Free Radical Cyclizations

  • Momcilo Miljkovic


The free radical cyclizations of hex-5-enes (1 in Fig. 7.1) were accomplished some time ago, and although the origin of selectivity was not initially understood, the stereochemistry at the newly created centers was predictable in some of the cases.


Transition State Radical Cyclization Acetoxy Group Enol Ether Allyl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beckwith ALJ (1981) Regioselectivity and stereoselectivity in radical reactions. Tetrahedron 37:3073–3100CrossRefGoogle Scholar
  2. 2.
    Beckwith ALJ, Easton JC, Lawrence T, Serelis AK (1983) Reactions of methyl-substituted 5-hexenyl and 4-pentenyl radicals. Aust J Chem 36:545–556CrossRefGoogle Scholar
  3. 3.
    Beckwith ALJ, Philipou G, Serelis AK (1981) Formation of some bicyclic systems by radical ring-closure. Tetrahedron Lett 22:2811–2814CrossRefGoogle Scholar
  4. 4.
    Wolf S, Agosta WC (1981) Stereoselectivity in the cyclization of 2-(bet3-enyl) cyclopentyl radical. J Chem Res Synop 78–79Google Scholar
  5. 5.
    Curran DP (1988) The design and application of free radical chain reactions in organic synthesis, Parts 1 and 2. Synthesis 417–439:489–513CrossRefGoogle Scholar
  6. 6.
    Hart DJ, Tsai Y-M (1984) α-Acylamino radical cyclizations: synthesis of isoretronecanol. J Am Chem Soc 106:8209–8217CrossRefGoogle Scholar
  7. 7.
    Curran DP, Rakiewicz DM (1985) In: Giese B (ed) Selectivity and synthetic applications of free radical reactions. Tetrahedron Symposia-in-Print, p 3923Google Scholar
  8. 8.
    Wilcox CS, Tomasco LM (1985) New syntheses of carbocycles from carbohydrates. Cyclization of radicals derived from unsaturated halo sugars. J Org Chem 50:546–547CrossRefGoogle Scholar
  9. 9.
    Barton DHR, McCombie SW (1975) New method for the deoxygenation of secondary alcohols. J Chem Soc Perkin Trans 1:1574–1585Google Scholar
  10. 10.
    Hoffmann RW (1989) Allylic 1, 3-strain as controlling factor in stereoselective transformations. Chem Rev 89:1841–1860CrossRefGoogle Scholar
  11. 11.
    RajanBabu TV, Fukunaga T, Reddy GS (1989) Stereochemical control in hex-5-anyl radical cyclization: from carbohydrates to carbocycles. 3. J Am Chem Soc 111:1759–1769CrossRefGoogle Scholar
  12. 12.
    Corey EJ, Pyne SG (1983) Conversion of ketones having δ, ε-π-functions to cyclopentanols by zinc-trimethylchlorosilane. Tetrahedron Lett 24:2821–2824CrossRefGoogle Scholar
  13. 13.
    Pradham SK, Kolhe JN, Mistry JS (1982) Trapping of radical intermediate in reaction of sulfonates with sodium iodide/zinc/DME. Total frontier orbital control of stereoselectivity in ring closure. Tetrahedron Lett 23:4481–4484CrossRefGoogle Scholar
  14. 14.
    RajanBabu TV, Fukunaga T (1989) Stereochemical control in hex-5-enyl radical cyclizations: axial vs equatorial 2-(1-but-3-anyl)cyclohexyl radicals. J Am Chem Soc 111:296–300CrossRefGoogle Scholar
  15. 15.
    Clive DLJ, Beaulieu PL (1983) Formation of carbon-carbon bonds by ring closure of β-phenylselenocrotonates. J Chem Soc Chem Commun 307–309Google Scholar
  16. 16.
    Auge J, David S (1984) Hexopyranose sugars conformation revised. Tetrahedron 40:2101–2106CrossRefGoogle Scholar
  17. 17.
