Skip to main content

Breeding for Improved Winter Survival in Forage Grasses

  • Conference paper
  • First Online:
Plant and Microbe Adaptations to Cold in a Changing World

Abstract

In temperate regions, winter survival is the most important trait for perennial forage grasses and winter cereals. Germplasm, properly adapted to the seasonal photoperiod and temperature regimes, is a prerequisite for developing high-yielding and persistent cultivars. Winter kill can be due to many types of abiotic and biotic stress, of which freezing is considered the most important. Freezing tolerance is used as a proxy for winter survival and several artificial freezing test methods have been developed and are being used in research and breeding. Cold acclimation (hardening) induces expression of a cascade of cold-responsive genes, which completely alters the physiological and metabolic states of the plants leading to improved freezing tolerance. Although a wealth of information about cold-responsive genes and transcriptional changes induced by cold have been gathered from model species, we are a long way from being able to transfer and utilize this knowledge for improvement of winter survival in forage crops. This chapter describes the main challenges associated with breeding for improved winter survival in forage grasses. Techniques used to quantify freezing tolerance, genetic control of freezing tolerance, results from selection experiments and breeding, and the status of genomic and molecular marker resources established in major species are presented. Also, the additional (new) challenges posed by the ongoing climate changes, e.g., dehardening and rehardening in a more irregular winter climate, are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alm V, Busso C, Ergon A, Rudi H, Larsen A, Humphreys M, Rognli O (2011) QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 123:369–382

    Article  PubMed  Google Scholar 

  • Årsvoll K (1977) Effects of hardening, plant age, and development in Phleum pratense and Festuca pratensis on resistance to snow mould fungi. Meld Norg Landbruks 56:1–14

    Google Scholar 

  • Brule-Babel AL, Fowler DB (1988) Genetic control of cold hardiness and vernalization requirement in winter wheat. Crop Sci 28:879–884

    Article  Google Scholar 

  • Dexter ST, Tottingham WE, Graber LF (1932) Investigations of the hardiness of plants by measurement of electrical conductivity. Plant Physiol 7:63–78

    Article  PubMed  CAS  Google Scholar 

  • Dhillon T, Pearce S, Stockinger E, Distelfeld A, Li C, Knox A, Vashegyi I, Vagujfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153:1846–1858

    Article  PubMed  CAS  Google Scholar 

  • Eagles CF (1994) Temperature, photoperiod and dehardening of forage grasses and legumes. In: Dorffling K, Brettschneider B, Tantau H, Pithan K (eds) Crop adaptation to cool climates. Report of Cost 814 European Commission workshop, Hamburg 12th–14th Oct 1994

    Google Scholar 

  • Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44

    Article  CAS  Google Scholar 

  • Ergon Å, Fang C, Jørgensen Ø, Aamlid TS, Rognli OA (2006) Quantitative trait loci controlling vernalisation requirement, heading time, and number of panicles in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 112:232–242

    Article  PubMed  CAS  Google Scholar 

  • Fowler DB, Gusta LV, Tyler NJ (1981) Selection for winter hardiness in wheat. III. Screening methods. Crop Sci 21:896–901

    Article  CAS  Google Scholar 

  • Fowler DB, Limin AE, Wang SY, Ward RW (1996) Relationship between low-temperature tolerance and vernalization response in wheat and rye. Can J Plant Sci 76:37–42

    Article  Google Scholar 

  • Francia E, Barabaschi D, Tondelli A, Laido G, Rizza F, Stanca A, Busconi M, Fogher C, Stockinger E, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Galiba G, Quarrie S, Sutka J, Morgounov A, Snape J (1995) RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  CAS  Google Scholar 

  • Gay AP, Eagles CF (1991) Quantitative analysis of cold hardening and dehardening in Lolium. Ann Bot (Lond) 67:339–345

    Google Scholar 

  • Gudleifsson BE, Andrews CJ, Bjørnsson H (1986) Cold hardiness and ice tolerance o pasture grasses grown and tested in controlled environments. Can J Plant Sci 66:601–608

    Article  Google Scholar 

  • Gusta LV, Fowler DB, Tyler NJ (1982) Factors influencing hardening and survival in winter wheat. In: Sakai A, Li PH (eds) Plant cold hardiness and freezing stress mechanisms and crop implications. Academic Press, New York

    Google Scholar 

  • Gusta LV, O’Connor BJ, MacHutcheon MG (1997) The selection of superior winter-hardy genotypes using a prolonged freeze test. Can J Plant Sci 77:15–21

    Article  Google Scholar 

  • Humphreys MW, Gasior D, Lesniewska-Bocianowska A, Zwierzykowski Z, Rapacz M (2007) Androgenesis as a means of dissecting complex genetic and physiological controls: selecting useful gene combinations for breeding freezing tolerant grasses. Euphytica 158:337–345

    Article  Google Scholar 

  • Huner NPA, Öquist G, Hurry VM, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 37:19–39

    Article  CAS  Google Scholar 

  • Jørgensen M, Østrem L, Höglind M (2010) De-hardening in contrasting cultivars of timothy and perennial ryegrass during winter and spring. Grass Forage Sci 65:38–48

    Article  Google Scholar 

  • Kalberer SR, Arora R, Leyva-Estrada N, Krebs SL (2007) Cold hardiness of floral buds of deciduous azaleas: dehardening, rehardening, and endodormancy in late winter. J Am Soc Hortic Sci 132:73–79

    Google Scholar 

  • Kalberer SR, Wisniewski M, Arora R (2006) Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci 171:3–16

    Article  CAS  Google Scholar 

  • Larsen A (1978) Freezing tolerance in grasses: methods for testing in controlled environments. Meld Norg Landbruks 57(23):1–56

    Google Scholar 

  • Larsen A (1979) Freezing tolerance in grasses: variation within populations and response to selection. Meld Norg Landbruks 58(42):1–28

    Google Scholar 

  • Larsen A (1989) Foredling for overvintringsevne hos engvekster [Breeding for winter survival in forage crops]. Norsk Landbruksforskning [Norwegian Agricultural Research], Supplement no. 5, 1989, pp 75–80

    Google Scholar 

  • Larsen A, Tronsmo AM (1991) Selection for resistance against low-temperature fungi in perennial ryegrass (Lolium perenne L.) (in Norwegian). Nordisk Jordbruksforskning 73:516

    Google Scholar 

  • Larsen A (1994) Breeding winter hardy grasses. Euphytica 77:231–237

    Article  Google Scholar 

  • Limin AE, Fowler DB (1987) Cold hardiness of forage grasses grown on the Canadian prairies. Can J Plant Sci 67:1111–1115

    Article  Google Scholar 

  • Limin AE, Fowler DB (2002) Developmental traits affecting low-temperature tolerance response in near-isogenic lines for the vernalization locus Vrn-A1 in wheat (Triticum aestivum l. em Thell). Ann Bot (Lond) 89:579–585

    Article  CAS  Google Scholar 

  • Mahfoozi S, Limin AE, Fowler DB (2001) Influence of vernalization and photoperiod responses on cold hardiness in winter cereals. Crop Sci 41:1006–1011

    Article  Google Scholar 

  • Miller A, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am2 in Triticum monococcum. Mol Genet Genomics 275:193–203

    Article  PubMed  CAS  Google Scholar 

  • Ndong C, Danyluk J, Huner NPA, Sarhan F (2001) Survey of gene expression in winter rye during changes in growth temperature, irradiance or excitation pressure. Plant Mol Biol 45:691–703

    Article  PubMed  CAS  Google Scholar 

  • Nilsson-Ehle H (1913) Zur kenntnis der erblichkeitsverhältnisse der eigenschaft winterfestigkeit beim weizen. Z Pflanzenzucht 1:3–12

    Google Scholar 

  • Pulli S, Hjortsholm K, Larsen A, Gudleifsson B, Larsson S, Kristiansson B, Hömmö L, Tronsmo AM, Ruuth P, Kristensson C (1996) Development and evaluation of laboratory testing methods for winter hardiness breeding. Nordic Gene Bank 32:1–68

    Google Scholar 

  • Rapacz M, Gasior D, Zwierzykowski Z, Lesniewska-Bocianowska A, Humphreys MW, Gay AP (2004) Changes in cold tolerance and the mechanisms of acclimation of photosystem II to cold hardening generated by another culture of Festuca pratensis × Lolium multiflorum cultivars. New Phytol 162:105–114

    Article  CAS  Google Scholar 

  • Rapacz M, Sasal M, Gut M (2011) Chlorophyll fluorescence-based studies of frost damage and the tolerance for cold-induced photoinhibition in freezing tolerance analysis of Triticale (× Triticosecale Wittmack). J Agron Crop Sci 197:378–389

