Skip to main content

Hydrogen and Oxygen Detection from Photoelectrodes

  • Chapter
  • First Online:
Photoelectrochemical Water Splitting

Abstract

The chemical products of PEC water splitting processes are the evolved hydrogen and oxygen gases. Standard experimental methods for detecting and validating the quantity and quality of the product gases are critical. Faradaic efficiencies for the water splitting reaction in the given system can be determined. Three examples of PEC reactors are discussed, including batch, flow, and recirculating batch reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  2. K. Fujii, T. Karasawa, K. Ohkawa, Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation. Jpn. J. Appl. Phys. 44, 543–545 (2005)

    Article  Google Scholar 

  3. O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)

    Article  CAS  Google Scholar 

  4. H. Baltruschat, Differential electrochemical mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 1693–1706 (2004)

    Article  CAS  Google Scholar 

  5. O. Wolter, J. Willsau, J. Heitbaum, Reaction pathways of the anodic oxidation of formic acid on Pt evidenced by 18O labeling—a DEMS study. J. Electrochem. Soc. 132, 1635–1638 (1985)

    Article  CAS  Google Scholar 

  6. S. Wasmus, S.R. Samms, R.F. Savinell, Multipurpose electrochemical mass spectrometry: a new powerful extension of differential electrochemical mass spectrometry. J. Electrochem. Soc. 142, 1183–1189 (1995)

    Article  CAS  Google Scholar 

  7. M. Fujihara, T. Noguchi, A novel differential electrochemical mass spectrometer (DEMS) with a stationary gas-permeable electrode in a rotational flow produced by a rotating rod. J. Electroanal. Chem. 347, 457–463 (1993)

    Article  Google Scholar 

  8. P. Bogdanoff, N. Alonso-Vante, on-line determination via differential electrochemical mass spectroscopy (DEMS) of chemical products formed in photoelectrocatalytical systems. Berichte der Bunsengellschaft fur physikalische Chem. 97, 940–943 (1993)

    Article  CAS  Google Scholar 

  9. K. Takanabe, E. Iglesia, Mechanistic aspects and reaction pathways for oxidative coupling of methane on Mn/Na2WO4/SiO2 catalysts. J. Phys. Chem. C 113, 10131–10145 (2009)

    Article  CAS  Google Scholar 

  10. R. Abe, M. Higashi, K. Domen, facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J. Am. Chem. Soc. 132, 11828–11829 (2010)

    Article  CAS  Google Scholar 

  11. H. Hashiguchi, K. Maeda, R. Abe, A. Ishikawa, J. Kubota, K. Domen, Photoresponse of GaN:ZnO electrode on FTO under visible light irradiation. Bull. Chem. Soc. Jpn. 82, 401–407 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Miller .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Chen, Z. et al. (2013). Hydrogen and Oxygen Detection from Photoelectrodes. In: Photoelectrochemical Water Splitting. SpringerBriefs in Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8298-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8298-7_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8297-0

  • Online ISBN: 978-1-4614-8298-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics