Skip to main content

Using Synchrotron FTIR and Confocal Cryomicroscopy to Explore Mechanisms of Cold Acclimation and Freezing Resistance Using a Single Cell Layer of Allium fistulosum L

  • Conference paper
  • First Online:
Book cover Plant and Microbe Adaptations to Cold in a Changing World

Abstract

Synchrotron-based Fourier Transform Infrared (FTIR) microspectroscopy is a powerful tool for nondestructively highlighting spatial distribution of candidate chemical components and properties on a single plant cell basis. We have used this technique to localize changes after cold acclimation in a new plant system based on a cold hardy perennial onion, Allium fistulosum L. Confocal cryomicroscopy combined with membrane-specific fluorescent dyes in the A. fistulosum L. model system also represents a powerful technique to observe in-situ cellular responses to freezing and thawing. This cold hardy onion system enables both techniques to be used nondestructively with observations acquired on a single cell basis. This chapter provides a review of techniques and illustrates their potential based on our experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487

    Article  PubMed  CAS  Google Scholar 

  • Carr GL (2001) Resolution limits for infrared microspectroscopy explored with synchrotron radiation. Rev Sci Instr 72:1613–1619

    Article  CAS  Google Scholar 

  • Carr GL, Hanfland M, Williams GP (1995) Mid infrared beamline at the National Synchrotron Light Source port U2B. Rev Sci Instr 66:1643–1645

    Article  CAS  Google Scholar 

  • Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xie Q (2012) Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell 24:233–244

    Article  PubMed  CAS  Google Scholar 

  • Doiron KJ, Yu P, Christensen CR, Christensen DA, McKinnon JJ (2009) Detecting molecular changes in ‘Vimy’ flaxseed protein structure using synchrotron FTIRM and DRIFT spectroscopic techniques: structural and biochemical characterization. Spectroscopy 23:307–322

    Article  CAS  Google Scholar 

  • Dokken KM, Davis LC (2005) Use of infrared microspectroscopy in plant growth and development. App Spectrosc Rev 40:301–326

    Article  Google Scholar 

  • Dokken KM, Davis LC (2007) Infrared imaging of sunflower and maize root anatomy. J Agric Food Chem 55:10517–10530

    Article  PubMed  CAS  Google Scholar 

  • Dokken KM, Davis LC, Marinkovic NS (2005a) Using SR-IMS to study the fate and transport of organic contaminants in plants. Spectroscopy 20:14

    CAS  Google Scholar 

  • Dokken KM, Davis LC, Erickson LE, Castro-Diaz S, Marinkovic NS (2005b) Synchrotron Fourier transform infrared microspectroscopy: a new tool to monitor the fate of organic contaminants in plants. Microchem J 81:86–91

    Article  CAS  Google Scholar 

  • Dučić T, Thieme J, Polle A (2012) Phosphorus compartmentalization on the cellular level of Douglas Fir root as affected by Mn toxicity: a Synchrotron-Based FTIR Approach. Spectroscopy: An Int J 27:265–272

    Article  Google Scholar 

  • Dumas P, Jamin N, Teillaud JL, Miller LM, Beccard B (2004) Imaging capabilities of synchrotron infrared microspectroscopy. Faraday Discuss 126:289–302

    Article  PubMed  CAS  Google Scholar 

  • Duygu D, Baykal T, AÇikgöz İ, Yildiz K (2009) Fourier transform infrared (FT-IR) spectroscopy for biological studies. Gazi Univ. J Sci 22(3):117–121

    Google Scholar 

  • Estevez JM, Fernández PV, Kasulin L, Dupree P, Ciancia M (2009) Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. GlycoBiology 19:212–228

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa S, Takabe K (1996) Formation of multiplex lamellae by equilibrium slow freezing of cortical parenchyma cells of mulberry and its possible relationship to freezing tolerance. Protoplasma 190:189–203

    Article  Google Scholar 

  • Furch AC, Bel AJ van, Fricker MD, Felle HH, Fuchs M, Hafke JB (2009) Sieve element Ca2+ channels as relay stations between remote stimuli and sieve tube occlusion in Vicia faba. Plant Cell 21:2118–2132

    Article  PubMed  CAS  Google Scholar 

  • Goff KL, Quaroni L, Wilson KE (2009) Measurement of metabolite formation in single living cells of Chlamydomonas reinhardtii using synchrotron Fourier Transform Infrared spectromicroscopy. Analyst 134:2216–2219

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Takagi S (2003) Ca2+ -dependent cessation of cytoplasmic streaming induced by hypertonic treatment in Vallisneria mesophyll cells: possible role of cell wall-plasma membrane adhesion. Plant Cell Physiol 44:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Heraud P, Wood BR, Tobin MJ, Beardall J, McNaughton D (2005) Mapping of nutrient-induced biochemical changes in living algal cells using synchrotron infrared microspectroscopy. FEMS Microbiol Lett 249:219–225

    Article  PubMed  CAS  Google Scholar 

  • Heraud P, Caine S, Sanson G, Gleadow R, Wood BR, McNaughton D (2007) Focal plane array imaging: a new way to analyze leaf tissue. New Phytol 173:216–225

    Article  PubMed  Google Scholar 

  • Himmelsbach DS, Khalili S, Akin DE (1998) FT-IR microspectroscopic imaging of flax (Linum usitatissimum L.) stems. Cell Mol Biol (Paris) 44:99–108

    PubMed  CAS  Google Scholar 

  • Hirschmugl CJ, Bayarri ZE, Bunta M, Holt JB, Giordano M (2006) Analysis of the nutritional status of algae by Fourier transform infrared chemical imaging. Infrared Physics Technol 49:57–63

    Article  CAS  Google Scholar 

  • Marinkovic NS, Huang R, Bromberg P, Sullivan M, Toomey J, Miller LM, Sperber E, Moshe S, Jones KW, Chouparova E, Lappi S, Franzen S, Chance MR (2002) Center for synchrotron biosciences’ U2B beamline: an international resource for biological infrared spectroscopy. J Synchrotron Radiation 9:189–197

    Article  CAS  Google Scholar 

  • McNear DH Jr, Chaney RL, Sparks DL (2010) The hyperaccumulator Alyssum murale uses complexation with nitrogen and oxygen donor ligands for Ni transport and storage. Phytochemistry 71:188–200

    Article  PubMed  CAS  Google Scholar 

  • Michael J, Mantsch HH (1996) Biomedical infrared spectroscopy. In: Mantsch HH, Chapman D (eds) Infrared spectroscopy of biomolecules. Wiley-Liss, New York

    Google Scholar 

  • Miller LM (2000) The impact of infrared synchrotron radiation on biology: past, present, and future. Synchrotron Radiat News 13:31–37

    Article  Google Scholar 

  • Miller LM, Dumas P (2006) Chemical imaging of biological tissue with synchrotron infrared light. Biochim Biophys Acta 1758:846–857

    Article  PubMed  CAS  Google Scholar 

  • Nanba T, Kimura S, Okamura H, Sakurai M, Matsunami M, Kimura H, Moriwaki T, Ikemoto Y, Hirono T, Takahashi T, Shinoda K, Fukui K, Teragami M, Kondo Y (2003) Spring-8 as an IR-light source. In: Spectroscopy & material characterization. Laboratoire National des Champs Magnétiques Pulsés (LNCMP) ISBN 2–87649–035–8

    Google Scholar 

  • Nasse MJ, Walsh MJ, Mattson EC, Reininger R, Kajdacsy-Balla A, Macias V, Bhargava R, Hirschmugl CJ (2011) High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat Methods 8(5):413–418

    Article  PubMed  CAS  Google Scholar 

  • Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodet Biodegr 52:151–160

    Article  CAS  Google Scholar 

  • Pietrzak LN, Miller SS (2005) Microchemical structure of soybean seeds revealed in situ by ultraspatially resolved synchrotron Fourier Transformed Infrared Microspectroscopy. J Agric Food Chem 53:9304–9311

    Article  PubMed  CAS  Google Scholar 

  • Quader H, Hofmann A, Schnepf E (1989) Reorganization of the endoplasmic reticulum in epidermal cells of onion bulb scales after cold stress: involvement of cytoskeletal elements. Planta 177:273–280

    Article  Google Scholar 

  • Quaroni L, Zlateva T (2011) Infrared spectromicroscopy of biochemistry in functional single cells. Analyst 136:3219–3232

    Article  PubMed  CAS  Google Scholar 

  • Raab TK, Martin MC (2001) Visualizing rhizosphere chemistry of legumes with mid-infrared synchrotron radiation. Planta 213:881–887

    Article  PubMed  CAS  Google Scholar 

  • Reffner JA, Martoglio PA, Williams GP (1995) Fourier transform infrared microscopical analysis with synchrotron radiation: the microscope optics and system performance. Rev Sci Instr 66:1298–1302

    Article  CAS  Google Scholar 

  • Sacksteder C, Barry BA (2001) Fourier Transform Infrared Spectroscopy: a molecular approach to an organismal question. J Phycol 37:197–199

    Article  CAS  Google Scholar 

  • Salman A, Tsror L, Pomerantz A, Moreh R, Mordechai S, Huleihel M (2010) FTIR spectroscopy for detection and identification of fungal phytopathogenes. Spectroscopy 24:261–267

    Article  Google Scholar 

  • Stuart BH (2012) Infrared spectroscopy of biological applications: an overview. Encyclopedia of Analytical Chemistry

    Google Scholar 

  • Susi H, Byler DM (1983) Protein structure by Fourier transform infrared spectroscopy: second derivative spectra. Biochem Biophys Res Commun 115:391–397

    Article  PubMed  CAS  Google Scholar 

  • Tanino K, Kobayashi S, Hyett C, Hamilton K, Liu J, Li B, Borondics F, Pedersen T, Tse J, Ellis T, Kawamura Y, Uemura M (2013) Allium fistulosum L. as a novel system to investigate mechanisms of freezing resistance. Physiol Plant 147:101–111

    Article  CAS  Google Scholar 

  • Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K, Shimmen T, Hasezawa S, Dolja VV, Hara-Nishimura I (2010) Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc Natl Acad Sci U S A 107:6894–6899

    Article  PubMed  CAS  Google Scholar 

  • Wetzel DL, Eilert AJ, Pietrzak LN, Miller SS, Sweat JA (1998) Ultraspatially resolved synchrotron infrared microspectroscopy of plant tissue in situ. Cell Mol Biol (Paris) 44:145–167

    PubMed  CAS  Google Scholar 

  • Wetzel DL, Srivarin P, Finney JR (2003) Revealing protein infrared spectral detail in a heterogeneous matrix dominated by starch. Vib Spectrosc 31:109–114

    Article  CAS  Google Scholar 

  • Wetzel DL, Shi YC, Schmidt U (2010) Confocal Raman and AFM imaging of individual granules of octenyl succinate modified and natural waxy maize starch. Vib Spectrosc 53:173–177

    Article  CAS  Google Scholar 

  • Williams GP (1989) The initial scientific program at the NSLS infrared beamline. Lawrence Berkeley Laboratory BNL–43335.

    Google Scholar 

  • Wilson RH, Smith AC, Kacuráková M, Saunders PK, Wellner N, Waldron KW (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol 124:397–405

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki T, Kawamura Y, Minami A, Uemura M (2008a) Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20:3389–3404

    Article  CAS  Google Scholar 

  • Yamazaki T, Kawamura Y, Uemura M (2008b) Cryobehavior of the plasma membrane in protoplasts isolated from cold acclimated Arabidopsis leaves is related to surface area regulation. Plant Cell Physiol 49:944–957

    Article  CAS  Google Scholar 

  • Yu P (2005a) Molecular chemistry imaging to reveal structural features of various plants feed tissues. J Struct Biol 150:81–89

    Article  CAS  Google Scholar 

  • Yu P (2005b) Protein secondary structures (α-helix and β-sheet) at a cellular level and protein fractions in relation to rumen degradation behaviours of protein: a new approach. Brit J Nutr 94:655–665

