Experimental Considerations

  • Zhebo Chen
  • Todd G. Deutsch
  • Huyen N. Dinh
  • Kazunari Domen
  • Keith Emery
  • Arnold J. Forman
  • Nicolas Gaillard
  • Roxanne Garland
  • Clemens Heske
  • Thomas F. Jaramillo
  • Alan Kleiman-Shwarsctein
  • Eric Miller
  • Kazuhiro Takanabe
  • John Turner
Chapter
Part of the SpringerBriefs in Energy book series (BRIEFSENERGY)

Abstract

Standardized characterization of PEC materials and photoelectrodes requires careful attention to experimental methods in sample preparation and testing setups. Fundamental experimental considerations are discussed in this chapter.

Keywords

TiO2 Surfactant Platinum Recombination Catalysis 

References

  1. 1.
    H.L. Wang, T. Deutsch, J.A. Turner, Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155, F91–F96 (2008)CrossRefGoogle Scholar
  2. 2.
    I. Matulionis, F. Zhu, J. Hu, T. Deutsch, A. Kunrath, E. Miller, B. Marsen, A. Madan, Development of a corrosion-resistant amorphous silicon carbide photoelectrode for solar-to-hydrogen photovoltaic/photoelectrochemical devices. Paper presented at Conference on Solar Hydrogen and Nanotechnology III (2008)Google Scholar
  3. 3.
    B. Marsen, B. Cole, E.L. Miller, Influence of sputter oxygen partial pressure on photoelectrochemical performance of tungsten oxide films. Sol. Energy Mater. Sol. Cells 91, 1954–1958 (2007)CrossRefGoogle Scholar
  4. 4.
    Y.-S. Hu, A. Kleiman-Shwarsctein, A.J. Forman, D. Hazen, J.-N. Park, E.W. McFarland, Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mat. 20, 3803–3805 (2008)CrossRefGoogle Scholar
  5. 5.
    A. Kleiman-Shwarsctein, Y.-S. Hu, A.J. Forman, G.D. Stucky, E.W. McFarland, Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 112, 15900–15907 (2008)CrossRefGoogle Scholar
  6. 6.
    W.M. Sachtler, G.J.H. Dorgelo, A.A. Holscher, Work function of gold. Surf. Sci. 5, 221 (1966)CrossRefGoogle Scholar
  7. 7.
    J. Westlinder, G. Sjoblom, J. Olsson, Variable work function in MOS capacitors utilizing nitrogen-controlled TiNx gate electrodes. Microelectron. Eng. 75, 389–396 (2004)CrossRefGoogle Scholar
  8. 8.
    N. Gaillard, M. Gros-Jean, D. Mariolle, F. Bertin, A. Bsiesy, Method to assess the grain crystallographic orientation with a submicronic spatial resolution using Kelvin probe force microscope. Appl. Phys. Lett. 89, 154101 (2006)Google Scholar
  9. 9.
    M.D. Deal, J.D. Plummer, P.B. Griffin, Silicon VLSI Technology Fundamentals, Practice and Modeling (Prentice Hall, Upper Saddle River, 2000), p. 817 Google Scholar
  10. 10.
    B. Marsen, B. Cole, E.L. Miller, Photoelectrolysis of water using thin copper gallium diselenide electrodes. Sol. Energy Mater. Sol. Cells 92, 1054–1058 (2008)CrossRefGoogle Scholar
  11. 11.
    N.S. Gaikwad, G. Waldner, A. Bruger, A. Belaidi, S.M. Chaqour, M. Neumann-Spallart, Photoelectrochemical characterization of semitransparent WO3 films. J. Electrochem. Soc. 152, G411–G416 (2005)CrossRefGoogle Scholar
  12. 12.
    O. Khaselev, J.A. Turner, A monolithic photovoltaic–photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)CrossRefGoogle Scholar
  13. 13.
    T.G. Deutsch, C.A. Koval, J.A. Turner, III–V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN. J. Phys. Chem. B 110, 25297–25307 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Kay, I. Cesar, M. Gratzel, New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)CrossRefGoogle Scholar
  15. 15.
    W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S.H. Baeck, E.W. McFarland, A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol. Energy Mater. Sol. Cells 77, 229–237 (2003)CrossRefGoogle Scholar
  16. 16.
    J.-N. Nian, C.-C. Hu, H. Teng, Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. Int. J. Hydrog. Energy 33, 2897–2903 (2008)CrossRefGoogle Scholar
  17. 17.
    T.F. Jaramillo, S.H. Baeck, A. Kleiman-Shwarsctein, K.S. Choi, G.D. Stucky, E.W. McFarland, Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCoxO thin films for solar hydrogen production. J. Comb. Chem. 7, 264–271 (2005)CrossRefGoogle Scholar
  18. 18.
    L.J. Minggu, W.R.W. Daud, M.B. Kassim, An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrog. Energy 35, 5233–5244 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Haussener, C. Xiang, J.M. Spurgeon, S. Ardo, N.S. Lewis, A.Z. Weber, Modeling, simulation, and design criteria for photoelectrochemical water splitting systems. Energy Environ. Sci. 5, 9922–9935 (2012)CrossRefGoogle Scholar
  20. 20.
    Z. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A.J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E.W. McFarland, K. Domen, E.L. Miller, J.A. Turner, H.N. Dinh, Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010)CrossRefGoogle Scholar
  21. 21.
    P. Vanysek, CRC Handbook of Chemistry and Physics. Electrochemical Series, vol 78, (CRC Press, Boca Raton, 1997), pp. 8-20–8-33Google Scholar
  22. 22.
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (NACE, Houston, 1974)Google Scholar
  23. 23.
    O. Khaselev, J.A. Turner, A monolithic photovoltaic–photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)CrossRefGoogle Scholar
  24. 24.
    A.K.M.F. Kibria, S.A. Tarafdar, Electrochemical studies of a nickel–copper electrode for the oxygen evolution reaction (OER). Int. J. Hydrog. Energy 27, 879–884 (2002)CrossRefGoogle Scholar
  25. 25.
    M.F. Kibria, M.S. Mridha, Electrochemical studies of the nickel electrode for the oxygen evolution reaction. Int. J. Hydrog. Energy 21, 179–182 (1996)CrossRefGoogle Scholar
  26. 26.
    E.L. Miller, R.E. Rocheleau, Electrochemical behavior of reactively sputtered iron-doped nickel oxide. J. Electrochem. Soc. 144, 3072–3077 (1997)CrossRefGoogle Scholar
  27. 27.
    Z. Chen, D. Cummins, B.N. Reinecke, E. Clark, M.K. Sunkara, T.F. Jaramillo, Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 11, 4168–4175 (2011)Google Scholar
  28. 28.
    Y. Zhao, E.A. Hernandez-Pagan, N.M. Vargas-Barbosa, J.L. Dysart, T.E. Mallouk, A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity. The Journal of Physical Chemistry Letters 2, 402–406 (2011)CrossRefGoogle Scholar
  29. 29.
    A. Kleiman-Schwarsctein, A.B. Laursen, F. Cavalca, W. Tang, S. Dahl, I. Chorkendorff, A general route for RuO2 deposition on metal oxides from RuO4. Chem. Commun. 48, 967–969 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Szklarczyk, J.O.M. Bockris, Photoelectrochemical evolution of hydrogen on p-indium phosphide. J. Phys. Chem. 88, 5241–5242 (1984)CrossRefGoogle Scholar
  31. 31.
    R.N. Dominey, N.S. Lewis, J.A. Bruce, D.C. Bookbinder, M.S. Wrighton, Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. J. Am. Chem. Soc. 104, 467–482 (1982)CrossRefGoogle Scholar
  32. 32.
    R.C. Kainthla, B. Zelenay, J.O.M. Bockris, Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis. J. Electrochem. Soc. 134, 841–845 (1987)CrossRefGoogle Scholar
  33. 33.
    B.-O. Park, C.D. Lokhande, H.-S. Park, K.-D. Jung, O.-S. Joo, Cathodic electrodeposition of RuO2 thin films from Ru(III)Cl3 solution. Mater. Chem. Phys. 87, 59–66 (2004)CrossRefGoogle Scholar
  34. 34.
    C.-C. Hu, M.-J. Liu, K.-H. Chang, Anodic deposition of hydrous ruthenium oxide for supercapacitors. J. Power Sources 163, 1126–1131 (2007)CrossRefGoogle Scholar
  35. 35.
    M. Alvisi, G. Galtieri, L. Giorgi, R. Giorgi, E. Serra, M.A. Signore, Sputter deposition of Pt nanoclusters and thin films on PEM fuel cell electrodes. Surf. Coat. Technol. 200, 1325–1329 (2005)CrossRefGoogle Scholar
  36. 36.
    W.-T. Lee, D.-S. Tsai, Y.-M. Chen, Y.-S. Huang, W.-H. Chung, Area-selectively sputtering the RuO2 nanorods array. Appl. Surf. Sci. 254, 6915–6921 (2008)CrossRefGoogle Scholar
  37. 37.
    T.P. Gujar, V.R. Shinde, C.D. Lokhande, W.-Y. Kim, K.-D. Jung, O.-S. Joo, Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochem. Commun. 9, 504–510 (2007)CrossRefGoogle Scholar
  38. 38.
    J.V. Ryan, A.D. Berry, M.L. Anderson, J.W. Long, R.M. Stroud, V.M. Cepak, V.M. Browning, D.R. Rolison, C.I. Merzbacher, Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2. Nature Mater. 406, 169–172 (2000)CrossRefGoogle Scholar
  39. 39.
    K.S. Lyons, D.R. Rolison, Selective deposition of hydrous ruthenium oxide thin films (2003)Google Scholar
  40. 40.
    K.E. Swider-Lyons, C.T. Love, D.R. Rolison, Selective vapor deposition of hydrous RuO2 thin films. J. Electrochem. Soc. 152, C158–C162 (2005)CrossRefGoogle Scholar
  41. 41.
    Z. Yuan, R.J. Puddephatt, M. Slayer, Low-temperature chemical vapor deposition of ruthenium dioxide from ruthenium tetroxide: A simple approach to high-purity RuO2 films. Chem. Mat. 5, 908–910 (1993)CrossRefGoogle Scholar
  42. 42.
    D.R. Myers, K. Emery, C. Gueymard, Revising and validating spectral irradiance reference standards for photovoltaic performance evaluation. J. Sol. Energy Eng. 126, 567–574 (2004)CrossRefGoogle Scholar
  43. 43.
    American Society for Testing Materials, Standard for Solar Constant and Air Mass Zero Solar Spectral Irradiance Tables, Standard ASTM E490-00a, West Conshocken, PA (2006)Google Scholar
  44. 44.
    R.J. Matson, K.A. Emery, R.E. Bird, Terrestrial solar spectra, solar simulation and solar cell short-circuit current calibration: A review. Solar Cells 11, 105–145 (1984)CrossRefGoogle Scholar
  45. 45.
    M.A. Green, Solar Cells: Operating Principles, Technology and System Applications (Prentice Hall, Englewood Cliffs, 1998)Google Scholar
  46. 46.
    Terrestrial Photovoltaic Measurement Procedures, National Aeronautics and Space Administration, Technical Report TM 73702 (1977)Google Scholar
  47. 47.
    A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrog. Energy 31, 1999–2017 (2006)CrossRefGoogle Scholar
  48. 48.
    K.W. Boer, The solar spectrum at typical clear weather days. Sol. Energy 19, 525–538 (1977)CrossRefGoogle Scholar
  49. 49.
    J.R. Bolton, D.O. Hall, Photochemical conversion and storage of solar energy. Ann. Rev. Energy 4, 353–401 (1979)CrossRefGoogle Scholar
  50. 50.
    K.A. Emery, Solar simulators and I-V measurement methods. Solar Cells 18, 251–260 (1986)CrossRefGoogle Scholar
  51. 51.
    D. Romang, J. Meier, R. Adelhelm, U. Kroll, Reference solar cell reflections in solar simulators, in Proceedings of 26th European Photovoltaic Solar Energy Conference and Exhibition, 3AV.1.64 (2011)Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Zhebo Chen
    • 1
  • Todd G. Deutsch
    • 2
  • Huyen N. Dinh
    • 2
  • Kazunari Domen
    • 3
  • Keith Emery
    • 4
  • Arnold J. Forman
    • 5
  • Nicolas Gaillard
    • 6
  • Roxanne Garland
    • 7
  • Clemens Heske
    • 8
  • Thomas F. Jaramillo
    • 1
  • Alan Kleiman-Shwarsctein
    • 9
  • Eric Miller
    • 7
  • Kazuhiro Takanabe
    • 10
  • John Turner
    • 2
  1. 1.Department of Chemical EngineeringStanford UniversityStanfordUSA
  2. 2.Hydrogen Technologies and Systems CenterNational Renewable Energy LaboratoryGoldenUSA
  3. 3.Department of Chemical System EngineeringUniversity of TokyoTokyoJapan
  4. 4.National Center for PhotovoltaicsNational Renewable Energy LaboratoryGoldenUSA
  5. 5.Department of Chemistry and BiochemistryUniversity of California—Santa BarbaraSanta BarbaraUSA
  6. 6.Hawaii Natural Energy InstituteUniversity of Hawaii at ManoaHonoluluUSA
  7. 7.Fuel Cell Technologies OfficeU.S. Department of EnergyWashingtonUSA
  8. 8.Department of ChemistryUniversity of Nevada—Las VegasLas VegasUSA
  9. 9.Department of Chemical EngineeringUniversity of California—Santa BarbaraSanta BarbaraUSA
  10. 10.Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwallSaudi Arabia

Personalised recommendations