Skip to main content

Evolutionary Dynamics of Drug Resistant Mutants in Targeted Treatment of CML

  • Chapter
  • First Online:
Targeted Cancer Treatment in Silico

Abstract

This chapter discusses the basic evolutionary dynamics of cells that are resistant to small molecule inhibitors in the context of an exponentially growing population of cells, as typically observed in the treatment of CML blast crisis. The basic principles of resistance emergence is discussed. Mathematical models clearly indicate that the pre-treatment tumor growth phase is crucial for the generation of resistant mutants, and that the treatment phase itself does not significantly contribute to the generation of resistant mutants. In this respect, the growth kinetics of the tumor plays an important role. Tumors characterized by a higher turnover of cells have a higher probability to harbor resistant cells at any given tumor size, compared to low-turnover tumors. These insights are then applied to calculate the probability that a tumor of a given size is simultaneously resistant to a number of \(m\) drugs that can be given in combination, based on the parameters of the system. These calculations suggest that in the absence of cross-resistance, a combination of three drugs can prevent resistance-induced treatment failure in CML blast crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fojo, T., Bates, S.: Strategies for reversing drug resistance. Oncogene 22(47), 7512–23 (2003)

    Article  Google Scholar 

  2. Gottesman, M.: Mechanisms of cancer drug resistance. Annu. Rev. Med. 53(1), 615–627 (2002)

    Article  Google Scholar 

  3. Luqmani, Y.: Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract. 14(1), 35–48 (2005)

    Article  Google Scholar 

  4. Redmond, K., Wilson, T., Johnston, P., Longley, D.: Resistance mechanisms to cancer chemotherapy. Front Biosci. 13, 5138–5154 (2008)

    Article  Google Scholar 

  5. Ozben, T.: Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett. 580(12), 2903–2909 (2006)

    Article  Google Scholar 

  6. Longley, D., Johnston, P.: Molecular mechanisms of drug resistance. J. Pathol. 205(2), 275–292 (2005)

    Article  Google Scholar 

  7. Druker, B.J.: Imatinib as a paradigm of targeted therapies. Adv. Cancer Res. 91, 1–30 (2004)

    Article  Google Scholar 

  8. Blagosklonny, M.V.: Sti-571 must select for drug-resistant cells but ’no cell breathes fire out of its nostrils like a dragon’. Leukemia 16(4), 570–572 (2002)

    Article  Google Scholar 

  9. Shannon, K.M.: Resistance in the land of molecular cancer therapeutics. Cancer Cell 2(2), 99–102 (2002)

    Article  Google Scholar 

  10. Khorashad, J., Kelley, T., Szankasi, P., Mason, C., Soverini, S., Adrian, L., Eide, C., Zabriskie, M., Lange, T., Estrada, J., et al.: Bcr-abl1 compound mutations in tyrosine kinase inhibitor resistant cml: frequency and clonal relationships. J. Am. Soc. Hematol. 119(10), 2234–2238 (2012)

    Article  Google Scholar 

  11. Simon, V., Ho, D.D.: Hiv-1 dynamics in vivo: implications for therapy. Nat. Rev. Microbiol. 1(3), 181–190 (2003)

    Article  Google Scholar 

  12. Schabel, F.M. Jr., Skipper, H.E., Trader, M.W., Laster, W.R. Jr., Griswold, D.P. Jr., Corbett, T.H.: Establishment of cross-resistance profiles for new agents. Cancer Treat. Rep. 67(10), 905–922 (1983)

    Google Scholar 

  13. Schabel, F.M. Jr., Trader, M.W., Laster, W.R. Jr., Corbett, T.H., Griswold, D.P. Jr.: cis-dichlorodiammineplatinum(ii): combination chemotherapy and cross-resistance studies with tumors of mice. Cancer Treat. Rep. 63(9–10), 1459–1473 (1979)

    Google Scholar 

  14. Coldman, A.J., Goldie, J.H.: A stochastic model for the origin and treatment of tumors containing drug-resistant cells. Bull. Math. Biol. 48(3–4), 279–292 (1986)

