Skip to main content

UV-Vis Spectroscopy

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

In a UV-Vis (ultraviolet-visible light) spectroscopic measurement, light absorption as a function of wavelength provides information about electronic transitions occurring in the material. For semiconductors, UV-Vis spectroscopy offers a convenient method of estimating the optical band gap, since it probes electronic transitions between the valence band and the conduction band. Transmission UV-Vis, Diffuse Reflectance UV-Vis, and Absorption UV-Vis configurations are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.M. Sze and K.K. Ng: Physics of semiconductor devices (Wiley, New York, 2006)

    Google Scholar 

  2. Integrating spheres–introduction and theory. Comprehensive Catalog of FTIR Accessories and Supplies (2005)

    Google Scholar 

  3. J.D. Dow, D. Redfield, Electroabsorption in semiconductors: The excitonic absorption edge. Phys. Rev. B 1, 3358–3371 (1970)

    Article  Google Scholar 

  4. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Phil. Mag. 22, 903–922 (1970)

    Article  CAS  Google Scholar 

  5. D.L. Wood and J. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B, 5, 3144–3151 (1972)

    Google Scholar 

  6. M. Anwar, C.A. Hogarth, Optical properties of amorphous thin films of MoO3 deposited by vacuum evaporation. Phys. Status Solidi 109, 469 (1988)

    Article  CAS  Google Scholar 

  7. K. Santra, C.K. Sarkar, M.K. Mukherjee, B. Ghosh, Copper oxide thin films grown by plasma evaporation method. Thin Solid Films 213, 226–229 (1992)

    Article  CAS  Google Scholar 

  8. F.P. Koffyberg, K. Dwight, A. Wold, Interband transitions of semiconducting oxides determined from photoelectrolysis spectra. Solid State Commun. 30, 433–437 (1979)

    Article  CAS  Google Scholar 

  9. R.J. Elliott, Intensity of optical absorption by excitons. Phys. Rev. 108, 1384–1389 (1957)

    Article  CAS  Google Scholar 

  10. J. Tauc, Grigorov.R and A. Vancu, Optical properties and electronic structure of amorphous germanium. J. Phys. Soc. Jpn. S 21, 123 (1966)

    Google Scholar 

  11. J. Tauc, A. Menth and D.L. Wood, optical and magnetic investigations of localized states in semiconducting glasses. Phys. Rev. Lett. 25, 749–752 (1970)

    Google Scholar 

  12. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  13. R.A. Street, N.F. Mott, States in the gap in glassy semiconductors. Phys. Rev. Lett. 35, 1293–1296 (1975)

    Article  CAS  Google Scholar 

  14. J. Tauc, A. Menth, D.L. Wood, Optical and magnetic investigations of the localized states in semiconducting glasses. Phys. Rev. Lett. 25, 749–752 (1970)

    Article  CAS  Google Scholar 

  15. Y.I. Kim, S.J. Atherton, E.S. Brigham, T.E. Mallouk, Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. J. Phys. Chem. 97, 11802–11810 (1993)

    Article  CAS  Google Scholar 

  16. P. Kubelka, New contributions to th eoptics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 38, 449–457 (1948)

    Google Scholar 

  17. A.P. Finlayson, V.N. Tsaneva, L. Lyons, M. Clark, B.A. Glowacki, Evaluation of Bi-W-oxides for visible light photocatalysis. Phys. Status Solidi 203, 327–335 (2006)

    Article  CAS  Google Scholar 

  18. N. Kislov, S.S. Srinivasan, Y. Emirov, E.K. Stefanakos, Optical absorption red and blue shifts in ZnFe2O4 nanoparticles. Mater. Sci. Eng. B 153, 70–77 (2008)

    Article  CAS  Google Scholar 

  19. E.S. Brigham, C.S. Weisbecker, W.E. Rudzinski, T.E. Mallouk, Stabilization of intrazeolitic cadmium telluride nanoclusters by ion exchange. Chem. Mater. 8, 2121–2127 (1996)

    Article  CAS  Google Scholar 

  20. D.G. Barton, M. Shtein, R.D. Wilson, S.L. Soled, E. Iglesia, Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 103, 630–640 (1999)