    RajanBabu TV (1987) From carbohydrates to optically active carbocycles I: stereochemical control in sugar hex-5-enyl radical cyclization. J Am Chem Soc 109:609–611CrossRefGoogle Scholar
  18. 18.
    Karabatsos GJ, Fenglio DJ (1970) Top Stereochem 5:167CrossRefGoogle Scholar
  19. 19.
    Cha JK, Christ WJ, Kishi Y (1984) Tetrahedron 40:2247CrossRefGoogle Scholar
  20. 20.
    Giese B (1986) Radicals in organic synthesis: formation of carbon-carbon bonds. Pergamon Press, New YorkGoogle Scholar
  21. 21.
    Choi J, Ha D, Hart DJ, Lee C, Ramesh S, Wu S (1989) α-acylamino radical cyclizations: application to the synthesis of a tetracyclic substructure of gelsemine. J Org Chem 54:279–290CrossRefGoogle Scholar
  22. 22.
    Nugent WA, RajanBabu TV (1988) Transition-metal centered radicals in organic synthesis. Titanium (III)-induced cyclization of epoxy olefins. J Am Chem Soc 110:8561–8562CrossRefGoogle Scholar
  23. 23.
    RajanBabu TV (1988) From carbohydrates to carbocycles. 2. A free radical route to Corey lactone and other prostanoid intermediates. J Org Chem 53:4522CrossRefGoogle Scholar
  24. 24.
    Spellmeyer DC, Houk KN (1987) A force-field model for intramolecular radical additions. J Org Chem 52:959–974CrossRefGoogle Scholar
  25. 25.
    Audin C, Lancelin J, Beau J (1988) Radical cyclization on carbohydrate pyranosides: a controlled formation of functionalized ring-fused bicyclic acetals. Tetrahedron Lett 29:3691–3694CrossRefGoogle Scholar
  26. 26.
    De Mesmaeker A, Hoffmann P, Ernst B (1989) Tetrahedron Lett 30:57CrossRefGoogle Scholar
  27. 27.
    Korth H, Sustmann R, Groninger KS, Witzel T, Giese B (1986) Electron spin resonance spectroscopic investigation of carbohydrate radicals. Part 3. Conformation in deoxypyranosan-2-, 3-, and 4-yl radicals. J Chem Soc Perkin Trans 2:1461–1464Google Scholar
  28. 28.
    De Mesmaeker A, Hoffmann P, Ernst B, Hug P, Winkler T (1989) Stereoselective carbon-carbon bond formation in carbohydrates by radical cyclization reactions. III. Strategy for the preparation of C(1)-glycosides. Tetrahedron Lett 30:6307CrossRefGoogle Scholar
  29. 29.
    Korth H, Sustmann R, Dupuis J, Giese B (1986) Electron spin resonance spectroscopic investigation of carbohydrate radicals. Part 2. Conformation and configuration in pyranos-1-yl radicals. J Chem Soc Perkin Trans 2:1453–1459Google Scholar
  30. 30.
    Groninger KS, Jager KF, Giese B (1987) Cyclization reactions with allyl-substituted glucose derivatives. Liebigs Ann Chem 731–732Google Scholar
  31. 31.
    Hashimoto H, Furuichi K, Miwa T (1987) Cyclopentane-annelated pyranosides. A new approach to chiral iridoid synthesis. J Chem Soc Chem Commun 1002–1003Google Scholar
  32. 32.
    De Mesmaker A, Hoffmann P, Winkler T, Waldner A (1990) Stereoselective carbon-carbon bond formation in carbohydrates by radical cyclization reactions. V. Application for the synthesis of α-C(2)-branched sugars. Synlett 201–204Google Scholar
  33. 33.
    Nouguier R, Lesueur C, Riggi ED, Bertrand MP (1990) Stereoselective free-radical cyclization on sugar template: the sulfonyl radical as a synthetic tool for functionalized glycosides. Tetrahedron Lett 31:3541–3544CrossRefGoogle Scholar
  34. 34.
    Kano S, Yuasa Y, Yokamatsu T, Asami K, Shiroshi S (1986) Effect of A-strain on synthesis of cis-fused 4a-aryloctahydro—1H-cyclopenta[c]pyridine derivatives through tandem radical cyclization of an α-acylamino-polyene system. J Chem Soc Chem Commun 1717–1718Google Scholar
  35. 35.
    Tamaru Y, Harayama H, Bando T, Nagaoka H, Yoshida Z (1996) Pronounced electronic effect of allylic amino group on the n-facial stereoselectivity and reactivity of the iodoetherification of N-substituted 3-amino-4-penten-1-ols. Liebigs Ann 223–234Google Scholar
  36. 36.
    Fujioka H, Kitagawa H, Nagatomi Y, Kita Y (1996) Asymmetric induction via an intramolecular haloetherification reaction of chiral ene acetals: a novel approach to optically active 1, 4- 1, 5-diols. J Org Chem 61:7309–7315CrossRefGoogle Scholar
  37. 37.
    Seeperausd M, Blumenstein M, Mootoo DR (1997) Tetrahedron 16:5711CrossRefGoogle Scholar
  38. 38.
    Marshall JA, Yanik MM (1999) Synthesis of nonracemic β-hydroxy ketones and carbonate derivatives from homopropargylic alcohols through iodolactonization. J Org Chem 64:3798–3799CrossRefGoogle Scholar
  39. 39.
    Jordá-Gregori JM, González-Rosende ME, Sepúlveda-Arques J, Galeazzi R, Orena M (1999) Highly regio- and stereoselective iodocyclization of chiral 3-alkoxycarbonyl-4-propenyl-2, 2-dimethyl-1, 3-oxazolidines: a computational investigation. Tetrahedron Asymmetry 10:1135–1143CrossRefGoogle Scholar
  40. 40.
    Bew SP, Barks JM, Knight DW, Middleton RJ (2000) Stereochemical features of iodocyclizations of 3-alkene-1, 2-diols to β-hydroxytetrahydrofurans. Tetrahedron Lett 41:4447–4451CrossRefGoogle Scholar
  41. 41.
    Bravo F, Castillón S (2001) Synthesis of substituted tetrahydrofuran by electrophile-induced cyclization of 4-pentene-1, 2,3-triols- and example of 5-exo versus 5-endo cyclization governed by the electrophile. Eur J Org Chem 507–516Google Scholar
  42. 42.
    Guindon Y, Lavallée J-F, Llinas-Brunet M, Horner G, Rancourt J (1991) Stereoselective chelation-controlled reduction of α-iodo-β-alkoxy esters under radical conditions. J Am Chem Soc 113:9701–9702CrossRefGoogle Scholar
  43. 43.
    Guindon Y, Soucy F, Yoakim C, Oglivie WW, Plamondon L (2001) Diastereoselective synthesis of 2,3,5-trisubstituted tetrahydrofurans via cyclofunctionalization reactions. Evidence of stereoelectronic effects. J Org Chem 66:8992–8996CrossRefGoogle Scholar
  44. 44.
    Rollinson SW, Amos RA, Katzellenenbogen JA (1981) Total synthesis of lauraceae lactones: obtusilactones, litsenolides, and mahubanolides. J Am Chem Soc 103:4114–4125CrossRefGoogle Scholar
  45. 45.
    Chamberlin AR, Dezube M, Dussault P, McMills MC (1983) Iodocyclization of allylic alcohol derivatives containing internal nucleophiles. Control of stereoselectivity by substituents in the acyclic precursors. J Am Chem Soc 105:5819–5825CrossRefGoogle Scholar
  46. 46.
    Tamaru Y, Mizutani M, Furukawa Y, Kawamura S, Yoshida Z, Yanagi K, Minobe M (1984) 1, 3-asymmetric induction: highly stereoselective synthesis of 2,4-trans-disubstituted γ-butyrolactones and γ-butyrothiolactones. J Am Chem Soc 106:1079–1085CrossRefGoogle Scholar
  47. 47.
    Tamaru Y, Higashimura H, Naka K, Hojo M, Yoshida Z (1985) Palladium(II)-catalyzed stereoselective dilactonization. Angew Chem 97:1070–1071CrossRefGoogle Scholar
  48. 48.
    Ohfune Y, Kurokawa N (1985) Efficient synthesis of naturally occurring 3,4-dihydroxyprolines: electrophile-mediated lactonization of 2-amino-3-hydroxy-4-pentenoic acid derivatives. Tetrahedron Lett 26:5307–5308CrossRefGoogle Scholar
  49. 49.
    Deslongchamps P (1983) Stereoelectronic effects in organic chemistry. Pergamon Press, CanadaGoogle Scholar
  50. 50.
    Labelle M, Guindon Y (1989) Diastereoselective synthesis of 2, 3-disubstituted tetrahydrofuran synthons via the iodoetherification reaction. A transition state model based rationalization of the allylic asymmetric induction. J Am Chem Soc 111:2204–2210CrossRefGoogle Scholar
  51. 51.
    Guindon Y, Slassi A, Ghiro E, Bantle G, Jung G (1992) Stereoselective silver triflate-mediated iodocyclization of carbamates. Tetrahedron Lett 33:4257–4260CrossRefGoogle Scholar
  52. 52.
    Guindon Y, Yoakim C, Gorys V, Oglivie WW, Delorme D, Renaud J, Robinson G, Lavallée J-F, Slassi A, Jung G, Rancourt J, Durkin K, Liotta D (1994) Stereoselective hydrogen transfer reactions involving acyclic radicals. Tandem substituted tetrahydrofuran formation and stereoselective reduction: synthesis of the C17-C22 subunit of ionomycin. J Org Chem 59:1166–1178CrossRefGoogle Scholar
  53. 53.
    Guindon Y, Murtagh L, Caron V, Landry SR, Jung G, Bencheqroun M, Faucher A-M, Guérin B (2001) Cyclofunctionalization and free-radical-based hydrogen-transfer reaction sequence applied to the synthesis of the C7-C-16 subunit of zincophorin. J Org Chem 66:5427–5437CrossRefGoogle Scholar
  54. 54.
    Guindon Y, Slassi A, Ghiro E, Bantle G, Jung G (1992) Tetrahedron Lett 33:4257–4260Google Scholar
  55. 55.
    Brown RS, Gedye R, Slebocka-Tilk H, Buschek JM, Kopecky KR (1984) J Am Chem Soc 106:4515CrossRefGoogle Scholar
  56. 56.
    Slebocka-Tilk H, Ball RG, Brown RS (1985) The question of reversible formation of bromonium ions during the course of electrophilic bromination of olefins. 2. The crystal and molecular structure of the bromonium ion adamantylideneadamantane. J Am Chem Soc 107:4504–4508CrossRefGoogle Scholar
  57. 57.
    Bellucci G, Bianchini R, Ambrosetti R (1985) Direct evidence for bromine-olefin charge transfer complexes as essential intermediates of the fast ionic addition of bromine to cyclohexene. J Am Chem Soc 107:2464–2471CrossRefGoogle Scholar
  58. 58.
    Bellucci G, Chiappe C, Marioni F (1987) Evidence for a reversible electrophilic step in olefin bromination. The case of stilbene. J Am Chem Soc 109:515–522CrossRefGoogle Scholar
  59. 59.
    Reitz AB, Nortey SO, Maryanoff BE, Liotta D, Monahan R III (1987) Stereoselectivity of electrophile-promoted cyclizations of γ-hydroxyalkenes. An investigation of carbohydrate-derived and model substrates. J Org Chem 52:4191–4202CrossRefGoogle Scholar
  60. 60.
    Chamberlin AR, Mullholland RL, Kahn SD, Hehre WJ (1987) Modeling chemical reactivity. 7. The effect of a change in rate-limiting step on the stereoselectivity of electrophilic addition to allylic alcohols and related chiral alkenes. J Am Chem Soc 109:672CrossRefGoogle Scholar
  61. 61.
    Danishefasky SJ, Larson E, Springer JP (1985) A totally synthetic route to lincosamine: some observations on the diastereofacial selectivity of electrophilic reactions on the double bonds of various 5-(1-alkenyl)arabinopyranosides. J Am Chem Soc 107:1274–1280CrossRefGoogle Scholar
  62. 62.
    Houk KN, Moses SR, Wu Y-D, Rondan NG, Jager V, Schohe R, Fronczek FR (1984) Stereoselective nitrile oxide cycloadditions to chiral allyl ethers and alcohols. The inside alkoxy effect. J Am Chem Soc 106:3880–3882CrossRefGoogle Scholar
  63. 63.
    Kahn SD, Pau CF, Chamberlin AR, Hehre WJ (1987) Modeling chemical reactivity. 4. Regiochemistry and stereochemistry of electrophilic additions to allylic double bonds. J Am Chem Soc 109:650–663CrossRefGoogle Scholar
  64. 64.
    Marco-Contelles J, Martínez L, Martínez-Grau A, Jimeno ML (1991) Carbocycles from carbohydrates: a free-radical route to aminocyclitols derivatives. Tetrahedron Lett 32:6437–6440CrossRefGoogle Scholar
  65. 65.
    Marco-Contelles J, Pozuelo C, Jimeno ML, Martínez L, Martínez-Grau A (1992) 6-Exo free radical cyclization of acyclic carbohydrate intermediates: a new synthetic route to enantiomerically pure polyhydroxylated cyclohexane derivatives. J Org Chem 57:2625–2631CrossRefGoogle Scholar
  66. 66.
    Marco-Contelles J, Sánchez B, Pozuelo C (1992) Synthesis of branched chain cyclitols: preparation of some useful chiral building blocks. Tetrahedron Asymmetry 3:689–692CrossRefGoogle Scholar
  67. 67.
    Marco-Contelles J, Sánchez B, Ruiz P (1992) Branched chain cyclitols: asymmetric synthesis of a 1α, 25-dihydroxy-19-norvitamin D3 A-ring synthon. Nat Prod Lett 1:167CrossRefGoogle Scholar
  68. 68.
    Wilcox CS, Gaudino JJ (1986) New approaches to enzyme regulators. Synthesis and enzymological activity of carbocyclic analogs of D-fructofuranose and D-fructofuranose-6-phosphate. J Am Chem Soc 108:3102CrossRefGoogle Scholar
  69. 69.
    Wilcox CS, Gaudino JJ (1990) A concise approach to enantiomerically pure carbocyclic ribose analogs. Synthesis of (4S, 5R, 6R, 7R)-7-(hydroxymethyl) spiro[2,4]heptane-4, 5, 6-triol 7-O-(dihydrogen phosphate). J Am Chem Soc 112:4374–4380CrossRefGoogle Scholar
  70. 70.
    Othman AA, Al-Masudi NA, Timari US (1978) A new route to the synthesis of cyclitol derivatives. J Antibiot 31:1007–1012CrossRefGoogle Scholar
  71. 71.
    Tsang R, Fraser-Reid B (1986) Serial radical cyclization via a vinyl group immobilized by a pyranoside. A route to bis-annulated pyranosides. J Am Chem Soc 108:2116–2117CrossRefGoogle Scholar
  72. 72.
    Dickson JK, Tsang R, Llera JM, Fraser-Reid B (1989) Serial radical cyclization of branched carbohydrates. Part 1. Simple pyranoside diquinanes. J Org Chem 54:5350–5356CrossRefGoogle Scholar
  73. 73.
    Yeung BWA, Contelles JLM, Fraser-Reid B (1989) A radical cyclization route to Collum’s key intermediate for (+)-phyllanthocin: annulated furanoses via radical cyclizations. J Chem Soc Chem Commun 1160–1162Google Scholar
  74. 74.
    Enholm EJ, Trivellas A (1989) Samarium(II) iodide mediated transformation of carbohydrates to carbocycles. J Am Chem Soc 111:6463–6465CrossRefGoogle Scholar
  75. 75.
    Alonso RA, Vite GD, McDevitt RE, Fraser-Reid B (1992) Radical cyclization routes to bridged pyranosides as precursors of densely functionalized cycloalkanes. J Org Chem 57:573CrossRefGoogle Scholar
  76. 76.
    Suami T, Ogawa N, Saguro M, Rinehart KL (1976) J Am Chem Soc 98:7110CrossRefGoogle Scholar
  77. 77.
    Semeira D, Phillippe M, Delaumeny JM, Sepulchre AM, Gero SD (1983) A general synthesis of cyclitols and aminocyclitols from carbohydrates. Synthesis 710–713Google Scholar
  78. 78.
    Knapp S, Sebastian MJ, Ramanathan K (1983) Total synthesis of (±)-deoxyfortamine. J Org Chem 48:4786–4788CrossRefGoogle Scholar
  79. 79.
    Kuo CH, Wendler NL (1985) Total synthesis of fortamine, the aglycon of the major aminocyclitols antibiotics fortimicin A and B. Tetrahedron Lett 25:2291CrossRefGoogle Scholar
  80. 80.
    Beier B, Schürrle K, Werbintzky O, Piepersberg W (1990) Stereoselective synthesis of (±)-cis-inos-1,3-diamines. J Chem Soc Perkin Trans 1:2255–2262Google Scholar
  81. 81.
    Paulsen H, Röben W, Heiker FR (1981) Cyclitol reactions. VI. Synthesis of enantiomerically pure conduritols and aminoconduritols. Chem Ber 114:3242–3252CrossRefGoogle Scholar
  82. 82.
    Schubert J, Schwesinger K, Knothe L, Prinzbach H (1987) Liebigs Ann Chem 65:1443Google Scholar
  83. 83.
    Ferrier R, Stütz AE (1990) Functionalized carbocycles from carbohydrates. 11. Two routes to enantiomerically pure 3-aminoinosose derivatives. Carbohydr Res 200:237–245CrossRefGoogle Scholar
  84. 84.
    Shing TKM, Elsley DA, Gilahouley JG (1989) A rapid entry to carbocycles from carbohydrates via intramolecular nitrone cycloaddition. J Chem Soc Chem Commun 1280–1282Google Scholar
  85. 85.
    Tatsuta K, Niwata Y, Umezawa K, Toshima K, Nakata M (1990) Enantiospecific total synthesis of a β-glucosidase inhibitor, cyclophellitol. Tetrahedron Lett 31:1171–1172CrossRefGoogle Scholar
  86. 86.
    McIntosh MC, Weinreib SM (1991) A strategy for synthesis of conduritols and related cyclitols via stereodivergent vinylsilane-aldehyde cyclization. J Org Chem 56:5010–5012CrossRefGoogle Scholar
  87. 87.
    Barton DHR, Gero SD, Cleophax J, Machado DS, Quiclet-Sire B (1988) Synthesis methods for the preparation of D- and L-pseudo-sugars from D-glucose. J Chem Soc Chem Commun 1184–1186Google Scholar
  88. 88.
    Blattner R, Ferrier RJ (1987) Crystalline pseudo-α-D-glucopyranose. J Chem Soc Chem Commun 1008–1009Google Scholar
  89. 89.
    Köhn W, Schmidt RR (1987) α-Glucosidase inhibitors. 5. Investigations towards a synthesis of C1-branched cyclitols from D-glucose. Liebigs Ann Chem 1045–1054Google Scholar
  90. 90.
    Ogawa S, Orihara M (1988) Pseudosugars. Part XXI. Synthesis of seven penta-N, O-acetyl-pseudo-2-amino-2-deoxy-DL-hexopyranoses. Carbohydr Res 177:199–212CrossRefGoogle Scholar
  91. 91.
    Paulsen H, Deyn W (1987) Cyclitol reactions. XIII. Synthesis of pseudosugars from D-glucose by intramolecular Horner-Emmons olefination. Liebigs Ann Chem 125–131Google Scholar
  92. 92.
    Tadano K, Maeda H, Hoshino M, Yimura Y, Suami T (1987) A novel transformation of four aldoses to some optically pure pseudohexopyranoses and pseudopentofuranose carbocyclic analogs of hexopyranoses and pentofuranose. Synthesis of derivatives of (1S, 2S, 3R, 4S, 5S)-, (1S, 2S, 3R, 4R, 5S)-, (1R, 2R, 3R, 4R, 5S)-, (1S, 2S, 3R, 4S, 5R)-2, 3, 4, 5-tetrahydroxy-1-(hydroxymethyl)cyclohexanes and (1S, 2S, 3S,4S)-2, 3, 4-trhydroxy-1-(hydroxymethyl)cyclopentane. J Org Chem 52:1946–1956CrossRefGoogle Scholar
  93. 93.
    Shing TKM, Tang Y (1990) A new approach to pseudo-sugars from (−)-quinic acid: facile synthesis of pseudo-β new approach to pseudo-sugars from (−)-quinic. J Chem Soc Chem Commun 748–749Google Scholar
  94. 94.
    Barton DHR, Dalko P, Gero DS (1991) Synthesis of branched-chain cyclitols using a palladium(0)-catalyzed allylic coupling reaction. Tetrahedron Lett 32:2471–2474CrossRefGoogle Scholar
  95. 95.
    Motherwell WB, Crich D (1992) Free radical chain reactions in organic synthesis. Academic, LondonGoogle Scholar
  96. 96.
    Marco-Contelles J, Pozuelo C, Jimeno ML, Martinez-Grau A (1992) J Org Chem 57:2615Google Scholar
  97. 97.
    Batty D, Crich D, Fortt SM (1989) Synthesis of 1α, 25-dihydrovitamin D3 ring model by an acyl radical cyclization. J Chem Soc Chem Commun 1366–1368Google Scholar
  98. 98.
    RajanBabu TV (1991) Stereochemistry of intramolecular free-radical cyclization reactions. Acc Chem Res 24:139–145CrossRefGoogle Scholar
  99. 99.
    Redlich H, Sudau W, Szardenings AK, Vollerthum R (1992) 5-Carbon analogs of sugars. I. Radical cyclization of hept-1-enitol. Carbohydr Res 226:57–78CrossRefGoogle Scholar
  100. 100.
    Svirdov AF, Ermolenko MS, Yashunski FDV, Kochetkov NK (1983) Selenoesters in organic synthesis. 2. Synthesis of α, β-unsaturated ketones. Tetrahedron 24:4359–4362CrossRefGoogle Scholar
  101. 101.
    Perlman KL, Swenson RE, Paaren HE, Deluca HF (1990) Novel synthesis of 19-nor vitamin D compounds. Tetrahedron Lett 32:7663–7666CrossRefGoogle Scholar
  102. 102.
    Hanessian S, Dhanoa DS, Beaulieu PL (1987) Synthesis of carbocycles from ω-substituted α,β-unsaturated esters via radical-induced cyclizations. Can J Chem 65:1859–1866CrossRefGoogle Scholar
  103. 103.
    Giese B (1989) Angew Chem Int Ed Engl 28:989Google Scholar
  104. 104.
    Dupuis B, Giese B, Hartung J, Leising M, Korth HG, Sustmann R (1989) J Am Chem Soc 28:989Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Momcilo Miljkovic
    • 1
  1. 1.Pennsylvania State UniversityHersheyUSA

Personalised recommendations