Skip to main content

Gadd45 Proteins in Immunity

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 793))

Abstract

The vertebrate immune system protects the host against invading pathogens such as viruses, bacteria and parasites. It consists of an innate branch and an adaptive branch that provide immediate and long-lasting protection, respectively. As the immune system is composed of different cell types and distributed throughout the whole body, immune cells need to communicate with each other. Intercellular communication in the immune system is mediated by cytokines, which bind to specific receptors on the cell surface and activate intracellular signalling networks. Growth arrest and DNA damage-inducible 45 (Gadd45) proteins are important components of these intracellular signalling networks. They are induced by a number of cytokines and by bacterial lipopolysaccharide. Within the innate immune system, Gadd45 proteins are crucial for the differentiation of myeloid cells as well as for the function of granulocytes and macrophages. Moreover, Gadd45β regulates autophagy, a catabolic pathway that also degrades intracellular pathogens. Regarding adaptive immunity, Gadd45 proteins are especially well characterized in T cells. For instance, Gadd45β and Gadd45γ regulate cytokine expression and Th1 differentiation, while Gadd45α inhibits p38 kinase activation downstream of the T cell receptor. Due to their many functions in the immune system, deficiency in Gadd45 proteins causes autoimmune diseases and less efficient tumour immunosurveillance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ATG:

Autophagy-related

Bcl-xL :

B cell lymphoma x large

c-FLIP:

Cellular FLICE inhibitory protein

Cbl-b:

Casitas B-lineage lymphoma proto-oncogene b

CD:

Cluster of differentiation

CD4+ :

Cluster of differentiation 4-positive

CD8+ :

Cluster of differentiation 8-positive

CLR:

C-type lectin receptor

CR6:

Cytokine response gene 6

DISC:

Death-inducing signalling complex

EAE:

Experimental autoimmune encephalomyelitis

Egr:

Early growth response

G-CSF:

Granulocyte colony-stimulating factor

Gadd45:

Growth arrest and DNA damage 45

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

GRAIL:

Gene related to anergy in lymphocytes protein

IFN:

Interferon

IL:

Interleukin

JNK:

c-Jun N-terminal kinase

LPS:

Lipopolysaccharide

M-CSF:

Macrophage colony-stimulating factor

MAPK:

Mitogen-activated protein kinase

MEKK4:

MAPK/ERK kinase kinase 4

MHC:

Major histocompatibility complex

MKK:

Mitogen-activated protein kinase kinase

MOG:

Myelin oligodendrocyte glycoprotein

Myd118:

Myeloid differentiation primary response protein 118

NFAT:

Nuclear factor of activated T cells

NF-κB:

Nuclear factor κB

NKT:

Natural killer T cell

NLR:

Nod-like receptor

PAMP:

Pathogen-associated molecular pattern

PRR:

Pattern recognition receptor

RLR:

Retinoic acid-inducible gene (RIG)-I-like receptor

ROS:

Reactive oxygen species

STAT:

Signal transducer and activator of transcription

TCR:

T cell receptor

TGF-β:

Transforming growth factor beta

Th:

T helper

TLR:

Toll-like receptor

TNFα:

Tumour necrosis factor alpha

TNFR1:

Tumour necrosis factor receptor 1

vMIA:

Viral mitochondrial-localized inhibitor of apoptosis

ZAP-70:

Zeta-chain associated protein of 70 kDa

References

  • Arend WP, Palmer G, Gabay C (2008) IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 223:20–38

    Article  PubMed  CAS  Google Scholar 

  • Balliet AG, Hatton KS, Hoffman B, Liebermann DA (2001) Comparative analysis of the genetic structure and chromosomal location of the murine MyD118 (Gadd45beta) gene. DNA Cell Biol 20:239–247

    Article  PubMed  CAS  Google Scholar 

  • Beadling C, Johnson KW, Smith KA (1993) Isolation of interleukin 2-induced immediate-early genes. Proc Natl Acad Sci USA 90:2719–2723

    Article  PubMed  CAS  Google Scholar 

  • Chi H, Lu B, Takekawa M, Davis RJ, Flavell RA (2004) GADD45beta/GADD45gamma and MEKK4 comprise a genetic pathway mediating STAT4-independent IFNgamma production in T cells. EMBO J 23:1576–1586

    Article  PubMed  CAS  Google Scholar 

  • Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334:395–402

    Article  PubMed  CAS  Google Scholar 

  • De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, Franzoso G (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414:308–313

    Article  PubMed  Google Scholar 

  • Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V (2008) Toll-like receptors control autophagy. EMBO J 27:1110–1121

    Article  PubMed  CAS  Google Scholar 

  • Fathman CG, Lineberry NB (2007) Molecular mechanisms of CD4+ T-cell anergy. Nat Rev Immunol 7:599–609

    Article  PubMed  CAS  Google Scholar 

  • Gerwins P, Blank JL, Johnson GL (1997) Cloning of a novel mitogen-activated protein kinase kinase kinase, MEKK4, that selectively regulates the c-Jun amino terminal kinase pathway. J Biol Chem 272:8288–8295

    Article  PubMed  CAS  Google Scholar 

  • Gupta M, Gupta SK, Balliet AG, Hollander MC, Fornace AJ, Hoffman B, Liebermann DA (2005) Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene 24:7170–7179

    Article  PubMed  CAS  Google Scholar 

  • Gupta SK, Gupta M, Hoffman B, Liebermann DA (2006) Hematopoietic cells from gadd45a-deficient and gadd45b-deficient mice exhibit impaired stress responses to acute stimulation with cytokines, myeloablation and inflammation. Oncogene 25:5537–5546

    Article  PubMed  CAS  Google Scholar 

  • Harada M, Seino K, Wakao H, Sakata S, Ishizuka Y, Ito T, Kojo S, Nakayama T, Taniguchi M (2004) Down-regulation of the invariant Valpha14 antigen receptor in NKT cells upon activation. Int Immunol 16:241–247

    Article  PubMed  CAS  Google Scholar 

  • Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  PubMed  CAS  Google Scholar 

  • Hoffmeyer A, Piekorz R, Moriggl R, Ihle JN (2001) Gadd45gamma is dispensable for normal mouse development and T-cell proliferation. Mol Cell Biol 21:3137–3143

    Article  PubMed  CAS  Google Scholar 

  • Hsiao HW, Liu WH, Wang CJ, Lo YH, Wu YH, Jiang ST, Lai MZ (2009) Deltex1 is a target of the transcription factor NFAT that promotes T cell anergy. Immunity 31:72–83

    Article  PubMed  CAS  Google Scholar 

  • Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, Mullen AC, Gasink CR, Kaech SM, Miller JD et al (2005) Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol 6:1236–1244

    Article  PubMed  CAS  Google Scholar 

  • Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Jin R, De Smaele E, Zazzeroni F, Nguyen DU, Papa S, Jones J, Cox C, Gelinas C, Franzoso G (2002) Regulation of the gadd45beta promoter by NF-kappaB. DNA Cell Biol 21:491–503

    Article  PubMed  CAS  Google Scholar 

  • Jirmanova L, Jankovic D, Fornace AJ Jr, Ashwell JD (2007) Gadd45alpha regulates p38-dependent dendritic cell cytokine production and Th1 differentiation. J Immunol 178:4153–4158

    PubMed  CAS  Google Scholar 

  • Jirmanova L, Sarma DN, Jankovic D, Mittelstadt PR, Ashwell JD (2009) Genetic disruption of p38alpha Tyr323 phosphorylation prevents T-cell receptor-mediated p38alpha activation and impairs interferon-gamma production. Blood 113:2229–2237

    Article  PubMed  CAS  Google Scholar 

  • Jirmanova L, Giardino Torchia ML, Sarma ND, Mittelstadt PR, Ashwell JD (2011) Lack of the T cell-specific alternative p38 activation pathway reduces autoimmunity and inflammation. Blood 118:3280–3289

    Article  PubMed  CAS  Google Scholar 

  • Ju S, Zhu Y, Liu L, Dai S, Li C, Chen E, He Y, Zhang X, Lu B (2009) Gadd45b and Gadd45g are important for anti-tumor immune responses. Eur J Immunol 39:3010–3018

    Article  PubMed  CAS  Google Scholar 

  • Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  PubMed  CAS  Google Scholar 

  • Keifer JA, Guttridge DC, Ashburner BP, Baldwin AS Jr (2001) Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J Biol Chem 276:22382–22387

    Article  PubMed  CAS  Google Scholar 

  • Keil E, Hocker R, Schuster M, Essmann F, Ueffing N, Hoffman B, Liebermann DA, Pfeffer K, Schulze-Osthoff K, Schmitz I (2013) Phosphorylation of Atg5 by the Gadd45beta-MEKK4-p38 pathway inhibits autophagy. Cell Death Differ 20:321–332

    Article  PubMed  CAS  Google Scholar 

  • Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg M, Gapin L (2002) The unconventional lifestyle of NKT cells. Nat Rev Immunol 2:557–568

    PubMed  CAS  Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335

    Article  PubMed  CAS  Google Scholar 

  • Li MO, Flavell RA (2008) TGF-beta: a master of all T cell trades. Cell 134:392–404

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Tran E, Zhao Y, Huang Y, Flavell R, Lu B (2005) Gadd45 beta and Gadd45 gamma are critical for regulating autoimmunity. J Exp Med 202:1341–1347

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Yu H, Chow C, Li B, Zheng W, Davis RJ, Flavell RA (2001) GADD45gamma mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector TH1 cells. Immunity 14:583–590

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Ferrandino AF, Flavell RA (2004) Gadd45beta is important for perpetuating cognate and inflammatory signals in T cells. Nat Immunol 5:38–44

    Article  PubMed  CAS  Google Scholar 

  • Majumdar S, Lamothe B, Aggarwal BB (2002) Thalidomide suppresses NF-kappa B activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester. J Immunol 168:2644–2651

    PubMed  CAS  Google Scholar 

  • Miyake Z, Takekawa M, Ge Q, Saito H (2007) Activation of MTK1/MEKK4 by GADD45 through induced N-C dissociation and dimerization-mediated trans autophosphorylation of the MTK1 kinase domain. Mol Cell Biol 27:2765–2776

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  PubMed  CAS  Google Scholar 

  • Morinobu A, Gadina M, Strober W, Visconti R, Fornace A, Montagna C, Feldman GM, Nishikomori R, O’Shea JJ (2002) STAT4 serine phosphorylation is critical for IL-12-induced IFN-gamma production but not for cell proliferation. Proc Natl Acad Sci USA 99:12281–12286

    Article  PubMed  CAS  Google Scholar 

  • Murphy KM, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2:933–944

    Article  PubMed  CAS  Google Scholar 

  • Neumann M, Naumann M (2007) Beyond IkappaBs: alternative regulation of NF-kappaB activity. FASEB J 21:2642–2654

    Article  PubMed  CAS  Google Scholar 

  • Papa S, Zazzeroni F, Bubici C, Jayawardena S, Alvarez K, Matsuda S, Nguyen DU, Pham CG, Nelsbach AH, Melis T et al (2004) Gadd45 beta mediates the NF-kappa B suppression of JNK signalling by targeting MKK7/JNKK2. Nat Cell Biol 6:146–153

    Article  PubMed  CAS  Google Scholar 

  • Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  PubMed  CAS  Google Scholar 

  • Porcelli SA, Modlin RL (1999) The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 17:297–329

    Article  PubMed  CAS  Google Scholar 

  • Reiner SL (2007) Development in motion: helper T cells at work. Cell 129:33–36

    Article  PubMed  CAS  Google Scholar 

  • Ronkina N, Menon MB, Schwermann J, Tiedje C, Hitti E, Kotlyarov A, Gaestel M (2010) MAPKAP kinases MK2 and MK3 in inflammation: complex regulation of TNF biosynthesis via expression and phosphorylation of tristetraprolin. Biochem Pharmacol 80:1915–1920

    Article  PubMed  CAS  Google Scholar 

  • Safford M, Collins S, Lutz MA, Allen A, Huang CT, Kowalski J, Blackford A, Horton MR, Drake C, Schwartz RH et al (2005) Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol 6:472–480

    Article  PubMed  CAS  Google Scholar 

  • Salerno DM, Tront JS, Hoffman B, Liebermann DA (2012) Gadd45a and Gadd45b modulate innate immune functions of granulocytes and macrophages by differential regulation of p38 and JNK signaling. J Cell Physiol 227:3613–3620

    Article  PubMed  CAS  Google Scholar 

  • Salvador JM, Hollander MC, Nguyen AT, Kopp JB, Barisoni L, Moore JK, Ashwell JD, Fornace AJ Jr (2002) Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 16:499–508

    Article  PubMed  CAS  Google Scholar 

  • Salvador JM, Mittelstadt PR, Belova GI, Fornace AJ Jr, Ashwell JD (2005a) The autoimmune suppressor Gadd45alpha inhibits the T cell alternative p38 activation pathway. Nat Immunol 6:396–402

    Article  PubMed  CAS  Google Scholar 

  • Salvador JM, Mittelstadt PR, Guszczynski T, Copeland TD, Yamaguchi H, Appella E, Fornace AJ Jr, Ashwell JD (2005b) Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat Immunol 6:390–395

    Article  PubMed  CAS  Google Scholar 

  • Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S et al (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–1257

    Article  PubMed  CAS  Google Scholar 

  • Schmitz I, Clayton LK, Reinherz EL (2003) Gene expression analysis of thymocyte selection in vivo. Int Immunol 15:1237–1248

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334

    Article  PubMed  CAS  Google Scholar 

  • Selvakumaran M, Lin HK, Sjin RT, Reed JC, Liebermann DA, Hoffman B (1994) The novel primary response gene MyD118 and the proto-oncogenes myb, myc, and bcl-2 modulate transforming growth factor beta 1-induced apoptosis of myeloid leukemia cells. Mol Cell Biol 14:2352–2360

    Article  PubMed  CAS  Google Scholar 

  • Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161

    Article  PubMed  CAS  Google Scholar 

  • Smith GB, Mocarski ES (2005) Contribution of GADD45 family members to cell death suppression by cellular Bcl-xL and cytomegalovirus vMIA. J Virol 79:14923–14932

    Article  PubMed  CAS  Google Scholar 

  • Svensson CI, Inoue T, Hammaker D, Fukushima A, Papa S, Franzoso G, Schett G, Corr M, Boyle DL, Firestein GS (2009) Gadd45beta deficiency in rheumatoid arthritis: enhanced synovitis through JNK signaling. Arthritis Rheum 60:3229–3240

    Article  PubMed  CAS  Google Scholar 

  • Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95:521–530

    Article  PubMed  CAS  Google Scholar 

  • Takekawa M, Posas F, Saito H (1997) A human homolog of the yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1, mediates stress-induced activation of the p38 and JNK pathways. EMBO J 16:4973–4982

    Article  PubMed  CAS  Google Scholar 

  • Takekawa M, Tatebayashi K, Itoh F, Adachi M, Imai K, Saito H (2002) Smad-dependent GADD45beta expression mediates delayed activation of p38 MAP kinase by TGF-beta. EMBO J 21:6473–6482

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H (2003) The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu Rev Immunol 21:483–513

    Article  PubMed  CAS  Google Scholar 

  • Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365:2110–2121

    Article  PubMed  CAS  Google Scholar 

  • Ungefroren H, Groth S, Ruhnke M, Kalthoff H, Fandrich F (2005) Transforming growth factor-beta (TGF-beta) type I receptor/ALK5-dependent activation of the GADD45beta gene mediates the induction of biglycan expression by TGF-beta. J Biol Chem 280:2644–2652

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Du F, Cao Q, Sheng H, Shen B, Zhang Y, Diao Y, Zhang J, Li N (2006) Immunization with autologous T cells enhances in vivo anti-tumor immune responses accompanied by up-regulation of GADD45beta. Cell Res 16:702–712

    Article  PubMed  CAS  Google Scholar 

  • Woodland DL, Kohlmeier JE (2009) Migration, maintenance and recall of memory T cells in peripheral tissues. Nat Rev Immunol 9:153–161

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, Eissa NT (2007) Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27:135–144

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Zhu H, Murphy TL, Ouyang W, Murphy KM (2001) IL-18-stimulated GADD45 beta required in cytokine-induced, but not TCR-induced, IFN-gamma production. Nat Immunol 2:157–164

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Li G, Zhu Y, Liu L, Chen E, Turnquist H, Zhang X, Finn OJ, Chen X, Lu B (2011) IL-33 synergizes with TCR and IL-12 signaling to promote the effector function of CD8+ T cells. Eur J Immunol 41:3351–3360

    Article  PubMed  CAS  Google Scholar 

  • Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace AJ Jr, Liebermann DA, Bottinger EP, Roberts AB (2003) Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem 278:43001–43007

    Article  PubMed  CAS  Google Scholar 

  • Zazzeroni F, Papa S, Algeciras-Schimnich A, Alvarez K, Melis T, Bubici C, Majewski N, Hay N, De Smaele E, Peter ME et al (2003) Gadd45 beta mediates the protective effects of CD40 costimulation against Fas-induced apoptosis. Blood 102:3270–3279

    Article  PubMed  CAS  Google Scholar 

  • Zhan Q, Lord KA, Alamo I Jr, Hollander MC, Carrier F, Ron D, Kohn KW, Hoffman B, Liebermann DA, Fornace AJ Jr (1994) The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol 14:2361–2371

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Ahsan MH, Zhu L, Sambucetti LC, Purchio AF, West DB (2005) NF-kappaB and not the MAPK signaling pathway regulates GADD45beta expression during acute inflammation. J Biol Chem 280:21400–21408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to Dr. Yvonne Rauter and Alisha Walker for critically reading the manuscript and for helping with the figures. This work was supported by grants of the Deutsche Forschungsgemeinschaft (SCHM1586/3-1) and the Helmholtz Association cross-programme activity “Metabolic Dysfunction and Human Disease”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Schmitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmitz, I. (2013). Gadd45 Proteins in Immunity. In: Liebermann, D., Hoffman, B. (eds) Gadd45 Stress Sensor Genes. Advances in Experimental Medicine and Biology, vol 793. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8289-5_4

Download citation

Publish with us

Policies and ethics