells, cancer, and cancer stem cells. Nature 414(6859), 105–11 (2001)

    Article  Google Scholar 

  25. Katouli, A., Komarova, N.: Optimizing combination therapies with existing and future cml drugs. PloS one 5(8), e12,300 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia L. Komarova .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Komarova, N.L., Wodarz, D. (2014). Cross Resistance: Treatment and Modeling. In: Targeted Cancer Treatment in Silico. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-8301-4_8

Download citation

Publish with us

Policies and ethics