Basic Dynamics of Chronic Myeloid Leukemia During Imatinib Treatment

Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Treatment with tyrosine kinase inhibitors, such as imatinib, have led to impressive therapy responses in the clinic. This chapter will discuss the pattern of decline of the BCR-ABL transcript numbers during treatment, and explore different hypotheses to explain them. Treatment typically results in a bi-phasic decline of BCR-ABL transcript numbers, where a faster phase of decline is followed by a slower phase. The earliest hypotheses tried to explain this pattern by assuming that more differentiated tumor cells are susceptible to the drug, while tumor stem cells are resistant. Subsequent work showed that the bi-phasic decline, and other, less common decline patterns found among patients, can be explained by differential susceptibility to the drug by activated and quiescent tumor stem cells. In addition to the basic tumor cell dynamics, mathematical models have also indicated that a transient rise of anti-tumor immunity during treatment could contribute to determining the pattern of treatment response. Implications of the different hypotheses for treatment strategies are discussed.

Keywords

CML BCR-ABL Treatment Bi-phasic decline  Stem cells Cellular quiescence Cycling cells Tumor heterogeneity Immunity Resistance T cells CD8+ cells CD4+ cells Population dynamics of cells Long-term remission 

References

  1. 1.
    Michor, F., Hughes, T.P., Iwasa, Y., Branford, S., Shah, N.P., Sawyers, C.L., Nowak, M.A.: Dynamics of chronic myeloid leukaemia. Nature 435(7046), 1267–1270 (2005)CrossRefGoogle Scholar
  2. 2.
    Roeder, I., Horn, M., Glauche, I., Hochhaus, A., Mueller, M.C., Loeffler, M.: Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat. Med. 12(10), 1181–1184 (2006)CrossRefGoogle Scholar
  3. 3.
    Reya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L.: Stem cells, cancer, and cancer stem cells. Nature 414(6859), 105–111 (2001)CrossRefGoogle Scholar
  4. 4.
    Teschl, G.: Ordinary Differential Equations and Dynamical Systems, vol. 140. American Mathematical Society, Providence (2012)Google Scholar
  5. 5.
    Rousselot, P., Huguet, F., Rea, D., Legros, L., Cayuela, J.M., Maarek, O., Blanchet, O., Marit, G., Gluckman, E., Reiffers, J., Gardembas, M., Mahon, F.X.: Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than two years. Blood 109(1), 58–60 (2007)Google Scholar
  6. 6.
    Wodarz, D.: Heterogeneity in chronic myeloid leukaemia dynamics during imatinib treatment: role of immune responses. Proc. Biol. Sci. 277(1689), 1875–1880 (2010)CrossRefGoogle Scholar
  7. 7.
    Deininger, M.W., Druker, B.J.: Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol. Rev. 55(3), 401–423 (2003)CrossRefGoogle Scholar
  8. 8.
    Druker, B.J.: Overcoming resistance to imatinib by combining targeted agents. Mol. Cancer. Ther. 2(3), 225–226 (2003)Google Scholar
  9. 9.
    Druker, B.J.: Imatinib as a paradigm of targeted therapies. Adv. Cancer. Res. 91, 1–30 (2004)CrossRefGoogle Scholar
  10. 10.
    Gambacorti-Passerini, C.B., Gunby, R.H., Piazza, R., Galietta, A., Rostagno, R., Scapozza, L.: Molecular mechanisms of resistance to imatinib in philadelphia-chromosome-positive leukaemias. Lancet Oncol. 4(2), 75–85 (2003)CrossRefGoogle Scholar
  11. 11.
    Gorre, M.E., Mohammed, M., Ellwood, K., Hsu, N., Paquette, R., Rao, P.N., Sawyers, C.L.: Clinical resistance to sti-571 cancer therapy caused by bcr-abl gene mutation or amplification. Science 293(5531), 876–880 (2001)CrossRefGoogle Scholar
  12. 12.
    Nardi, V., Azam, M., Daley, G.Q.: Mechanisms and implications of imatinib resistance mutations in bcr-abl. Curr. Opin. Hematol. 11(1), 35–43 (2004)CrossRefGoogle Scholar
  13. 13.
    Shah, N.P., Tran, C., Lee, F.Y., Chen, P., Norris, D., Sawyers, C.L.: Overriding imatinib resistance with a novel abl kinase inhibitor. Science 305(5682), 399–401 (2004)CrossRefGoogle Scholar
  14. 14.
    Chen, C.I., Maecker, H.T., Lee, P.P.: Development and dynamics of robust t-cell responses to cml under imatinib treatment. Blood 111(11), 5342–5349 (2008)CrossRefGoogle Scholar
  15. 15.
    Kim, P.S., Lee, P.P., Levy, D.: Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput Biol 4(6), e1000,095 (2008)Google Scholar
  16. 16.
    Wang, H., Cheng, F., Cuenca, A., Horna, P., Zheng, Z., Bhalla, K., Sotomayor, E.M.: Imatinib mesylate (sti-571) enhances antigen-presenting cell function and overcomes tumor-induced cd4+ t-cell tolerance. Blood 105(3), 1135–1143 (2005)CrossRefGoogle Scholar
  17. 17.
    Barnes, E., Harcourt, G., Brown, D., Lucas, M., Lechner, F., Phillips, R., Dusheiko, G., Klenerman, P.: In: Effects of combination therapy for hepatits c virus on virus-specific immune responses. (2002, Hepatology in press)Google Scholar
  18. 18.
    Kalams, S.A., Buchbinder, S.P., Rosenberg, E.S., Billingsley, J.M., Colbert, D.S., Jones, N.G., Shea, A.K., Trocha, A.K., Walker, B.D.: Association between virus-specific cytotoxic t-lymphocyte and helper responses in human immunodeficiency virus type 1 infection. J. Virol. 73(8), 6715–6720 (1999)Google Scholar
  19. 19.
    Ogg, G.S., Jin, X., Bonhoeffer, S., Moss, P., Nowak, M.A., Monard, S., Segal, J.P., Cao, Y., Rowland-Jones, S.L., Hurley, A., Markowitz, M., Ho, D.D., McMichael, A.J., Nixon, D.F.: Decay kinetics of human immunodeficiency virus-specific effector cytotoxic t lymphocytes after combination antiretroviral therapy. J. Virol. 73(1), 797–800 (1999)Google Scholar
  20. 20.
    Komarova, N.L., Barnes, E., Klenerman, P., Wodarz, D.: Boosting immunity by antiviral drug therapy: a simple relationship among timing, efficacy, and success. Proc. Natl. Acad. Sci. U S A 100(4), 1855–1860 (2003)CrossRefGoogle Scholar
  21. 21.
    Wodarz, D.: Helper-dependent vs. helper-independent ctl responses in hiv infection: implications for drug therapy and resistance. J. Theor. Biol. 213(3), 447–459 (2001)CrossRefGoogle Scholar
  22. 22.
    Wodarz, D., Nowak, M.: Specific therapy regimes could lead to long-term control of hiv. Proc. Natl. Acad. Sci. USA 96, 14,464–14,469 (1999)Google Scholar
  23. 23.
    Lifson, J., Rossio, J., Arnaout, R., Li, L., Parks, T., Schneider, D., Kiser, R., Coalter, V., Walsh, G., Imming, R., Fischer, B., Flynn, B., Nowak, M., Wodarz, D.: Containment of siv infection: cellular immune responses and protection from rechallenge following transient post-inoculation antiretroviral treatment. J. Virol. 74, 2584–2593 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaIrvineUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations