Skip to main content

The Genetics of Crohn’s Disease

  • Chapter
  • First Online:
Molecular Genetics of Inflammatory Bowel Disease

Abstract

This chapter summarises progress in understanding the genetic basis of Crohn’s disease (CD). It starts with a brief review of family studies for CD epidemiology and then summarises findings of the so-called “linkage era”. Given the success of genome-wide association studies (GWAS) in terms of identifying CD susceptibility loci, the focus of this chapter is on the key GWAS studies and their main results. These have demonstrated association with multiple Th17 pathway components and strongly implicated defects in innate immunity, particularly in autophagy and the handling of intracellular bacteria, as playing key roles in CD pathogenesis. Besides GWAS for adult-onset CD, paediatric-onset GWAS are discussed. Although paediatric-onset CD presents with more extensive disease and rapid progression compared to adult-onset CD, genetic studies have shown marked molecular similarities between the two disease forms. Not only have single GWAS contributed to completing the molecular map of CD genetics, but also systematic cross-phenotype analyses and meta-analyses of several CD GWAS, both of which are discussed in the current chapter. Lastly, the first sequencing studies for CD as well as future challenges are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vavricka SR, Schoepfer AM, Bansky G, Binek J, Felley C, Geyer M et al (2011) Efficacy and safety of certolizumab pegol in an unselected Crohn’s disease population: 26-week data of the FACTS II survey. Inflamm Bowel Dis 17(7):1530–1539

    Article  PubMed  Google Scholar 

  2. Bayless TM, Tokayer AZ, Polito JM II, Quaskey SA, Mellits ED, Harris ML (1996) Crohn’s disease: concordance for site and clinical type in affected family members—potential hereditary influences. Gastroenterology 111(3):573–579, Epub 1996/09/01

    Article  PubMed  CAS  Google Scholar 

  3. Colombel JF, Grandbastien B, Gower-Rousseau C, Plegat S, Evrard JP, Dupas JL et al (1996) Clinical characteristics of Crohn’s disease in 72 families. Gastroenterology 111(3):604–607, Epub 1996/09/01

    Article  PubMed  CAS  Google Scholar 

  4. Farmer RG, Michener WM, Mortimer EA (1980) Studies of family history among patients with inflammatory bowel disease. Clin Gastroenterol 9(2):271–277

    PubMed  CAS  Google Scholar 

  5. Halfvarson J (2011) Genetics in twins with Crohn’s disease: less pronounced than previously believed? Inflamm Bowel Dis 17(1):6–12, Epub 2010/09/18

    Article  PubMed  Google Scholar 

  6. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603, Epub 2001/06/01

    Article  PubMed  CAS  Google Scholar 

  7. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124, Epub 2012/11/07

    Article  PubMed  CAS  Google Scholar 

  8. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606, Epub 2001/06/01

    Article  PubMed  CAS  Google Scholar 

  9. Orholm M, Munkholm P, Langholz E, Nielsen OH, Sorensen TI, Binder V (1991) Familial occurrence of inflammatory bowel disease. N Engl J Med 324(2):84–88, Epub 1991/01/10

    Article  PubMed  CAS  Google Scholar 

  10. Peeters M, Nevens H, Baert F, Hiele M, de Meyer AM, Vlietinck R et al (1996) Familial aggregation in Crohn’s disease: increased age-adjusted risk and concordance in clinical characteristics. Gastroenterology 111(3):597–603, Epub 1996/09/01

    Article  PubMed  CAS  Google Scholar 

  11. Satsangi J, Grootscholten C, Holt H, Jewell DP (1996) Clinical patterns of familial inflammatory bowel disease. Gut 38(5):738–741, Epub 1996/05/01

    Article  PubMed  CAS  Google Scholar 

  12. Asakura H, Tsuchiya M, Aiso S, Watanabe M, Kobayashi K, Hibi T et al (1982) Association of the human lymphocyte-DR2 antigen with Japanese ulcerative colitis. Gastroenterology 82(3):413–418, Epub 1982/03/01

    PubMed  CAS  Google Scholar 

  13. Sugimura K, Asakura H, Mizuki N, Inoue M, Hibi T, Yagita A et al (1993) Analysis of genes within the HLA region affecting susceptibility to ulcerative colitis. Hum Immunol 36(2):112–118, Epub 1993/02/01

    Article  PubMed  CAS  Google Scholar 

  14. Orchard TR, Chua CN, Ahmad T, Cheng H, Welsh KI, Jewell DP (2002) Uveitis and erythema nodosum in inflammatory bowel disease: clinical features and the role of HLA genes. Gastroenterology 123(3):714–718, Epub 2002/08/29

    Article  PubMed  Google Scholar 

  15. Satsangi J, Welsh KI, Bunce M, Julier C, Farrant JM, Bell JI et al (1996) Contribution of genes of the major histocompatibility complex to susceptibility and disease phenotype in inflammatory bowel disease. Lancet 347(9010):1212–1217, Epub 1996/05/04

    Article  PubMed  CAS  Google Scholar 

  16. Fisher SA, Tremelling M, Anderson CA, Gwilliam R, Bumpstead S, Prescott NJ et al (2008) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet 40(6):710–712, Epub 2008/04/29

    Article  PubMed  CAS  Google Scholar 

  17. Ahmad T, Tamboli CP, Jewell D, Colombel JF (2004) Clinical relevance of advances in genetics and pharmacogenetics of IBD. Gastroenterology 126(6):1533–1549, Epub 2004/05/29

    Article  PubMed  CAS  Google Scholar 

  18. Schreiber S, Rosenstiel P, Albrecht M, Hampe J, Krawczak M (2005) Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet 6(5):376–388, Epub 2005/04/30

    Article  PubMed  CAS  Google Scholar 

  19. http://www.ibdgenetics.org/

  20. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308(5720):385–389, Epub 2005/03/12

    Article  PubMed  CAS  Google Scholar 

  21. Yamazaki K, McGovern D, Ragoussis J, Paolucci M, Butler H, Jewell D et al (2005) Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet 14(22):3499–3506, Epub 2005/10/14

    Article  PubMed  CAS  Google Scholar 

  22. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314(5804):1461–1463, Epub 2006/10/28

    Article  PubMed  CAS  Google Scholar 

  23. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39(2):207–211, Epub 2007/01/04

    Article  PubMed  CAS  Google Scholar 

  24. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39(5):596–604, Epub 2007/04/17

    Article  PubMed  CAS  Google Scholar 

  25. Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F, Franchimont D et al (2007) Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet 3(4):e58

    Article  PubMed  Google Scholar 

  26. WTCCC (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678, Epub 2007/06/08

    Article  Google Scholar 

  27. Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA et al (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39(7):830–832, Epub 2007/06/08

    Article  PubMed  CAS  Google Scholar 

  28. Goyette P, Lefebvre C, Ng A, Brant SR, Cho JH, Duerr RH et al (2008) Gene-centric association mapping of chromosome 3p implicates MST1 in IBD pathogenesis. Mucosal Immunol 1(2):131–138, Epub 2008/12/17

    Article  PubMed  CAS  Google Scholar 

  29. Raelson JV, Little RD, Ruether A, Fournier H, Paquin B, Van Eerdewegh P et al (2007) Genome-wide association study for Crohn’s disease in the Quebec Founder Population identifies multiple validated disease loci. Proc Natl Acad Sci U S A 104(37):14747–14752, Epub 2007/09/07

    Article  PubMed  CAS  Google Scholar 

  30. Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V et al (2011) A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet 43(3):242–245, Epub 2011/02/01

    Article  PubMed  CAS  Google Scholar 

  31. Lapaquette P, Bringer MA, Darfeuille-Michaud A (2012) Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response. Cell Microbiol 14(6):791–807, Epub 2012/02/09

    Article  PubMed  CAS  Google Scholar 

  32. McGovern DP, Jones MR, Taylor KD, Marciante K, Yan X, Dubinsky M et al (2010) Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum Mol Genet 19(17):3468–3476, Epub 2010/06/24

    Article  PubMed  CAS  Google Scholar 

  33. Rausch P, Rehman A, Künzel S, Häsler R, Ott SJ, Schreiber S et al (2011) Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):19030–19035. doi: 10.1073/pnas.1106408108, Epub 2011/11/08

    Google Scholar 

  34. Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A et al (2012) Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336(6080):489–493, Epub 2012/03/24

    Article  PubMed  CAS  Google Scholar 

  35. Henderson P, van Limbergen JE, Wilson DC, Satsangi J, Russell RK (2011) Genetics of childhood-onset inflammatory bowel disease. Inflamm Bowel Dis 17(1):346–361, Epub 2010/09/15

    Article  PubMed  Google Scholar 

  36. Kugathasan S, Baldassano RN, Bradfield JP, Sleiman PM, Imielinski M, Guthery SL et al (2008) Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet 40(10):1211–1215, Epub 2008/09/02

    Article  PubMed  CAS  Google Scholar 

  37. Amre DK, Mack DR, Morgan K, Fujiwara M, Israel D, Deslandres C et al (2009) Investigation of reported associations between the 20q13 and 21q22 loci and pediatric-onset Crohn’s disease in Canadian children. Am J Gastroenterol 104(11):2824–2828, Epub 2009/07/23

    Google Scholar 

  38. Imielinski M, Baldassano RN, Griffiths A, Russell RK, Annese V, Dubinsky M et al (2009) Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet 41(12):1335–1340, Epub 2009/11/17

    Article  PubMed  CAS  Google Scholar 

  39. Essers JB, Lee JJ, Kugathasan S, Stevens CR, Grand RJ, Daly MJ (2009) Established genetic risk factors do not distinguish early and later onset Crohn’s disease. Inflamm Bowel Dis 15(10):1508–1514, Epub 2009/03/27

    Article  PubMed  Google Scholar 

  40. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42(12):1118–1125, Epub 2010/11/26

