Skip to main content

Conformations and Chemistry of Oxocarbenium Ion

  • Chapter
  • First Online:
Electrostatic and Stereoelectronic Effects in Carbohydrate Chemistry

Abstract

While the conformational analysis of stable compounds has been studied in detail, determining the conformational preferences of reactive intermediates is much more difficult. For example, knowledge of the three-dimensional structures of cyclic oxocarbenium ions is very important for understanding both uncatalyzed and enzymatic reactions of carbohydrates involving the anomeric carbon, since these reactions often involve oxocarbenium ion intermediates [1–5]. Since the charged intermediates are generally much too reactive, it is impossible to directly observe oxocarbenium ions, particularly in aqueous environments [6, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zechel DL, Withers SG (2000) Glycosidase mechanisms: anatomy of a finely tuned catalysts. Acc Chem Res 33:11–18

    CAS  Google Scholar 

  2. Allart B, Gatel M, Guillerm D, Guillerm G (1998) The catalytic mechanism of adenosylhomocysteine/methylthioadenosine nucleosidase from Escherichia coli. Chemical evidence for a transition state with substantial oxocarbenium character. Eur J Biochem 256:155–162

    CAS  Google Scholar 

  3. Banait NS, Jencks WP (1991) Reactions of anionic nucleophiles with α-D-glucopyranosyl fluoride in aqueous solution through a concerted, ANDN (SN2) mechanism. J Am Chem Soc 113:7951–7958

    CAS  Google Scholar 

  4. Zhu J, Bennet AJ (1998) Hydrolysis of (2-Deoxy-α-D-Glucopyranosyl) pyridinium salts: the 2-Deoxyglycosyl oxocarbenium is not solvent-equilibrated in water. J Am Chem Soc 120:3887–3893

    CAS  Google Scholar 

  5. Vasella A, Davies GJ, Böhm M (2002) Glycosidase mechanism. Curr Opin Chem Biol 6:619–629

    CAS  Google Scholar 

  6. Amyes TL, Jencks WP (1989) Lifetime of oxocarbenium ions in aqueous solution from common ion inhibition of the solvolysis of α-azido ethers by added azide ion. J Am Chem Soc 111:7888–7900

    CAS  Google Scholar 

  7. Richard JP, Williams KB, Amyes TL (1999) Intrinsic barriers for the reactions of oxocarbenium ion in water. J Am Chem Soc 121:8403–8404

    CAS  Google Scholar 

  8. Woods RJ, Andrews CW, Bowen JP (1992) Molecular mechanical investigations of the properties of oxocarbenium ions. 2. Application to glycoside hydrolysis. J Am Chem Soc 114:859–864

    CAS  Google Scholar 

  9. Nukada T, Bérces A, Whitfield DM (2002) Can the stereochemical outcome of glycosylation reactions be controlled by the conformational preferences of the glycosyl donor? Carbohydr Res 337:765–774

    CAS  Google Scholar 

  10. Nukada T, Bérces A, Wang L, Zgierski MZ, Whitfield DM (2005) The two-conformer hypothesis: 2, 3, 4, 6-tetra-O-methyl-mannopyranosyl-and glucopyranosyl oxocarbenium ions. Carbohydr Res 340:841–852

    CAS  Google Scholar 

  11. Miljković M, Yeagley D, Deslongchamps P, Dory Y (1997) Experimental and theoretical evidence of through-space electrostatic stabilization of the incipient oxocarbenium ion by an axially oriented electronegative substituent during glycopyranoside acetolysis. J Org Chem 62:7597–7604

    Google Scholar 

  12. Woods RJ, Andrews CW, Bowen JP (1992) Molecular mechanical investigations of the properties of oxocarbenium ions. 1. Parameter development. J Am Chem Soc 114:850–858

    CAS  Google Scholar 

  13. Dudley TJ, Smoliakova IP, Hoffmann MR (1999) Theoretical study of 1-methoxy-2-sulfanylethan-1-yl cation: insight into intermediates in glycosidation reactions. J Org Chem 64:1247–1253

    CAS  Google Scholar 

  14. McDonnell C, Lopez O, Murphy P, Bolaños JGF, Hazell R, Bols M (2004) Conformational effects on glycoside reactivity: study of the high reactive conformer of glucose. J Am Chem Soc 126:12374–12385

    CAS  Google Scholar 

  15. Crich D, Chandrasekera NS (2004) Mechanism of 4, 6-O-benzylidene beta- mannosylation as determined by alpha-deuterium kinetic isotope effects. Angew Chem Int Ed Engl 43:5386–5389

    CAS  Google Scholar 

  16. Jensen HH, Bols M (2003) Steric effects are not the cause of the rate difference in hydrolysis of stereoisomeric glycosides. Org Lett 5:3419–3421

    CAS  Google Scholar 

  17. Chamberland S, Ziller JW, Woerpel KA (2005) Structural evidence that alkoxy substituents adopt electronically preferred pseudoaxial orientations in six-membered ring dioxocarbenium ions. J Am Chem Soc 127:5322–5323

    CAS  Google Scholar 

  18. Wiberg KB, Waldron RF (1991) Lactones. 3. A comparison of the basicities of lactones and esters. J Am Chem Soc 113:7705–7709

    CAS  Google Scholar 

  19. Ayala L, Lucero CG, Romero JAC, Tabacco SA, Woerpel KA (2003) Stereochemistry of nucleophilic substitution reactions depending upon substituent: evidence for electrostatic stabilization of pseudoaxial conformers of oxocarbenium ions by heteroatom substituents. J Am Chem Soc 125:15521–15528

    CAS  Google Scholar 

  20. Romero JAC, Tabacco SA, Woerpel KA (2000) Stereochemical reversal of nucleophilic substitution reactions depending upon substituent: reactions of heteroatom-substituted six-membered-ring oxocarbenium ions through pseudoaxial conformers. J Am Chem Soc 122:168–169

    CAS  Google Scholar 

  21. Hosokawa S, Kirschbaum B, Isobe M (1998) 1, 4-anti induction in C-glycosylation of pentose glycals. Tetrahedron Lett 39:1917–1920

    CAS  Google Scholar 

  22. Isobe M, Saeeng R, Nishizawa R, Konobe M, Nishikawa T (1999) Electronic factors in the C-glycosidation with silylacetylene. Chem Lett 6:467–468

    Google Scholar 

  23. Shenoy SR, Woerpel KA (2005) Investigation into the role of ion pairing in reactions of heteroatom-substituted cyclic oxocarbenium ions. Org Lett 7:1157–1160

    CAS  Google Scholar 

  24. Stevens RV, Lee AWM (1979) Stereochemistry of the Robinson-Schoepf reaction. A stereospecific total synthesis of the ladybug defense alkaloids precoccinelline and coccinelline. J Am Chem Soc 101:7032–7035

    CAS  Google Scholar 

  25. Stevens RV (1984) Nucleophilic additions to tetrahydropyridinium salts. Applications to alkaloid syntheses. Acc Chem Res 17:289–296

    CAS  Google Scholar 

  26. Deslongchamps P (1983) Stereoelectronic effects in organic chemistry. Pergamon Press, New York, pp 209–221

    Google Scholar 

  27. Ohno K, Yoshida H, Watanabe H, Fujita T, Matsuura H (1994) Conformational study of 1-butanol by the combined use of vibrational spectroscopy and ab initio molecular orbital calculation. J Phys Chem 98:6924–6930

    CAS  Google Scholar 

  28. Lucero CG, Woerpel KA unpublished

    Google Scholar 

  29. Asano N (2003) Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 13:93R–104R

    CAS  Google Scholar 

  30. Araki Y, Kobayashi N, Ishido Y, Nagasawa J (1987) Synthetic studies with fluorinated intermediates. 3. Highly stereoselective C-α-D-ribofuranosylation. Reactions of ribofuranosyl fluoride derivatives with enol trimethylsilyl ethers and with allyl trimethylsilane. Carbohydr Res 171:125–139