    Article  CAS  Google Scholar 

  21. A.B. Murphy, Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water splitting. Sol. Energy Mater. Sol. Cells 91, 1326–1337 (2007)

    Article  CAS  Google Scholar 

  22. A.B. Murphy, Optical properties of an optically rough coating from inversion of diffuse reflectance measurements. Appl. Opt. 46, 3133–3143 (2007)

    Article  CAS  Google Scholar 

  23. V.F. Drobny, D.L. Pulfrey, Properties of reactively-sputtered copper-oxide thin-films. Thin.Solid.Films 61, 89–98 (1979)

    Article  CAS  Google Scholar 

  24. A.E. Rakhshani, J. Varghese, Optical-absorption coefficient and thickness measurement of electrodeposited films of Cu2O. Phys. Status Solidi A-Appl. Res. 101, 479–486 (1987)

    Article  CAS  Google Scholar 

  25. H. Wieder, A.W. Czanderna, Optical properties of copper oxide films. J. Appl. Phys. 37, 184–187 (1966)

    Article  CAS  Google Scholar 

  26. Z. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A.J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E.W. McFarland, K. Domen, E.L. Miller, J.A. Turner, H.N. Dinh, Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010)

    Article  Google Scholar 

  27. X. Mathew, N.R. Mathews, P.J. Sebastian, Temperature dependence of the optical transitions in electrodeposited Cu2O thin films. Sol. Energy Mater. Sol. Cells 70, 277–286 (2001)

    Article  CAS  Google Scholar 

  28. B. Balamurugan, B.R. Mehta, D.K. Avasthi, F. Singh, A.K. Arora, M. Rajalakshmi, G. Raghavan, A.K. Tyagi, S.M. Shivaprasad, Modifying the nanocrystalline characteristics-structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation. J. Appl. Phys. 92, 3304–3310 (2002)

    Article  CAS  Google Scholar 

  29. J.F. Pierson, A. Thobor-Keck, A. Billard, Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering. Appl. Surf. Sci. 210, 359–367 (2003)

    Article  CAS  Google Scholar 

  30. N.A.M. Shanid, M.A. Khadar, Evolution of nanostructure, phase transition and band gap tailoring in oxidized Cu thin films. Thin Solid Films 516, 6245–6252 (2008)

    Article  CAS  Google Scholar 

  31. T. Kosugi, S. Kaneko, Novel spray-pyrolysis deposition of cuprous oxide thin films. J. Am. Ceram. Soc. 81, 3117–3124 (1998)

    Article  CAS  Google Scholar 

  32. A.E. Rakhshani, Preparation, characteristics and photovoltaic properties of cuprous-oxide–a review. Solid-State. Electron. 29, 7–17 (1986)

    Article  CAS  Google Scholar 

  33. K. Santra, C.K. Sarkar, M.K. Mukherjee, B. Ghosh, Copper-oxide thin-films grown by plasma evaporation method. Thin Solid Films 213, 226–229 (1992)

    Article  CAS  Google Scholar 

  34. P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Cu2O: Electrodeposition and characterization. Chem. Mat. 11, 3512–3517 (1999)

    Article  Google Scholar 

  35. A.S. Reddy, G.V. Rao, S. Uthanna, P.S. Reddy, Structural and optical studies on do reactive magnetron sputtered Cu2O films. Mater. Lett. 60, 1617–1621 (2006)

    Article  CAS  Google Scholar 

  36. T. Mahalingam, J.S.P. Chitra, J.P. Chu, H.Moon, H.J. Kwon and Y.D. Kim, Photoelectrochemical solar cell studies on electroplated cuprous oxide thin films. J. Mater. Sci.-Mater. Electron. 17, 519–523 (2006)

    Google Scholar 

  37. W. Siripala, L. Perera, K.T.L. DeSilva, J. Jayanetti, I.M. Dharmadasa, Study of annealing effects of cuprous oxide grown by electrodeposition technique. Sol. Energy Mater. Sol. Cells 44, 251–260 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Chen, Z. et al. (2013). UV-Vis Spectroscopy. In: Photoelectrochemical Water Splitting. SpringerBriefs in Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8298-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8298-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8297-0

  • Online ISBN: 978-1-4614-8298-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics