Skip to main content

Complex Disease Genes and Their Discovery

  • Chapter
  • First Online:
  • 1128 Accesses

Abstract

The study of the genetic underpinning of heritable human diseases stretches back nearly a century. While thousands of mutations in single genes have been found that cause severe “Mendelian” disorders, attempts to find such single genes for complex diseases have been relatively unsuccessful. Instead it has become clear that complex diseases, like IBD, are affected by many (likely hundreds or even thousands) different genes as well as environmental factors. Here we describe the process by which that discovery was made, as well as the technological advances from small-scale candidate gene to genome-wide association studies. These approaches, especially when undertaken in large-scale collaborations, have unlocked thousands of complex disease genes, including 163 associated with IBD. Despite these exciting developments, the discovery of genes represents the first stage in translating that knowledge into biological understanding of disease and possible future treatments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fisher RA (1919) The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb 52:399–433

    Article  Google Scholar 

  2. Sturtevant AH (1913) The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Exp Zool 14:43–59

    Article  Google Scholar 

  3. Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7:277

    PubMed  CAS  Google Scholar 

  4. Kan YW, Dozy AM (1978) Polymorphism of DNA sequence adjacent to human beta-globin structural gene: relationship to sickle mutation. Proc Natl Acad Sci 75:5631–5635

    Article  PubMed  CAS  Google Scholar 

  5. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314

    PubMed  CAS  Google Scholar 

  6. Gusella JF et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238

    Article  PubMed  CAS  Google Scholar 

  7. Wise J (2010) Prevalence of Huntington's disease is underestimated in UK. BMJ 340:c3516

    Article  Google Scholar 

  8. Markianos K, Daly MJ, Kruglyak L (2001) Efficient multipoint linkage analysis through reduction of inheritance space. Am J Hum Genet 68(4):963–977

    Article  PubMed  CAS  Google Scholar 

  9. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    Article  PubMed  CAS  Google Scholar 

  10. Undlien DE et al (1995) Insulin gene region-encoded susceptibility to IDDM maps upstream of the insulin gene. Diabetes 44:620–625

    Article  PubMed  CAS  Google Scholar 

  11. Sachidanandam R et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Article  PubMed  CAS  Google Scholar 

  12. Jeffreys AJ, Kauppi L, Neumann R (2001) Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 29:217–222

    Article  PubMed  CAS  Google Scholar 

  13. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29:229–232

    Article  PubMed  CAS  Google Scholar 

  14. The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  Google Scholar 

  15. Pe’er I et al (2006) Evaluating and improving power in whole-genome association studies using fixed marker sets. Nat Genet 38:663–667

    Article  PubMed  Google Scholar 

  16. Barrett JC, Cardon LR (2006) Evaluating coverage of genome-wide association studies. Nat Genet 38:659–662

    Article  PubMed  CAS  Google Scholar 

  17. Frayling TM et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894

    Article  PubMed  CAS  Google Scholar 

  18. Duerr RH et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463

    Article  PubMed  CAS  Google Scholar 

  19. Rioux JD et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39:596–604

    Article  PubMed  CAS  Google Scholar 

  20. Parkes M et al (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39:830–832

    Article  PubMed  CAS  Google Scholar 

  21. Anderson CA et al (2010) Data quality control in genetic case–control association studies. Nat Protoc 5:1564–1573

    Article  PubMed  CAS  Google Scholar 

  22. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  PubMed  CAS  Google Scholar 

  23. Price AL et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  PubMed  CAS  Google Scholar 

  24. Pe'er I, Yelensky R, Altshuler D, Daly MJ (2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32:381–385

    Article  PubMed  Google Scholar 

  25. WTCCC (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  26. Lee SH, Wray NR, Goddard ME, Visscher PM (2011) Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet 88(3):294–305. doi:10.1016/j.ajhg.2011.02.002

    Article  PubMed  Google Scholar 

  27. Eichler EE et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450

    Article  PubMed  CAS  Google Scholar 

  28. Barrett JC et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 40:955–962

    Article  PubMed  CAS  Google Scholar 

  29. Voight BF et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589

    Article  PubMed  CAS  Google Scholar 

  30. Paper A. F. L. O. A. A. T. A. A. A. T. E. O. T (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467:832–838

    Google Scholar 

  31. Franke A et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42(12):1118–1125. doi:10.1038/ng.717

    Article  PubMed  CAS  Google Scholar 

  32. Anderson CA et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43:246–252

    Article  PubMed  CAS  Google Scholar 

  33. Jostins L, Ripke S, Barrett JC, Cho JH (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 490:119–124

    Article  Google Scholar 

  34. International Schizophrenia Consortium et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752

    Google Scholar 

  35. Jostins L, Barrett JC (2011) Genetic risk prediction in complex disease. Hum Mol Genet 20:R182–R188

    Article  PubMed  CAS  Google Scholar 

  36. Ingram VM (1957) Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 180:326–328

    Article  PubMed  CAS  Google Scholar 

  37. Menzel S et al (2007) A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet 39:1197–1199

    Article  PubMed  CAS  Google Scholar 

  38. Xu J et al (2011) Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science 334:993–996

    Article  PubMed  CAS  Google Scholar 

  39. Kilpinen H, Barrett JC (2013) How next-generation sequencing is transforming complex disease genetics. Trends Genet 29(1):23–30. doi:10.1016/j.tig.2012.10.001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Barrett B.S., D.Phil. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barrett, J.C., Daly, M.J. (2013). Complex Disease Genes and Their Discovery. In: D'Amato, M., Rioux, J. (eds) Molecular Genetics of Inflammatory Bowel Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8256-7_4

Download citation

Publish with us

Policies and ethics