    MathSciNet  MATH  Google Scholar 

  15. McKinnell, R.G., Parchment, R.E., Perantoni, A.O., Pierce, G.B.: The Biological Basis of Cancer. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  16. Calabretta, B., Perrotti, D.: The biology of cml blast crisis. Blood 103(11), 4010–4022 (2004)

    Article  Google Scholar 

  17. McCormick, F.: New-age drug meets resistance. Nature 412(6844), 281–282 (2001)

    Article  Google Scholar 

  18. Gambacorti-Passerini, C.B., Gunby, R.H., Piazza, R., Galietta, A., Rostagno, R., Scapozza, L.: Molecular mechanisms of resistance to imatinib in philadelphia-chromosome-positive leukaemias. Lancet Oncol. 4(2), 75–85 (2003)

    Article  Google Scholar 

  19. Gorre, M.E., Mohammed, M., Ellwood, K., Hsu, N., Paquette, R., Rao, P.N., Sawyers, C.L.: Clinical resistance to sti-571 cancer therapy caused by bcr-abl gene mutation or amplification. Science 293(5531), 876–880 (2001)

    Article  Google Scholar 

  20. Loeb, L.A.: Cancer cells exhibit a mutator phenotype. Adv. Cancer Res. 72, 25–56 (1998)

    Article  Google Scholar 

  21. Tlsty, T.D., Margolin, B.H., Lum, K.: Differences in the rates of gene amplification in nontumorigenic and tumorigenic cell lines as measured by luria-delbruck fluctuation analysis. Proc. Natl. Acad. Sci. U.S.A. 86(23), 9441–9445 (1989)

    Article  Google Scholar 

  22. Loeb, L.A., Springgate, C.F., Battula, N.: Errors in dna replication as a basis of malignant changes. Cancer Res. 34(9), 2311–2321 (1974)

    Google Scholar 

  23. Tipping, A.J., Mahon, F.X., Lagarde, V., Goldman, J.M., Melo, J.V.: Restoration of sensitivity to sti571 in sti571-resistant chronic myeloid leukemia cells. Blood 98(13), 3864–3867 (2001)

    Article  Google Scholar 

  24. Nowicki, M.O., Falinski, R., Koptyra, M., Slupianek, A., Stoklosa, T., Gloc, E., Nieborowska-Skorska, M., Blasiak, J., Skorski, T.: Bcr/abl oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent dna double-strand breaks. Blood 104(12), 3746–3753 (2004)

    Article  Google Scholar 

  25. Yoshida, C., Melo, J.V.: Biology of chronic myeloid leukemia and possible therapeutic approaches to imatinib-resistant disease. Int. J. Hematol. 79(5), 420–433 (2004)

    Article  Google Scholar 

  26. Shah, N.P., Tran, C., Lee, F.Y., Chen, P., Norris, D., Sawyers, C.L.: Overriding imatinib resistance with a novel abl kinase inhibitor. Science 305(5682), 399–401 (2004)

    Article  Google Scholar 

  27. Faderl, S., Talpaz, M., Estrov, Z., Kantarjian, H.M.: Chronic myelogenous leukemia: biology and therapy. Ann. Intern. Med. 131(3), 207–219 (1999)

    Article  Google Scholar 

  28. O’Dwyer, M.E., Mauro, M.J., Druker, B.J.: Recent advancements in the treatment of chronic myelogenous leukemia. Annu. Rev. Med. 53, 369–381 (2002)

    Article  Google Scholar 

  29. Al-Hajj, M., Clarke, M.F.: Self-renewal and solid tumor stem cells. Oncogene 23(43), 7274–7282 (2004)

    Article  Google Scholar 

  30. Asquith, B., Debacq, C., Macallan, D.C., Willems, L., Bangham, C.R.: Lymphocyte kinetics: the interpretation of labelling data. Trends Immunol. 23(12), 596–601 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia L. Komarova .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Komarova, N.L., Wodarz, D. (2014). Evolutionary Dynamics of Drug Resistant Mutants in Targeted Treatment of CML. In: Targeted Cancer Treatment in Silico. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-8301-4_5

Download citation

Publish with us

Policies and ethics