    CAS  Google Scholar 

  31. Schmitt A, Reissig H-U (1990) Highly diastereoselective route to disubstituted tetrahydrofuran derivatives by substitution of γ-lactols with silylated nucleophiles. Synlett 40–42

    Google Scholar 

  32. Schmitt A, Reissig H-U (1995) Stereoselective substitution at phenyl-substituted γ-lactols with organometallic reagents. Chem Ber 128:871–876

    CAS  Google Scholar 

  33. Schmitt A, Reissig H-U (2000) On the stereoselectivity of γ − lactol substitutions with allyl and propargylsilanes-synthesis of disubstituted tetrahydrofuran derivatives. J Org Chem 23:3893–3901

    Google Scholar 

  34. Jensen HH, Pedersen CM, Bols M (2007) Going to extremes: “super”armed donors in glycosylation chemistry. Chem Eur J 13:7576–7582

    CAS  Google Scholar 

  35. Jensen HH, Bols M (2006) Stereoelectronic substituent effects. Acc Chem Res 39:259–265

    CAS  Google Scholar 

  36. Roush WR, Sebesta DP, Bennett CE (1997) Stereoselective preparation of 2-deoxy- β-glycosides from glycal precursors. 1. Stereochemistry of the reactions of D-glycal derivatives with phenylsulfenyl chloride and phenylselenyl chloride. Tetrahedron 53:8825–8836

    CAS  Google Scholar 

  37. Durham TB, Roush WR (2003) Stereoselective synthesis of 2-deoxy-beta-galactosides via 2-deoxy-2-bromo- and 2-deoxy-2-iodogalapyranosyl donors. Org Lett 5:1871–1874

    CAS  Google Scholar 

  38. Arnés X, Diaz Y, Castillón S (2003) Phenyl-2-deoxy-2-iodo-1-thio-glycosides: new glycosyl donors for the stereoselective synthesis of 2-deoxy-oligosaccharides. Synlett 14:2143–2146

    Google Scholar 

  39. Morales Serna JA, Boutureira O, Díaz Y, Matheu MI, Castillón S (2007) Recent advances in the glycosylation of sphingosines and ceramides. Carbohydr Res 342:1595–1612

    CAS  Google Scholar 

  40. Ünligil UM, Rini JM (2000) Glycosyltransferase structure and mechanism. Curr Opin Struct Biol 10:510–517

    Google Scholar 

  41. Rye CS, Withers SG (2000) Glycosidase mechanism. Curr Opin Chem Biol 4:573–580

    CAS  Google Scholar 

  42. Sinott ML (1990) Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90:1171–1202

    Google Scholar 

  43. Kempton JB, Withers SG (1992) Mechanism of Agrobacterium beta-glucosidase: Kinetic studies. Biochemistry 31:9961–9969

    CAS  Google Scholar 

  44. Tull D, Withers SG (1994) Mechanisms of cellulases and xylanases: a detailed kinetic study of the exo-beta-1, 4-glucanase from Cellulomonas fimi. Biochemistry 33:6363–6370

    CAS  Google Scholar 

  45. Ionescu AR, Whitfield DM, Zgierski MZ, Nukada T (2006) Investigation into the role of oxacarbenium ions in glycosylation reactions by ab initio molecular dynamics. Carbohydr Res 341:2912–2920

    CAS  Google Scholar 

  46. Ionescu AR, Whitfield DM, Zgierski MZ (2007) O-2 Substituted pyrano oxacarbenium ions are C-2-O-2–2-fold rotors with a strong syn preference. Carbohydr Res 342:2793–2800

    CAS  Google Scholar 

  47. Moscona A (2005) Neuraminidase inhibitors for influenza. New Engl J Med 353:1363–1373

    CAS  Google Scholar 

  48. von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Phan TV, Smythe ML, Hume F et al (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423

    Google Scholar 

  49. Breuer H-WM (2003) Review of acarbose therapeutic strategies in the long-term treatment and in the prevention of type 2 diabetes. Int J Clin Pharm Th 41:421–440

    CAS  Google Scholar 

  50. Scott LJ, Spencer CM (2000) Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus. Drugs 59:521–549

    CAS  Google Scholar 

  51. Goss PE, Baker MA, Carver JP, Dennis JW (1995) Inhibitors of carbohydrate processing: a new class of anticancer agents. Clin Cancer Res 1:935–944

    CAS  Google Scholar 

  52. Lillelund VH, Jensen HH, Liang X, Bols M (2002) Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin. Chem Rev 102:515–554

    CAS  Google Scholar 

  53. Gloster TM, Meloncelli P, Stick RV, Vasella A, Davies GJ (2007) Glycosidase inhibition: an assessment of the binding of 18 putative transition-state mimics. J Am Chem Soc 129:2345–2354

    CAS  Google Scholar 

  54. Wicki J, Williams SJ, Withers SG (2007) Transition-state mimicry by glycosidase inhibitors: a critical kinetic analysis. J Am Chem Soc 129:4530–4531

    CAS  Google Scholar 

  55. Svansson L, Johnston BD, Gu J-H, Patrick B, Pinto BM (2000) Synthesis and conformational analysis of a sulfonium-ion analogue and the glycosidase inhibitor castanospermin. J Am Chem Soc 122:10769–10775

    CAS  Google Scholar 

  56. Heck M-P, Vincent SP, Murray BW, Bellamy F, Wong C-H, Moskowski CJ (2004) Cyclic amidine sugars as transition-state analogue inhibitors of glycosidases: potent competitive inhibitors of mannosidases. J Am Chem Soc 126:1971–1979

    CAS  Google Scholar 

  57. Davis BG, Hull A, Smith C, Nash RJ, Watson AA, Winkler DA, Griffiths RC, Fleet GWJ (1998) 5-epi-deoxyrhamnojirimycon is a potent inhibitor of an α-L-rhamnosidase: 5-epi-deoxymannojirimycin is not potent inhibitor of an α-D-mannosidase. Tetrahedron Asymmetr 9:2947–2960

    CAS  Google Scholar 

  58. Tong MK, Papandreou G, Ganem B (1990) Potent, broad-spectrum inhibition of glycosidases by an amidine derivative of D-glucose. J Am Chem Soc 112:6137–6139

    CAS  Google Scholar 

  59. Ganem B, Papandreou G (1991) Mimicking the glucosidase transition state: shape/charge consideration. J Am Chem Soc 113:8984–8985

    CAS  Google Scholar 

  60. Williams SJ, Notenboom V, Wickl J, Rose DR, Withers SG (2000) A new, simple, high-affinity glycosidase inhibitor: analysis of binding through x-ray crystallography, mutagenesis, and kinetic analysis. J Am Chem Soc 122:4229–4230

    CAS  Google Scholar 

  61. Amat L, Carbó-Dorca RJ (2000) Molecular electronic density fitting using elementary Jacobi rotations under atomic shell approximation. Chem Inf Comput Sci 40:1188–1198

    CAS  Google Scholar 

  62. Winkler DA (1996) Molecular modeling studies of “flap up” mannosyl cation mimics. J Med Chem 39:4332–4334

    CAS  Google Scholar 

  63. Jung KH, Schmidt PR (2003) In: Wong C-H (ed) Carbohydrate based drug discovery, vol 2. Wiley VCH, Weinheim, pp 609–660

    Google Scholar 

  64. Davies GJ, Ducros VM-A, Varrot A, Zechel DL (2003) Mapping the conformational itinerary of β-glycosidases by X-ray crystallography. Biochem Soc Trans 31:523–527

    CAS  Google Scholar 

  65. Larsen CH, Ridgway BH, Shaw JT, Smith DM, Woerpel KA (2005) Stereoselective C-glycosylation reactions of ribose derivatives: electronic effects of five-membered ring oxocarbenium ions. J Am Chem Soc 127:10879–10884

    CAS  Google Scholar 

  66. Alabugin IV (2000) Stereoelectronic interactions in cyclohexane, 1, 3-dioxane, 1.3-oxathiane, and 1, 3-dithian: W-effect, σC-X↔σ*-H interactions, anomeric effect-what is really important? J Org Chem 65:3910–3919

    CAS  Google Scholar 

  67. Plante OJ, Palmacci ER, Andrade RB, Seeberger PH (2001) Oligosaccharide synthesis with glycosyl phosphate and dithiophosphate triesters as glycosylating agents. J Am Chem Soc 123:9545–9554

    CAS  Google Scholar 

  68. Lee YJ, Baek JY, Lee B-Y, Kang SS, Paek H-S, Jeon HB, Kim KS (2006) 2′-Carboxybenzyl glycosides: glycosyl donors for C-glycosylation and conversion into other glycosyl donors. Carbohydr Res 341:1708–1716

    CAS  Google Scholar 

  69. Beignet J, Tierman J, Woo CH, Kariuki BM, Cox LR (2004) Stereoselective synthesis of allyl-C-mannosyl compounds: use of a temporary silicon connection in intramolecular allylations strategies with allyl silanes. J Org Chem 69:6341–6356

    CAS  Google Scholar 

  70. Brunel FM, Taylor KG, Spatola AF (2003) Synthesis of permethylated α-D- mannosyl-acetic acid, a new type of bio-conjugate. Tetrahedron Lett 44:1287–1289

    CAS  Google Scholar 

  71. Nishikawa T, Ishikawa M, Isobe M (1999) Synthesis of a α-C-mannosyltryptophan derivative, naturally occurring C-glycosyl amino acid found in human ribonuclease. Synlett 123–125

    Google Scholar 

  72. Roche D, Bänteli R, Winkler T, Casset F, Ernst B (1998) Synthesis of benzylated (R)-and (S)-aminoethyl-C-α-D-mannosides as conformationally restricted building blocks for the preparation of E- and P-selectin antagonists. Tetrahedron Lett 39:2545–2548

    CAS  Google Scholar 

  73. Bertozzi C, Bednarski M (1992) C-Glycosyl compounds bind to receptors on the surface of Escherichia coli and can target proteins to the organism. Carbohydr Res 223:243–253

    CAS  Google Scholar 

  74. Panek JS, Sparks MA (1989) Oxygenated allylic silanes: useful homoenolate equivalents for the stereoselective C-glycosidation of pyranoside derivatives. J Org Chem 54:2034–2038

    CAS  Google Scholar 

  75. Hosomi A, Sakata Y, Sakurai H (1987) Stereoselective synthesis of 3-(D- glycopyranosyl)propenes by use of allylsilanes. Carbohydr Res 171:223–232

    CAS  Google Scholar 

  76. Akira H, Yasuyuki S, Hideki S (1984) Highly stereoselective C-allylation of glycopyranosides with allylsilanes catalyzed by silyl triflate or iodosilane. Tetrahedron Lett 25:2383–2386

    Google Scholar 

  77. McDevitt JP, Lansbury PT (1996) Glycosamino acids: new building blocks for combinatorial synthesis. J Am Chem Soc 118:3818–3828

    CAS  Google Scholar 

  78. Marron TG, Woltering TJ, Weitz-Schmidt G, Wong C-H (1996) C-mannose derivatives as potent mimics of sialyl Lewis X. Tetrahedron Lett 37:9037–9040

    CAS  Google Scholar 

  79. Nicolaou KC, Hwang C-K, Duggan ME (1985). J Am Chem Soc 111:6682–6690

    Google Scholar 

  80. Giannis A, Sandhoff K (1985) Stereoselective synthesis of α-C-allylglycopyranosides. Tetrahedron Lett 26:1479–1482

    CAS  Google Scholar 

  81. Singh G, Vankayalapati H (2001) Efficient stereocontrolled synthesis of C-glycoside using glycosyl donors substituted by propane 1,3-diyl phosphate as the leaving group. Tetrahedron Asymmetr 12:1727–1735

    CAS  Google Scholar 

  82. Seeman JI (1983) Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin-Hammett Winstein-Holness kinetics. Chem Rev 83:83–134

    CAS  Google Scholar 

  83. Seeman JI (1986) The Curtin-Hammett principle and the Winstein-Holness equation. New definition and recent extensions to classical concepts. J Chem Educ 63:42–48