    Article  CAS  Google Scholar 

  • Yu P (2007) Molecular chemical structure of barley proteins revealed by ultra-spatially resolved synchrotron light sourced FTIR microspectroscopy: comparison of barley varieties. Biopolymers 85(4):308–317

    Article  PubMed  CAS  Google Scholar 

  • Yu P (2011) Microprobing the molecular spatial distribution and structural architecture of feed-type sorghum seed tissue (Sorghum Bicolor L.) using the synchrotron radiation infrared microspectroscopy technique. J Synchrotron Radiat 18:790–801

    Article  PubMed  CAS  Google Scholar 

  • Yu P, Mckinnon JJ, Christensen CR, Christensen DA (2004) Using synchrotron transmission FTIR microspectroscopy as a rapid, direct, and nondestructive analytical technique to reveal molecular microstructural-chemical features within tissue in grain barley. J Agric Food Chem 52:1484–1494

    Article  PubMed  CAS  Google Scholar 

  • Yu P, Christensen CR, Christensen DA, Mckinnon JJ (2005a) Ultrastructural-chemical makeup of yellow-seeded (Brassica rapa) and brown-seeded (Brassica napus) canola within cellular dimensions, explored with synchrotron reflection FTIR microspectroscopy. Can J Plant Sci 85(3):533–541

    Article  CAS  Google Scholar 

  • Yu P, McKinnon JJ, Soita HW (2005b) Use of synchrotron-based FTIR microspectroscopy to determine protein secondary structures of raw and heat treated brown and golden flaxseeds: a novel approach. Can J Animal Sci 85:437–448

    Article  CAS  Google Scholar 

  • Yu P, Wang R, Bai Y (2005c) Reveal protein molecular structural-chemical differences between two types of winterfat (forage) seeds with physiological differences in low temperature tolerance using synchrotron-based Fourier transform infrared microspectroscopy. J Agric Food Chem 53(24):9297–9303

    Article  CAS  Google Scholar 

  • Yu P, Block H, Niu Z, Doiron K (2007) Rapid characterization of molecular chemistry, nutrient make-up and microlocation of internal seed tissue. J Synchrotron Radiat 14:382–90

    Article  PubMed  CAS  Google Scholar 

  • Yu P, Doiron K, Liu D (2008) Shining light on the differences in molecular structural chemical makeup and the cause of distinct degradation behavior between malting- and feed-type barley using synchrotron FTIR microspectroscopy: a novel approach. J Agric Food Chem 56(9):3417–26

    Article  PubMed  CAS  Google Scholar 

  • Yu P, Jonker A, Gruber M (2009) Molecular basis of protein structure in proanthocyanidin and anthocyanin-enhanced Lc-transgenic alfalfa in relation to nutritive value using synchrotron-radiation FTIR microspectroscopy: a novel approach. Spectrochimica Acta Part A 73:846–853

    Article  Google Scholar 

Download references

Acknowledgments

The research performed in Iwate University was supported by Grant-in-Aid for Scientific Research on Innovative Areas (#22120003 to M. U.), Grant-in-Aid for Young Scientists (B) (#22780288 to Y. K.), Grant-in-Aid for Scientific Research (B) (#24370018 to M. U.), and “Live imaging of plant cells under freezing,” Adaptable and Seamless Technology Transfer Program through Target-driven R&D, JST (to Y. K.). The research described in this chapter was performed at the Mid-IR beamline of the Canadian Light Source, which is supported by NSERC, NRC, CIHR, and the University of Saskatchewan. Tim May and Xia Liu are gratefully acknowledged for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Tanino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Tanino, K., Liu, J., Kobayashi, S., Kawamura, Y., Borondics, F., Uemura, M. (2013). Using Synchrotron FTIR and Confocal Cryomicroscopy to Explore Mechanisms of Cold Acclimation and Freezing Resistance Using a Single Cell Layer of Allium fistulosum L. In: Imai, R., Yoshida, M., Matsumoto, N. (eds) Plant and Microbe Adaptations to Cold in a Changing World. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8253-6_14

Download citation

Publish with us

Policies and ethics