Skip to main content

Experimental Considerations

  • Chapter
  • First Online:
Photoelectrochemical Water Splitting

Abstract

Standardized characterization of PEC materials and photoelectrodes requires careful attention to experimental methods in sample preparation and testing setups. Fundamental experimental considerations are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.L. Wang, T. Deutsch, J.A. Turner, Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155, F91–F96 (2008)

    Article  CAS  Google Scholar 

  2. I. Matulionis, F. Zhu, J. Hu, T. Deutsch, A. Kunrath, E. Miller, B. Marsen, A. Madan, Development of a corrosion-resistant amorphous silicon carbide photoelectrode for solar-to-hydrogen photovoltaic/photoelectrochemical devices. Paper presented at Conference on Solar Hydrogen and Nanotechnology III (2008)

    Google Scholar 

  3. B. Marsen, B. Cole, E.L. Miller, Influence of sputter oxygen partial pressure on photoelectrochemical performance of tungsten oxide films. Sol. Energy Mater. Sol. Cells 91, 1954–1958 (2007)

    Article  CAS  Google Scholar 

  4. Y.-S. Hu, A. Kleiman-Shwarsctein, A.J. Forman, D. Hazen, J.-N. Park, E.W. McFarland, Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mat. 20, 3803–3805 (2008)

    Article  CAS  Google Scholar 

  5. A. Kleiman-Shwarsctein, Y.-S. Hu, A.J. Forman, G.D. Stucky, E.W. McFarland, Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 112, 15900–15907 (2008)

    Article  CAS  Google Scholar 

  6. W.M. Sachtler, G.J.H. Dorgelo, A.A. Holscher, Work function of gold. Surf. Sci. 5, 221 (1966)

    Article  CAS  Google Scholar 

  7. J. Westlinder, G. Sjoblom, J. Olsson, Variable work function in MOS capacitors utilizing nitrogen-controlled TiNx gate electrodes. Microelectron. Eng. 75, 389–396 (2004)

    Article  CAS  Google Scholar 

  8. N. Gaillard, M. Gros-Jean, D. Mariolle, F. Bertin, A. Bsiesy, Method to assess the grain crystallographic orientation with a submicronic spatial resolution using Kelvin probe force microscope. Appl. Phys. Lett. 89, 154101 (2006)

    Google Scholar 

  9. M.D. Deal, J.D. Plummer, P.B. Griffin, Silicon VLSI Technology Fundamentals, Practice and Modeling (Prentice Hall, Upper Saddle River, 2000), p. 817

    Google Scholar 

  10. B. Marsen, B. Cole, E.L. Miller, Photoelectrolysis of water using thin copper gallium diselenide electrodes. Sol. Energy Mater. Sol. Cells 92, 1054–1058 (2008)

    Article  CAS  Google Scholar 

  11. N.S. Gaikwad, G. Waldner, A. Bruger, A. Belaidi, S.M. Chaqour, M. Neumann-Spallart, Photoelectrochemical characterization of semitransparent WO3 films. J. Electrochem. Soc. 152, G411–G416 (2005)

    Article  CAS  Google Scholar 

  12. O. Khaselev, J.A. Turner, A monolithic photovoltaic–photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)

    Article  CAS  Google Scholar 

  13. T.G. Deutsch, C.A. Koval, J.A. Turner, III–V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN. J. Phys. Chem. B 110, 25297–25307 (2006)

    Article  CAS  Google Scholar 

  14. A. Kay, I. Cesar, M. Gratzel, New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)

    Article  CAS  Google Scholar 

  15. W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S.H. Baeck, E.W. McFarland, A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol. Energy Mater. Sol. Cells 77, 229–237 (2003)

    Article  CAS  Google Scholar 

  16. J.-N. Nian, C.-C. Hu, H. Teng, Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. Int. J. Hydrog. Energy 33, 2897–2903 (2008)