    CAS  Google Scholar 

  84. Lucero CG, Woerpel KA (2006) Stereoselective C-glycosylation reactions of pyranoses: the conformational preference and reactions of the mannosyl cation. J Org Chem 71:2641–2647

    CAS  Google Scholar 

  85. Olah GA, Dunne K, Mo YK, Szilagyi PJ (1972) Stable carbocations. CXXVIII protonated acyclic carboxylic acid anhydrides and their cleavage to oxocarbenium ions. Question of the formyl cation in superacid media. J Am Chem Soc 94:4200–4205

    CAS  Google Scholar 

  86. Olah GA, Berrier AL, Prakash GKS (1982) Onium ions. 24. Oxygen-17 NMR spectroscopic study of oxonium and carboxonium ions. J Am Chem Soc 104:2373–2376

    CAS  Google Scholar 

  87. Prakash GKS, Rasul G, Liang G, Olah GA (1996) 13C NMR spectroscopic and Density Functional Theory (DFT), ab initio, and IGLO theoretical study of protonated cycloalkylcarboxylic acids (carboxonium ions) and their acyl cations (oxocarbenium ions). J Phys Chem 100:15805–15809

    CAS  Google Scholar 

  88. Suga S, Suzuki S, Yamamoto A, Yoshida J (2000) Electrooxidative generation and accumulation of alkoxycarbenium ions and their reactions with carbon nucleophiles. J Am Chem Soc 122:10244–10245

    CAS  Google Scholar 

  89. Suzuki S, Matsumoto K, Kawamura K, Suga S, Yoshida J (2004) Generation of alkoxycarbenium ion pools from thioacetals and applications to glycosylation chemistry. Org Lett 6:3755–3758

    CAS  Google Scholar 

  90. Yoshida J, Suga S (2002) Basic concepts of “cation pool” and “cation flow” methods and their applications in conventional and combinatorial organic synthesis. Chem Eur J 8:2650–2658

    CAS  Google Scholar 

  91. Deslongchamps P, Chêvert R, Taillefer RJ, Moreau C, Saunders JK (1975) Hydrolysis of cyclic orthoesters. Stereoelectronic control in the cleavage of hemiorthoester tetrahedral intermediates. Can J Chem 53:1601–1615

    CAS  Google Scholar 

  92. Childs RF, Kostyk MD, Lock CJ, Mahedran M (1991) Structural studies on 6-ethoxytetrahydropyrylium cations; stereoelectronic control in the reactions of lactonium salts. Can J Chem 69:2024–2032

    CAS  Google Scholar 

  93. Yang MT, Woerpel KA (2009) The effect of electrostatic interactions on conformational equilibria of multiply substituted tetrahydropyran oxocarbenium ions. J Org Chem 74:545–553

    CAS  Google Scholar 

  94. Jensen HH, Nordstrøm LU, Bols M (2004) The disarming effect of the 4,6-acetal group on glycoside reactivity: torsional or electronic? J Am Chem Soc 126:9205–9213

    CAS  Google Scholar 

  95. Weldon AJ, Vickrey TL, Tschumper GS (2005) Intrinsic conformational preferences of substituted cyclohexanes and tetrahydropyrans evaluated at the CCSD(T) complete basis set limit: implications for the anomeric effect. J Phys Chem 109:11073–11079

    Google Scholar 

  96. Woodcock HL, Moran D, Pastor RW, McKerell AD Jr, Brooks BR (2007) Ab initio modeling of glycosyl torsions and anomeric effects in a model carbohydrate: 2-ethoxy tetrahydropyran. Biophys J 93:1–10

    CAS  Google Scholar 

  97. Law RW, Sasanuma Y (1996) Nature of the non-bonded (C-H):…O interaction of ethers CH3O-(CH2)n-OCH3 (n = 4–8). J Chem Soc Faraday Trans 92:4885–4888

    CAS  Google Scholar 

  98. Namchuk MN, McCarter JD, Becalski A, Andrews T, Withers SG (2000) The role of sugar substituents in glycoside hydrolysis. J Am Chem Soc 122:1270–1277