    Article  PubMed  CAS  Google Scholar 

  41. Franke A, Fischer A, Nothnagel M, Becker C, Grabe N, Till A et al (2008) Genome-wide association analysis in sarcoidosis and Crohn’s disease unravels a common susceptibility locus on 10p12.2. Gastroenterology 135(4):1207–1215

    Article  PubMed  CAS  Google Scholar 

  42. Cozier YC, Ruiz-Narvaez EA, McKinnon CJ, Berman JS, Rosenberg L, Palmer JR (2012) Fine-mapping in African-American women confirms the importance of the 10p12 locus to sarcoidosis. Genes Immun 13(7):573–578, Epub 2012/09/14

    Article  PubMed  CAS  Google Scholar 

  43. Festen EA, Goyette P, Green T, Boucher G, Beauchamp C, Trynka G et al (2011) A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn’s disease and celiac disease. PLoS Genet 7(1):e1001283, Epub 2011/02/08

    Article  PubMed  CAS  Google Scholar 

  44. Wang K, Baldassano R, Zhang H, Qu HQ, Imielinski M, Kugathasan S et al (2010) Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects. Hum Mol Genet 19(10):2059–2067, Epub 2010/02/24

    Article  PubMed  CAS  Google Scholar 

  45. Ellinghaus D, Ellinghaus E, Nair RP, Stuart PE, Esko T, Metspalu A et al (2012) Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am J Hum Genet 90(4):636–647, Epub 2012/04/10

    Article  PubMed  CAS  Google Scholar 

  46. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962, Epub 2008/07/01

    Article  PubMed  CAS  Google Scholar 

  47. Anderson CA, Boucher G, Lees CW, Franke A, D’Amato M, Taylor KD et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43(3):246–252, Epub 2011/02/08

    Article  PubMed  CAS  Google Scholar 

  48. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ et al (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464(7293):1371–1375, Epub 2010/04/16

    Article  PubMed  CAS  Google Scholar 

  49. Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S, Mayr G et al (2008) Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 40(11):1319–1323, Epub 2008/10/07

    Article  PubMed  CAS  Google Scholar 

  50. Glocker EO, Frede N, Perro M, Sebire N, Elawad M, Shah N et al (2010) Infant colitis—it’s in the genes. Lancet 376(9748):1272, Epub 2010/10/12

    Article  PubMed  Google Scholar 

  51. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA, Noyan F et al (2009) Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 361(21):2033–2045, Epub 2009/11/06

    Article  PubMed  CAS  Google Scholar 

  52. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK et al (2011) Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet 43(11):1066–1073, Epub 2011/10/11

    Article  PubMed  CAS  Google Scholar 

  53. Di Sabatino A, Jackson CL, Pickard KM, Buckley M, Rovedatti L, Leakey NA et al (2009) Transforming growth factor beta signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut 58(6):777–789, Epub 2009/02/10

    Article  PubMed  Google Scholar 

  54. Nenci A, Becker C, Wullaert A, Gareus R, van Loo G, Danese S et al (2007) Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446(7135):557–561, Epub 2007/03/16

    Article  PubMed  CAS  Google Scholar 

  55. Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90(1):7–24, Epub 2012/01/17

    Article  PubMed  CAS  Google Scholar 

  56. Fu J, Wolfs MG, Deelen P, Westra HJ, Fehrmann RS, Te Meerman GJ et al (2012) Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression. PLoS Genet 8(1):e1002431, Epub 2012/01/26

    Article  PubMed  CAS  Google Scholar 

  57. Cooke J, Zhang H, Greger L, Silva AL, Massey D, Dawson C et al (2012) Mucosal genome-wide methylation changes in inflammatory bowel disease. Inflamm Bowel Dis 18(11):2128–2137, Epub 2012/03/16

    Article  PubMed  Google Scholar 

  58. Hasler R, Feng Z, Backdahl L, Spehlmann ME, Franke A, Teschendorff A et al (2012) A functional methylome map of ulcerative colitis. Genome Res 22(11):2130–2137, Epub 2012/07/25

    Article  PubMed  Google Scholar 

  59. Nimmo ER, Prendergast JG, Aldhous MC, Kennedy NA, Henderson P, Drummond HE et al (2012) Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis 18(5):889–899, Epub 2011/10/25

    Article  PubMed  Google Scholar 

  60. Franke A, Hampe J, Rosenstiel P, Becker C, Wagner F, Hasler R et al (2007) Systematic association mapping identifies NELL1 as a novel IBD disease gene. PLoS One 2(8):e691, Epub 2007/08/09

    Article  PubMed  Google Scholar 

  61. Kenny EE, Pe’er I, Karban A, Ozelius L, Mitchell AA, Ng SM et al (2012) A genome-wide scan of Ashkenazi Jewish Crohn’s disease suggests novel susceptibility loci. PLoS Genet 8(3):e1002559, Epub 2012/03/14

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Franke Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Franke, A., Parkes, M. (2013). The Genetics of Crohn’s Disease. In: D'Amato, M., Rioux, J. (eds) Molecular Genetics of Inflammatory Bowel Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8256-7_5

Download citation

Publish with us

Policies and ethics