    Article  CAS  Google Scholar 

  17. T.F. Jaramillo, S.H. Baeck, A. Kleiman-Shwarsctein, K.S. Choi, G.D. Stucky, E.W. McFarland, Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCoxO thin films for solar hydrogen production. J. Comb. Chem. 7, 264–271 (2005)

    Article  CAS  Google Scholar 

  18. L.J. Minggu, W.R.W. Daud, M.B. Kassim, An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrog. Energy 35, 5233–5244 (2010)

    Article  CAS  Google Scholar 

  19. S. Haussener, C. Xiang, J.M. Spurgeon, S. Ardo, N.S. Lewis, A.Z. Weber, Modeling, simulation, and design criteria for photoelectrochemical water splitting systems. Energy Environ. Sci. 5, 9922–9935 (2012)

    Article  CAS  Google Scholar 

  20. Z. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A.J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E.W. McFarland, K. Domen, E.L. Miller, J.A. Turner, H.N. Dinh, Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010)

    Article  Google Scholar 

  21. P. Vanysek, CRC Handbook of Chemistry and Physics. Electrochemical Series, vol 78, (CRC Press, Boca Raton, 1997), pp. 8-20–8-33

    Google Scholar 

  22. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (NACE, Houston, 1974)

    Google Scholar 

  23. O. Khaselev, J.A. Turner, A monolithic photovoltaic–photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)

    Article  CAS  Google Scholar 

  24. A.K.M.F. Kibria, S.A. Tarafdar, Electrochemical studies of a nickel–copper electrode for the oxygen evolution reaction (OER). Int. J. Hydrog. Energy 27, 879–884 (2002)

    Article  Google Scholar 

  25. M.F. Kibria, M.S. Mridha, Electrochemical studies of the nickel electrode for the oxygen evolution reaction. Int. J. Hydrog. Energy 21, 179–182 (1996)

    Article  CAS  Google Scholar 

  26. E.L. Miller, R.E. Rocheleau, Electrochemical behavior of reactively sputtered iron-doped nickel oxide. J. Electrochem. Soc. 144, 3072–3077 (1997)

    Article  CAS  Google Scholar 

  27. Z. Chen, D. Cummins, B.N. Reinecke, E. Clark, M.K. Sunkara, T.F. Jaramillo, Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 11, 4168–4175 (2011)

    Google Scholar 

  28. Y. Zhao, E.A. Hernandez-Pagan, N.M. Vargas-Barbosa, J.L. Dysart, T.E. Mallouk, A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity. The Journal of Physical Chemistry Letters 2, 402–406 (2011)

    Article  CAS  Google Scholar 

  29. A. Kleiman-Schwarsctein, A.B. Laursen, F. Cavalca, W. Tang, S. Dahl, I. Chorkendorff, A general route for RuO2 deposition on metal oxides from RuO4. Chem. Commun. 48, 967–969 (2011)

    Article  Google Scholar 

  30. M. Szklarczyk, J.O.M. Bockris, Photoelectrochemical evolution of hydrogen on p-indium phosphide. J. Phys. Chem. 88, 5241–5242 (1984)

    Article  CAS  Google Scholar 

  31. R.N. Dominey, N.S. Lewis, J.A. Bruce, D.C. Bookbinder, M.S. Wrighton, Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. J. Am. Chem. Soc. 104, 467–482 (1982)

    Article  CAS  Google Scholar 

  32. R.C. Kainthla, B. Zelenay, J.O.M. Bockris, Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis. J. Electrochem. Soc. 134, 841–845 (1987)

    Article  CAS  Google Scholar 

  33. B.-O. Park, C.D. Lokhande, H.-S. Park, K.-D. Jung, O.-S. Joo, Cathodic electrodeposition of RuO2 thin films from Ru(III)Cl3 solution. Mater. Chem. Phys. 87, 59–66 (2004)

    Article  CAS  Google Scholar 

  34. C.-C. Hu, M.-J. Liu, K.-H. Chang, Anodic deposition of hydrous ruthenium oxide for supercapacitors. J. Power Sources 163, 1126–1131 (2007)