    CAS  Google Scholar 

  99. Larsen CH, Ridgway BH, Shaw JT, Woerpel KA (1999) A stereoelectronic model to explain the highly stereoselective reactions of nucleophiles with five-membered-ring oxocarbenium ions. J Am Chem Soc 121:12208–12209

    CAS  Google Scholar 

  100. Smith DM, Tran MB, Woerpel KA (2003) Nucleophilic additions to fused, bicyclic five-membered ring oxocarbenium ions: evidence for preferential attack on the inside face. J Am Chem Soc 125:14149–14152

    CAS  Google Scholar 

  101. Smith DM, Woerpel KA (2004) Using stereoelectronic effects to explain selective reactions of 4-substituted five-membered ring oxocarbenium ions. Org Lett 6:2063–2066

    CAS  Google Scholar 

  102. Schmitt A, Reissig H-U (2000) On the stereoselectivity of γ-lactol substitutions with allyl- and propargylsilanes – synthesis of disubstituted tetrahydrofuran derivatives. Eur J Org Chem 3893–3901

    Google Scholar 

  103. Frank X, Hocquemiller R, Figadére B (2002) Access to 2,5-disubstituted tetrahydrofurans from Grignard reagents and hemiacetal derivatives. Chem Commun 160–161

    Google Scholar 

  104. Nishiyama Y, Katoh T, Deguchi K, Morimoto Y, Itoh KJ (1997) Stereoselective synthesis of 2,2,5-trisubstituted tetrahydrofurans via the Lewis acid assisted reaction of cyclic hemiketals with nucleophiles. J Org Chem 62:9339–9341

    CAS  Google Scholar 

  105. Mukaiyama T, Shimpuku T, Takashima T, Kobayashi S (1989) Stereoselective 1,2-cis glycosylation reaction of 1-O-acetylribose with silylated nucleophiles promoted by a new catalyst system. Chem Lett 145–148

    Google Scholar 

  106. Curtin DY (1954) Stereochemical control of organic reactions. Differences in behavior of diastereoisomers. I. Ethane derivatives. The cis effect. Rec Chem Prog 15:111–128

    CAS  Google Scholar 

  107. Shaw JT, Woerpel KA (1999) Divergent diastereoselectivity in the addition of nucleophiles to tetrahydrofuran-derived oxonium ions. Tetrahedron 55:8747–8756

    CAS  Google Scholar 

  108. Smith DM, Woerpel KA (2003) Nucleophilic additions to fused bicyclic five-membered ring oxocarbenium ions: evidence for preferential attack on the inside face. J Am Chem Soc 125:14149–14152

    CAS  Google Scholar 

  109. Houk KN, Paddon-Row MN, Rondan NG, Wu Y-D, Brown FK, Spellmeyer DC, Metz JT, Li Y, Loncharich RJ (1986) Theory and modeling of stereoselective organic reactions. Science 231:1108–1117

    CAS  Google Scholar 

  110. Allinger NL, Fermann JT, Allen WD, Shaefer III HF (1997) The torsional conformations of butane: definitive energetics from ab initio methods. J Chem Phys 106:5143–5250

    CAS  Google Scholar 

  111. Bürgi H-B, Houshell WD, Nachbar RB Jr, Mislow K (1983) Conformational dynamics of propane, di-tert-butylmethane, and bis(9-triptycyl)methane. An analysis of the symmetry of two threefold rotors on a rigid frame in terms of nonrigid molecular structure and energy hypersurfaces. J Am Chem Soc 105:1427–1438

    Google Scholar 

  112. Pasto DJ, Gontarz JA (1971) Characterization of torsional angle effects as the dominant steric effect in the hydroxymercuration of substituted cyclohexenes. J Am Chem Soc 93:6909–6913

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miljkovic, M. (2014). Conformations and Chemistry of Oxocarbenium Ion. In: Electrostatic and Stereoelectronic Effects in Carbohydrate Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8268-0_4

Download citation

Publish with us

Policies and ethics