    Article  CAS  Google Scholar 

  • Rapacz M, Tyrka M, Kaczmarek W, Gut M, Wolanin B, Mikulski W (2008) Photosynthetic acclimation to cold as a potential physiological marker of winter barley freezing tolerance assessed under variable winter environment. J Agron Crop Sci 194:61–71

    Article  Google Scholar 

  • Rizza F, Pagani D, Gut M, Prášil IT, Lago C, Tondelli A, Orrù L, Mazzucotelli E, Francia E, Badeck F-W, Crosatti C, Terzi V, Cattivelli L, Stanca AM (2011) Diversity in the response to low temperature in representative barley genotypes cultivated in Europe. Crop Sci 51:2759–2779

    Article  CAS  Google Scholar 

  • Rizza F, Pagani D, Stanca AM, Cattivelli L (2001) Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breeding 120:389–396

    Article  Google Scholar 

  • Rudi H, Sandve SR, Opseth LM, Larsen A, Rognli OA (2011) Identification of candidate genes important for frost tolerance in Festuca pratensis Huds. by transcriptional profiling. Plant Sci 180:78–85

    Article  PubMed  CAS  Google Scholar 

  • Sandve SR, Kosmala A, Rudi H, Fjellheim S, Rapacz M, Yamada T, Rognli OA (2011) Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates. Plant Sci 180:69–77

    Article  PubMed  CAS  Google Scholar 

  • Sãulescu NN, Braun H-J (2001) Cold tolerance. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Application of physiology in wheat breeding. CIMMYT, Mexico

    Google Scholar 

  • Sjøseth H (1957) Undersøkelser over frostherdighet hos engvekster. Forskn Fors Landbr 8:77–98 [In Norwegian]

    Google Scholar 

  • Sjøseth H (1964) Studies on frost hardening in plants. Acta Agric Scand 14:178–192

    Article  Google Scholar 

  • Skinner J, Szucs P, Zitzewitz J von, Marquez-Cedillo L, Filichkin T, Stockinger E, Thomashow M, Chen T, Hayes P (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112:832–842

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Yamada T (2007) A perennial ryegrass CBF gene cluster is located in a region predicted by conserved synteny between Poaceae species. Theor Appl Genet 114:273–283

    Article  PubMed  CAS  Google Scholar 

  • Tronsmo AM (1985) Induced resistance to biotic stress factors in grasses by frost hardening. In: Kaurin Å, Junttila O, Nilsen J (eds) Plant production in the north. Universitetsforlaget, Oslo, pp 127–133

    Google Scholar 

  • Tronsmo AM (1993) Resistance to winter stress factors in half-sib families of Dactylis glomerata, tested in a controlled environment. Acta Agric Scand Sect B Soil Plant Sci 43:89–96

    Article  Google Scholar 

  • Vagujfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol Genet Genomics 269:60–67

    PubMed  CAS  Google Scholar 

  • Waalen W, Tanino KK, Olsen JE, Eltun R, Rognli OA, Gusta LV (2011) Freezing tolerance of winter canola cultivars is best revealed by a prolonged freeze test. Crop Sci 51:1988–1996

    Article  Google Scholar 

  • Wit F (1952) Techniques of breeding cold-resistant grasses and clovers. Proc 6th Int Grassld Congr, USA, pp 1607–1612

    Google Scholar 

  • Whitlow TH, Bassuk NL, Ranney TG, Reichert DL (1992) An improved method for using electrolyte leakage to assess membrane competence in plant tissues. Plant Physiol 98:198–205

    Article  PubMed  CAS  Google Scholar 

  • Xiong YW, Fei SZ, Arora R, Brummer EC, Barker RE, Jung GW, Warnke SE (2007) Identification of quantitative trait loci controlling winter hardiness in an annual x perennial ryegrass interspecific hybrid population. Mol Breeding 19:125–136

    Article  Google Scholar 

  • Yamada T, Jones ES, Cogan NOI, Vecchies AC, Nomura T, Hisano H, Shimamoto Y, Smith KF, Hayward MD, Forster JW (2004) QTL analysis of morphological, developmental, and winter hardiness-associated traits in perennial ryegrass. Crop Sci 44:925–935

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odd Arne Rognli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Rognli, O. (2013). Breeding for Improved Winter Survival in Forage Grasses. In: Imai, R., Yoshida, M., Matsumoto, N. (eds) Plant and Microbe Adaptations to Cold in a Changing World. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8253-6_17

Download citation

Publish with us

Policies and ethics