    Article  CAS  Google Scholar 

  35. M. Alvisi, G. Galtieri, L. Giorgi, R. Giorgi, E. Serra, M.A. Signore, Sputter deposition of Pt nanoclusters and thin films on PEM fuel cell electrodes. Surf. Coat. Technol. 200, 1325–1329 (2005)

    Article  CAS  Google Scholar 

  36. W.-T. Lee, D.-S. Tsai, Y.-M. Chen, Y.-S. Huang, W.-H. Chung, Area-selectively sputtering the RuO2 nanorods array. Appl. Surf. Sci. 254, 6915–6921 (2008)

    Article  CAS  Google Scholar 

  37. T.P. Gujar, V.R. Shinde, C.D. Lokhande, W.-Y. Kim, K.-D. Jung, O.-S. Joo, Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochem. Commun. 9, 504–510 (2007)

    Article  CAS  Google Scholar 

  38. J.V. Ryan, A.D. Berry, M.L. Anderson, J.W. Long, R.M. Stroud, V.M. Cepak, V.M. Browning, D.R. Rolison, C.I. Merzbacher, Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2. Nature Mater. 406, 169–172 (2000)

    Article  CAS  Google Scholar 

  39. K.S. Lyons, D.R. Rolison, Selective deposition of hydrous ruthenium oxide thin films (2003)

    Google Scholar 

  40. K.E. Swider-Lyons, C.T. Love, D.R. Rolison, Selective vapor deposition of hydrous RuO2 thin films. J. Electrochem. Soc. 152, C158–C162 (2005)

    Article  CAS  Google Scholar 

  41. Z. Yuan, R.J. Puddephatt, M. Slayer, Low-temperature chemical vapor deposition of ruthenium dioxide from ruthenium tetroxide: A simple approach to high-purity RuO2 films. Chem. Mat. 5, 908–910 (1993)

    Article  CAS  Google Scholar 

  42. D.R. Myers, K. Emery, C. Gueymard, Revising and validating spectral irradiance reference standards for photovoltaic performance evaluation. J. Sol. Energy Eng. 126, 567–574 (2004)

    Article  Google Scholar 

  43. American Society for Testing Materials, Standard for Solar Constant and Air Mass Zero Solar Spectral Irradiance Tables, Standard ASTM E490-00a, West Conshocken, PA (2006)

    Google Scholar 

  44. R.J. Matson, K.A. Emery, R.E. Bird, Terrestrial solar spectra, solar simulation and solar cell short-circuit current calibration: A review. Solar Cells 11, 105–145 (1984)

    Article  CAS  Google Scholar 

  45. M.A. Green, Solar Cells: Operating Principles, Technology and System Applications (Prentice Hall, Englewood Cliffs, 1998)

    Google Scholar 

  46. Terrestrial Photovoltaic Measurement Procedures, National Aeronautics and Space Administration, Technical Report TM 73702 (1977)

    Google Scholar 

  47. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrog. Energy 31, 1999–2017 (2006)

    Article  CAS  Google Scholar 

  48. K.W. Boer, The solar spectrum at typical clear weather days. Sol. Energy 19, 525–538 (1977)

    Article  Google Scholar 

  49. J.R. Bolton, D.O. Hall, Photochemical conversion and storage of solar energy. Ann. Rev. Energy 4, 353–401 (1979)

    Article  CAS  Google Scholar 

  50. K.A. Emery, Solar simulators and I-V measurement methods. Solar Cells 18, 251–260 (1986)

    Article  CAS  Google Scholar 

  51. D. Romang, J. Meier, R. Adelhelm, U. Kroll, Reference solar cell reflections in solar simulators, in Proceedings of 26th European Photovoltaic Solar Energy Conference and Exhibition, 3AV.1.64 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Miller .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Chen, Z. et al. (2013). Experimental Considerations. In: Photoelectrochemical Water Splitting. SpringerBriefs in Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8298-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8298-7_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8297-0

  • Online ISBN: 978-1-4614-8298-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics