Skip to main content

Basic Dynamics of Chronic Myeloid Leukemia During Imatinib Treatment

  • Chapter
  • First Online:
  • 1312 Accesses

Abstract

Treatment with tyrosine kinase inhibitors, such as imatinib, have led to impressive therapy responses in the clinic. This chapter will discuss the pattern of decline of the BCR-ABL transcript numbers during treatment, and explore different hypotheses to explain them. Treatment typically results in a bi-phasic decline of BCR-ABL transcript numbers, where a faster phase of decline is followed by a slower phase. The earliest hypotheses tried to explain this pattern by assuming that more differentiated tumor cells are susceptible to the drug, while tumor stem cells are resistant. Subsequent work showed that the bi-phasic decline, and other, less common decline patterns found among patients, can be explained by differential susceptibility to the drug by activated and quiescent tumor stem cells. In addition to the basic tumor cell dynamics, mathematical models have also indicated that a transient rise of anti-tumor immunity during treatment could contribute to determining the pattern of treatment response. Implications of the different hypotheses for treatment strategies are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Michor, F., Hughes, T.P., Iwasa, Y., Branford, S., Shah, N.P., Sawyers, C.L., Nowak, M.A.: Dynamics of chronic myeloid leukaemia. Nature 435(7046), 1267–1270 (2005)

    Article  Google Scholar 

  2. Roeder, I., Horn, M., Glauche, I., Hochhaus, A., Mueller, M.C., Loeffler, M.: Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat. Med. 12(10), 1181–1184 (2006)

    Article  Google Scholar 

  3. Reya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L.: Stem cells, cancer, and cancer stem cells. Nature 414(6859), 105–111 (2001)

    Article  Google Scholar 

  4. Teschl, G.: Ordinary Differential Equations and Dynamical Systems, vol. 140. American Mathematical Society, Providence (2012)

    Google Scholar 

  5. Rousselot, P., Huguet, F., Rea, D., Legros, L., Cayuela, J.M., Maarek, O., Blanchet, O., Marit, G., Gluckman, E., Reiffers, J., Gardembas, M., Mahon, F.X.: Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than two years. Blood 109(1), 58–60 (2007)

    Google Scholar 

  6. Wodarz, D.: Heterogeneity in chronic myeloid leukaemia dynamics during imatinib treatment: role of immune responses. Proc. Biol. Sci. 277(1689), 1875–1880 (2010)

    Article  Google Scholar 

  7. Deininger, M.W., Druker, B.J.: Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol. Rev. 55(3), 401–423 (2003)

    Article  Google Scholar 

  8. Druker, B.J.: Overcoming resistance to imatinib by combining targeted agents. Mol. Cancer. Ther. 2(3), 225–226 (2003)

    Google Scholar 

  9. Druker, B.J.: Imatinib as a paradigm of targeted therapies. Adv. Cancer. Res. 91, 1–30 (2004)

    Article  Google Scholar 

  10. Gambacorti-Passerini, C.B., Gunby, R.H., Piazza, R., Galietta, A., Rostagno, R., Scapozza, L.: Molecular mechanisms of resistance to imatinib in philadelphia-chromosome-positive leukaemias. Lancet Oncol. 4(2), 75–85 (2003)

    Article  Google Scholar 

  11. Gorre, M.E., Mohammed, M., Ellwood, K., Hsu, N., Paquette, R., Rao, P.N., Sawyers, C.L.: Clinical resistance to sti-571 cancer therapy caused by bcr-abl gene mutation or amplification. Science 293(5531), 876–880 (2001)

    Article  Google Scholar 

  12. Nardi, V., Azam, M., Daley, G.Q.: Mechanisms and implications of imatinib resistance mutations in bcr-abl. Curr. Opin. Hematol. 11(1), 35–43 (2004)

    Article  Google Scholar 

  13. Shah, N.P., Tran, C., Lee, F.Y., Chen, P., Norris, D., Sawyers, C.L.: Overriding imatinib resistance with a novel abl kinase inhibitor. Science 305(5682), 399–401 (2004)

    Article  Google Scholar 

  14. Chen, C.I., Maecker, H.T., Lee, P.P.: Development and dynamics of robust t-cell responses to cml under imatinib treatment. Blood 111(11), 5342–5349 (2008)

    Article  Google Scholar 

  15. Kim, P.S., Lee, P.P., Levy, D.: Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput Biol 4(6), e1000,095 (2008)

    Google Scholar 

  16. Wang, H., Cheng, F., Cuenca, A., Horna, P., Zheng, Z., Bhalla, K., Sotomayor, E.M.: Imatinib mesylate (sti-571) enhances antigen-presenting cell function and overcomes tumor-induced cd4+ t-cell tolerance. Blood 105(3), 1135–1143 (2005)

    Article  Google Scholar 

  17. Barnes, E., Harcourt, G., Brown, D., Lucas, M., Lechner, F., Phillips, R., Dusheiko, G., Klenerman, P.: In: Effects of combination therapy for hepatits c virus on virus-specific immune responses. (2002, Hepatology in press)

    Google Scholar 

  18. Kalams, S.A., Buchbinder, S.P., Rosenberg, E.S., Billingsley, J.M., Colbert, D.S., Jones, N.G., Shea, A.K., Trocha, A.K., Walker, B.D.: Association between virus-specific cytotoxic t-lymphocyte and helper responses in human immunodeficiency virus type 1 infection. J. Virol. 73(8), 6715–6720 (1999)

    Google Scholar 

  19. Ogg, G.S., Jin, X., Bonhoeffer, S., Moss, P., Nowak, M.A., Monard, S., Segal, J.P., Cao, Y., Rowland-Jones, S.L., Hurley, A., Markowitz, M., Ho, D.D., McMichael, A.J., Nixon, D.F.: Decay kinetics of human immunodeficiency virus-specific effector cytotoxic t lymphocytes after combination antiretroviral therapy. J. Virol. 73(1), 797–800 (1999)

    Google Scholar 

  20. Komarova, N.L., Barnes, E., Klenerman, P., Wodarz, D.: Boosting immunity by antiviral drug therapy: a simple relationship among timing, efficacy, and success. Proc. Natl. Acad. Sci. U S A 100(4), 1855–1860 (2003)

    Article  Google Scholar 

  21. Wodarz, D.: Helper-dependent vs. helper-independent ctl responses in hiv infection: implications for drug therapy and resistance. J. Theor. Biol. 213(3), 447–459 (2001)

    Article  Google Scholar 

  22. Wodarz, D., Nowak, M.: Specific therapy regimes could lead to long-term control of hiv. Proc. Natl. Acad. Sci. USA 96, 14,464–14,469 (1999)

    Google Scholar 

  23. Lifson, J., Rossio, J., Arnaout, R., Li, L., Parks, T., Schneider, D., Kiser, R., Coalter, V., Walsh, G., Imming, R., Fischer, B., Flynn, B., Nowak, M., Wodarz, D.: Containment of siv infection: cellular immune responses and protection from rechallenge following transient post-inoculation antiretroviral treatment. J. Virol. 74, 2584–2593 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia L. Komarova .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Komarova, N.L., Wodarz, D. (2014). Basic Dynamics of Chronic Myeloid Leukemia During Imatinib Treatment. In: Targeted Cancer Treatment in Silico. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-8301-4_3

Download citation

Publish with us

Policies and ethics