Skip to main content

Do Growth Kinetics of Snow-mold Fungi Explain Exponential CO2 Fluxes Through the Snow?

  • Conference paper
  • First Online:
Plant and Microbe Adaptations to Cold in a Changing World

Abstract

Plant pathogenic snow-mold fungi have received much attention for many years due to their economic importance, but the identity and activity of nonpathogenic fungi of the under-snow environment have received much less study. In polar and alpine areas of the world, mats of saprophytic snow molds are commonly observed as snow melts in both forested and tundra biomes. Recent biogeochemical studies in high-elevation and high-latitude environments have shown conclusively that microbial activity under the snow pack contributes significantly to gas fluxes and to carbon and nitrogen cycling. In addition, Schmidt et al. have demonstrated that nonpathogenic snow-mold fungi are among the dominant organisms of the sub-nivean environment and carry out important ecosystem functions in tundra and forested ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berbee ML (1996) Loculoascomycete origins and evolution of filamentous ascomycete morphology based on 18S rRNA gene sequence data. Mol Biol Evol 13:462–470

    Article  PubMed  CAS  Google Scholar 

  • Bowling DR, Massman WJ, Schaeffer SM, Burns SP, Monson RK, Williams MW (2009) Biological and physical influences on the carbon isotope content of CO2 in a subalpine forest snowpack, Niwot Ridge, Colorado. Biogeochemistry 95:37–59

    Article  CAS  Google Scholar 

  • Brooks PD, Schmidt SK, Williams MW (1997) Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes. Oecologia 110:403–413

    Google Scholar 

  • Brooks PD, Williams MW, Schmidt SK (1998) Inorganic N and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry 43:1–15

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  • Freeman KR, Martin AP, Karki D, Lynch RC, Mitter MS, Meyer AF, Longcore JE, Simmons DR, Schmidt SK (2009a) Evidence that chytrids dominate fungal communities in high-elevation soils. Proc Natl Acad Sci U S A 106:18315–18320

    Article  CAS  Google Scholar 

  • Freeman KR, Pescador MY, Reed SC, Costello EK, Robeson MS, Schmidt SK (2009b) Soil CO2 flux and photoautotrophic community composition in high-elevation, “barren” soils. Environ Microbiol 11:674–686

    Article  CAS  Google Scholar 

  • Grogan P, Jonasson S (2006) Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type. Glob Chang Biol 12:1479–1495

    Article  Google Scholar 

  • Haines RB (1931) The influence of temperature on the rate of growth of Sporotrichum carnis, from − 10 °C to + 30 °C. J Exp Biol 8:379–388

    Google Scholar 

  • Hartig R (1888) Herpotrichia nigra n. sp. Allg Forst Jagdztg 64:15–17

    Google Scholar 

  • Hibbett DS et al. (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hochachka PW, Somero GN. 1984. Biochemical adaptation. Princeton University Press, Princeton

    Google Scholar 

  • Hoshino T, Xiao N, Tkachenko OB (2009) Cold adaptation in phytopathogenic fungi causing snow molds. Mycoscience 50:26–38

    Article  Google Scholar 

  • Hsiang T, Matsumoto N, Millett SM (1999) Biology and management of Typhula snow molds of turfgrass. Plant Dis 83:788–798

    Article  Google Scholar 

  • Hughes KA, Lawley B, Newsham KK (2003) Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Appl Environ Microbiol 69:1488–1491

    Article  PubMed  CAS  Google Scholar 

  • Illingworth CA, Andrews JH, Bibeau C, Sogin ML (1991) Phylogenetic placement of Athelia bombacina, Aureobasidium pullulans and Colletotrichum gloeosporioides inferred from sequence comparisons of small-subunit ribosomal RNAs. Exp Mycol 15:65–75

    Article  CAS  Google Scholar 

  • Kerry E (1990) Effects of temperature on growth rates of fungi from sub-Antarctic Macquarie Island and Casey, Antarctica. Polar Biol 10:293–299

    Google Scholar 

  • Larsen KS, Grogan P, Jonasson S, Michelsen A (2007) Respiration and microbial dynamics in two subarctic ecosystems during winter and spring thaw: effects of increased snow depth. Arct Alp Res 39:268–276

    Article  Google Scholar 

  • Ley RE, Williams MW, Schmidt SK (2004) Microbial population dynamics in an extreme environment: controlling factors in talus soils at 3750 m in the Colorado Rocky Mountains. Biogeochemistry 68:313–335

    Article  CAS  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (1999) Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80:1623–1631

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (2000) Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biology Biochemistry 32:441–448

    Article  CAS  Google Scholar 

  • Lipson DA, Monson RK, Schmidt SK, Weintraub MN (2009) The trade-off between growth rate and yield in microbial communities and the consequences for soil respiration in a high elevation coniferous forest. Biogeochemistry 95:23–35

    Article  Google Scholar 

  • Mackenzie DA, Wongwathanarat P, Carter AT, Archer DB (2000) Isolation and use of a homologous histone H4 promoter and a ribosomal DNA region in a transformation vector for the oil-producing fungus Mortierella alpina. Applied Environmental Microbiology 66:4655–4661

    Article  CAS  Google Scholar 

  • Mast MA, Wickland WP, Striegl RT, Clow DW (1998) Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado. Global Biogeochem Cycles 12:607–620

    Article  CAS  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology Biochemistry 34:1785–1795

    Article  CAS  Google Scholar 

  • Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006) Winter forest soil respiration controlled by climate and microbial community composition. Nature 439:711–714

    Article  PubMed  CAS  Google Scholar 

  • Nedwell DB (1999) Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol 30:101–111

    Article  PubMed  CAS  Google Scholar 

  • Nemergut DR, Costello E, Meyer AF, Pescador MY, Weintraub MW, Schmidt SK (2005) Structure and function of alpine and arctic soil microbial communities. Res in Microbiol 156:775–784

    Article  Google Scholar 

  • O’Donnell K, Lutzoni FM, Ward TJ, Benny GL (2001) Evolutionary relationships among mucoralean fungi (Zygomycota): evidence for family polyphyly on a large scale. Mycologia 93:286–296

    Article  Google Scholar 

  • Porter TM, Schadt CW, Rizvi L, Martin AP, Schmidt SK, Scott-Denton L, Vilgalys R, Moncalvo J-M. (2008) Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol Phylogenet Evol 46:635–644

    Article  PubMed  CAS  Google Scholar 

  • Romanovsky VE, Osterkamp TE (2000) Effects of unfrozen water on heat and mass transport processes in the active layer of permafrost. Permafrost Periglac Process 11:219–239

    Article  Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361

    Article  PubMed  CAS  Google Scholar 

  • Schmidt SK, Lipson DA (2004) Microbial growth under the snow: implications for nutrient and alleochemical availability in temperate soils. Plant Soil 259:1–7

    Article  CAS  Google Scholar 

  • Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, Meyer AF, Martin AP (2007) Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology 88:1379–1385

    Article  PubMed  CAS  Google Scholar 

  • Schmidt SK, Wilson KL, Gebauer MM, Meyer AF, King AJ (2008) Phylogeny and ecophysiology of opportunistic “snow molds” from a sub-alpine forest ecosystem. Microb Ecol 56:681–687

    Article  PubMed  CAS  Google Scholar 

  • Schmidt SK, Wilson KL, Monson RK, Lipson DA (2009) Exponential growth of “snow molds” at sub-zero temperatures: an explanation for high beneath-snow respiration rates and Q10 values. Biogeochemistry 95:13–21

    Article  Google Scholar 

  • Schmidt SK, Naff CS, Lynch RC (2012) Fungal communities at the edge: Ecological lessons from high alpine fungi. Fungal Ecology 5:443–452

    Article  Google Scholar 

  • Simms HR (1967) On the ecology of Herpotrichia nigra. Mycologia 59:902–909

    Article  Google Scholar 

  • Sommerfeld RA, Massman WJ, Musselman RC, Mosier AR (1996) Diffusional flux of CO2 through snow: Spatial and temporal variability among alpine-subalpine sites. Global Biogeochem Cycles 10:473–482

    Article  CAS  Google Scholar 

  • Tojo M, Newsham KK (2012) Snow moulds in polar environments. Fungal Ecology 5:395–402

    Article  Google Scholar 

  • Weintraub MN, Scott-Denton LE, Schmidt SK, Monson RK (2007) The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 154:327–338

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to M. M. Gebauer, K. L. Wilson, and A. F. Meyer for assistance in the laboratory and D. R. Bowling, R. K. Monson, D. A. Lipson, and N. Trahan for helpful discussions. This work was supported by a grant (MCB-0455606) from the Microbial Observatories Program of the National Science Foundation of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven K. Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Schmidt, S., Frankel, S., Wagner, R., Lynch, R. (2013). Do Growth Kinetics of Snow-mold Fungi Explain Exponential CO2 Fluxes Through the Snow?. In: Imai, R., Yoshida, M., Matsumoto, N. (eds) Plant and Microbe Adaptations to Cold in a Changing World. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8253-6_21

Download citation

Publish with us

Policies and ethics