Skip to main content

Preclinical Imaging in Oncology: Considerations and Recommendations for the Imaging Scientist

  • Chapter
  • First Online:
Book cover Pharmaco-Imaging in Drug and Biologics Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 8))

  • 1200 Accesses

Abstract

Oncology remains a major focus of the pharmaceutical industry, and they are investing heavily in the forward effort to move drugs and biologics through development to regulatory approval. The discovery and early preclinical development throughput for safety, tumor cell binding, and in vivo biodistribution are hindered by the complications and the uniqueness of frequently contrived xenobiotic animal models, generally in murine strains. Animal numbers for adequate sensitivity, tumor heterogeneity of response, and metabolism make for high tumor-to-tumor variance in growth and response. The throughput of studies (tumor growth periods), powering studies sufficiently for decisional steps in product advancement, and the general “how do we do the human translation” all contribute to the major costs in this arm of the pharmaceutical business. Imaging offers many advantages to help solve, or at least allay, these issues. Imaging can pinpoint the tumor uptake heterogeneity, it can reduce the numbers of animals as quantitative assessments can be done on fewer animals, it allows for each animal to serve as its own control, and it allows multiple time point sampling in the same animal(s) during the tumor gestation, eruption, and time window for optimal therapeutic intervention. This chapter will hopefully guide the reader through multiple examples of how to investigate tumor biology using imaging in the nonclinical environment and hopefully will provide useful approaches and ideas for inclusion in their oncology programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, FDG-PET and CT, MRI (DWI and MRS).

  2. 2.

    fMRI (functional magnetic resonance imaging) relies on the hemodynamic response and exploits the magnetic susceptibility differences between hemoglobin in its two different oxygenation states (deoxy- and oxyhemoglobin), and during neuronal activation there is a vascular response associated that can “flood” the neural region with oxygenated blood and increase the signal measured on T2* weighted imaging—this activation can come about from visual, motor, physiological stimuli. phMRI (or pharmacological MRI) uses the same imaging technique, but instead of an environmental stimuli, the subject receives a pharmacological stimulus that is thought to activates/inhibits brain centers.

  3. 3.

    It is not just 1H-containing molecules that can be studied with MRI but also the elements of P, C, N, Na, F, etc.

References

  • Aboagye EO (2005) Positron emission tomography imaging of small animals in anticancer drug development. Mol Imaging Biol 7:53–58

    Article  PubMed  Google Scholar 

  • Albanese C, Rodriguez OC, Vanmeter J, Fricke ST, Rood BR, Lee Y, Wang SS, Madhavan S, Gusev Y, Petricoin EF, 3rd, et al (2012) Preclinical magnetic resonance imaging and systems biology in cancer research: Current applications and challenges. Am J Pathol

    Google Scholar 

  • Bahce I, Smit EF, Lubberink M, van der Veldt AA, Yaqub M, Windhorst AD, Schuit RC, Thunnissen E, Heideman DAH, Postmus PE et al (2013) Development of [11C]erlotinib positron emission tomography for in vivo evaluation of epidermal growth factor receptor mutational status. Clin Cancer Res Off J Am Assoc Cancer Res 19:183–193

    Google Scholar 

  • Barnes SL, Whisenant JG, Loveless ME, Yankeelov TE (2012) Practical dynamic contrast enhanced MRI in small animal models of cancer: data acquisition, data analysis, and interpretation. Pharmaceutics 4:442–478

    Article  PubMed  Google Scholar 

  • Baudelet C, Gallez B (2004) Effect of anesthesia on the signal intensity in tumors using BOLD-MRI: comparison with flow measurements by Laser Doppler flowmetry and oxygen measurements by luminescence-based probes. Magn Reson Imaging 22:905–912

    Article  PubMed  CAS  Google Scholar 

  • Boone JM, Velazquez O, Cherry SR (2004) Small-animal X-ray dose from micro-CT. Mol Imaging 3:149–158

    Article  PubMed  Google Scholar 

  • Bradley DP, Tessier JJ, Lacey T, Scott M, Jürgensmeier JM, Odedra R, Mills J, Kilburn L, Wedge SR (2009) Examining the acute effects of cediranib (RECENTIN, AZD2171) treatment in tumor models: a dynamic contrast-enhanced MRI study using gadopentate. Magn Reson Imaging 27:377–384

    Article  PubMed  CAS  Google Scholar 

  • Breeman WAP, De Blois E, Sze Chan H, Konijnenberg M, Kwekkeboom DJ, Krenning EP (2011) (68)Ga-labeled DOTA-peptides and (68)Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. Semin Nucl Med 41:314–321

    Article  PubMed  Google Scholar 

  • Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  • Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schäfer M, Schilling T, Haufe S, Herrmann T, Haberkorn U (2007) Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 34:1617–1626

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Cheng K, Walton Z, Wang Y, Ebi H, Shimamura T, Liu Y, Tupper T, Ouyang J, Li J et al (2012) A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483:613–617

    Article  PubMed  CAS  Google Scholar 

  • Cherry SR (2009) Multimodality imaging: beyond PET/CT and SPECT/CT. Semin Nucl Med 39:348–353

    Article  PubMed  Google Scholar 

  • Chesi M, Matthews GM, Garbitt VM, Palmer SE, Shortt J, Lefebure M, Stewart AK, Johnstone RW, Bergsagel PL (2012) Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood 120:376–385

    Article  PubMed  CAS  Google Scholar 

  • Combest AJ, Roberts PJ, Dillon PM, Sandison K, Hanna SK, Ross C, Habibi S, Zamboni B, Müller M, Brunner M et al (2012) Genetically engineered cancer models, but not xenografts, faithfully predict anticancer drug exposure in melanoma tumors. Oncologist 17:1303–1316

    Article  PubMed  CAS  Google Scholar 

  • Cyran CC, Von Einem JC, Paprottka PM, Schwarz B, Ingrisch M, Dietrich O, Hinkel R, Bruns CJ, Clevert DA, Eschbach R et al (2012) Dynamic contrast-enhanced computed tomography imaging biomarkers correlated with immunohistochemistry for monitoring the effects of sorafenib on experimental prostate carcinomas. Invest Radiol 47:49–57

    Article  PubMed  CAS  Google Scholar 

  • de Jong M, Maina T (2010) Of mice and humans: are they the same?—implications in cancer translational research. J Nucl Med 51:501–504

    Article  PubMed  Google Scholar 

  • Doty FD, Entzminger G, Kulkarni J, Pamarthy K, Staab JP (2007) Radio frequency coil technology for small-animal MRI. NMR Biomed 20:304–325

    Article  PubMed  Google Scholar 

  • Drevs J, Siegert P, Medinger M, Mross K, Strecker R, Zirrgiebel U, Harder J, Blum H, Robertson J, Jürgensmeier JM et al (2007) Phase I clinical study of AZD2171, an oral vascular endothelial growth factor signaling inhibitor, in patients with advanced solid tumors. J Clin Oncol 25:3045–3054

    Article  PubMed  CAS  Google Scholar 

  • Ebenhan T, Honer M, Ametamey SM, Schubiger PA, Becquet M, Ferretti S, Cannet C, Rausch M, McSheehy PMJ (2009) Comparison of [18F]-tracers in various experimental tumor models by PET imaging and identification of an early response biomarker for the novel microtubule stabilizer patupilone. Mol Imaging Biol 11:308–321

    Article  PubMed  CAS  Google Scholar 

  • Ferris CF, Smerkers B, Kulkarni P, Caffrey M, Afacan O, Toddes S, Stolberg T, Febo M (2011) Functional magnetic resonance imaging in awake animals. Rev Neurosci 22:665–674

    PubMed  Google Scholar 

  • Firestone B (2010) The challenge of selecting the “right” in vivo oncology pharmacology model. Curr Opin Pharmacol 10:391–396

    Article  PubMed  CAS  Google Scholar 

  • Franc BL, Acton PD, Mari C, Hasegawa BH (2008) Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med 49:1651–1663

    Article  PubMed  Google Scholar 

  • Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    Article  PubMed  CAS  Google Scholar 

  • Germanos M (2011) In vivo longitudinal 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET characterization of primary human tumor explant xenografts in mice. World Molecular Imaging Congress P779

    Google Scholar 

  • Groch MW, Erwin WD (2000) SPECT in the year 2000: basic principles. J Nucl Med Technol 28:233–244

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  • Heijmen L, Ter Voert EEGW, Nagtegaal ID, Span P, Bussink J, Punt CJA, de Wilt JHW, Sweep FCGJ, Heerschap A, van Laarhoven HWM (2013) Diffusion-weighted MR imaging in liver metastases of colorectal cancer: reproducibility and biological validation. Eur Radiol 23: 748–756

    Google Scholar 

  • Hodkinson DJ, De Groote C, McKie S, Deakin JFW, Williams SR (2012) Differential effects of anaesthesia on the phMRI response to acute ketamine challenge. Br J Med Med Res 2:373–385

    PubMed  Google Scholar 

  • Hoff BA, Bhojani MS, Rudge J, Chenevert TL, Meyer CR, Galbán S, Johnson TD, Leopold JS, Rehemtulla A, Ross BD et al (2012) DCE and DW-MRI monitoring of vascular disruption following VEGF-Trap treatment of a rat glioma model. NMR Biomed 25:935–942

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Lan H, Cao F, Han N, Xu Z, Li G, He K, Teng L (2012) Differential response to EGFR- and VEGF-targeted therapies in patient-derived tumor tissue xenograft models of colon carcinoma and related metastases. Int J Oncol 41:583–588

    PubMed  CAS  Google Scholar 

  • Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M et al (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431

    Article  PubMed  CAS  Google Scholar 

  • Jones T (1996) The imaging science of positron emission tomography. Eur J Nucl Med 23: 807–813

    Article  PubMed  CAS  Google Scholar 

  • Kapoor V, McCook BM, Torok FS (2004) An introduction to PET-CT imaging1. Radiographics 24:523–543

    Article  PubMed  Google Scholar 

  • Kersemans V, Cornelissen B, Hueting R, Tredwell M, Hussien K, Allen PD, Falzone N, Hill SA, Dilworth JR, Gouverneur V et al (2011a) Hypoxia imaging using PET and SPECT: the effects of anesthetic and carrier gas on [Cu]-ATSM, [Tc]-HL91 and [F]-FMISO tumor hypoxia accumulation. PLoS One 6:e25911

    Article  PubMed  CAS  Google Scholar 

  • Kersemans V, Thompson J, Cornelissen B, Woodcock M, Allen PD, Buls N, Muschel RJ, Hill MA, Smart SC (2011b) Micro-CT for anatomic referencing in PET and SPECT: radiation dose, biologic damage, and image quality. J Nucl Med 52:1827–1833

    Article  PubMed  Google Scholar 

  • Kim SM, Haider MA, Milosevic M, Jaffray DA, Yeung IWT (2011) A method for patient dose reduction in dynamic contrast enhanced CT study. Med Phys 38:5094–5103

    Article  PubMed  Google Scholar 

  • Kinahan PE, Fletcher JW (2010) PET/CT standardized uptake values (SUVs) in clinical practice and assessing response to therapy. Semin Ultrasound CT MR 31:496–505

    Article  PubMed  Google Scholar 

  • Knowles SM, Wu AM (2012) Advances in immuno-positron emission tomography: antibodies for molecular imaging in oncology. J Clin Oncol 30:3884–3892

    Article  PubMed  Google Scholar 

  • Kopetz S, Lemos R, Powis G (2012) The promise of patient-derived xenografts: the best laid plans of mice and men. Clin Cancer Res Off J Am Assoc Cancer Res 18:5160–5162

    Article  Google Scholar 

  • Lee L, Sharma S, Morgan B, Allegrini P, Schnell C, Brueggen J, Cozens R, Horsfield M, Guenther C, Steward WP et al (2006) Biomarkers for assessment of pharmacologic activity for a vascular endothelial growth factor (VEGF) receptor inhibitor, PTK787/ZK 222584 (PTK/ZK): translation of biological activity in a mouse melanoma metastasis model to phase I studies in patients with advanced colorectal cancer with liver metastases. Cancer Chemother Pharmacol 57:761–771

    Article  PubMed  CAS  Google Scholar 

  • Lee E, Kamlet AS, Powers DC, Neumann CN, Boursalian GB, Furuya T, Choi DC, Hooker JM, Ritter T (2011a) A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science 334:639–642

    Article  PubMed  CAS  Google Scholar 

  • Lee EC, Fitzgerald M, Bannerman B, Donelan J, Bano K, Terkelsen J, Bradley DP, Subakan O, Silva MD, Liu R et al (2011b) Antitumor activity of the investigational proteasome inhibitor MLN9708 in mouse models of B-cell and plasma cell malignancies. Clin Cancer Res 17:7313–7323

    Article  PubMed  CAS  Google Scholar 

  • Marx J (2003) Building better mouse models for studying cancer. Science 299:1972–1975

    Article  PubMed  CAS  Google Scholar 

  • McArthur GA, Puzanov I, Amaravadi R, Ribas A, Chapman P, Kim KB, Sosman JA, Lee RJ, Nolop K, Flaherty KT et al (2012) Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol 30:1628–1634

    Article  PubMed  CAS  Google Scholar 

  • McGrath DM, Bradley DP, Tessier JL, Lacey T, Taylor CJ, Parker GJM (2009) Comparison of model-based arterial input functions for dynamic contrast-enhanced MRI in tumor bearing rats. Magn Reson Med 61:1173–1184

    Article  PubMed  Google Scholar 

  • Memon AA, Jakobsen S, Dagnaes-Hansen F, Sorensen BS, Keiding S, Nexo E (2009) Positron emission tomography (PET) imaging with [11C]-labeled erlotinib: a micro-PET study on mice with lung tumor xenografts. Cancer Res 69:873–878

    Article  PubMed  CAS  Google Scholar 

  • Morse DL, Gillies RJ (2010) Molecular imaging and targeted therapies. Biochem Pharmacol 80:731–738

    Article  PubMed  CAS  Google Scholar 

  • Müller C, Schibli R (2013) Single photon emission computed tomography tracer. Recent Results Cancer Res 187:65–105

    Article  PubMed  Google Scholar 

  • Neil JJ (2008) Diffusion imaging concepts for clinicians. J Magn Reson Imaging 27:1–7

    Article  Google Scholar 

  • Nelson GS, Perez J, Colomer MV, Ali R, Graves E (2011) Facilitating multimodal preclinical imaging studies in mice by using an immobilization bed. Comp Med 61:499–504

    PubMed  CAS  Google Scholar 

  • Ng CS, Waterton JC, Kundra V, Brammer D, Ravoori M, Han L, Wei W, Klumpp S, Johnson VE, Jackson EF (2012) Reproducibility and comparison of DCE-MRI and DCE-CT perfusion parameters in a rat tumor model. Technol Cancer Res Treat 11:279–288

    Article  PubMed  Google Scholar 

  • Nguyen Q-D, Perumal M, Waldman TA, Aboagye EO (2011) Glucose metabolism measured by [18F]fluorodeoxyglucose positron emission tomography is independent of PTEN/AKT status in human colon carcinoma cells. Transl Oncol 4:241–248

    PubMed  Google Scholar 

  • Ou S-HI, Bartlett CH, Mino-Kenudson M, Cui J, Iafrate AJ (2012) Crizotinib for the treatment of ALK-rearranged non-small cell lung cancer: a success story to usher in the second decade of molecular targeted therapy in oncology. Oncologist 17:1351–1375

    Google Scholar 

  • Pantaleo MA, Nicoletti G, Nanni C, Gnocchi C, Landuzzi L, Quarta C, Boschi S, Nannini M, Di Battista M, Castellucci P et al (2010) Preclinical evaluation of KIT/PDGFRA and mTOR inhibitors in gastrointestinal stromal tumors using small animal FDG PET. J Exp Clin Cancer Res 29:173

    Article  PubMed  CAS  Google Scholar 

  • Padhani AR, Liu G, Mu-Koh D, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D et al (2009) Diffusion-Weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    CAS  Google Scholar 

  • Pautler RG (2004) Mouse MRI: concepts and applications in physiology. Physiology (Bethesda) 19:168–175

    Article  Google Scholar 

  • Pysz MA, Gambhir SS, Willmann JK (2010) Molecular imaging: current status and emerging strategies. Clin Radiol 65:500–516

    Article  PubMed  CAS  Google Scholar 

  • Reddy JA, Xu L-C, Parker N, Vetzel M, Leamon CP (2004) Preclinical evaluation of (99m)Tc-EC20 for imaging folate receptor-positive tumors. J Nucl Med 45:857–866

    PubMed  CAS  Google Scholar 

  • Schnell C, Arnal S, Barbé S, Becquet M, Garcia-Echeverria C, Cozens R (2010) 261 Effects of isoflurane anesthesia on bioluminescence measurements: impact on pharmacological assessment of anti-tumor activity of chemical entities. Eur J Cancer Supplements 8:85

    Article  Google Scholar 

  • Seo Y, Jiang H, Franc BL (2013) Preclinical SPECT and SPECT/CT. Recent Results Cancer Res 187:193–220

    Article  PubMed  Google Scholar 

  • Serkova NJ, Spratlin JL, Eckhardt SG (2007) NMR-based metabolomics: translational application and treatment of cancer. Curr Opin Mol Ther 9:572–585

    PubMed  CAS  Google Scholar 

  • Shih LB, Thorpe SR, Griffiths GL, Diril H, Ong GL, Hansen HJ, Goldenberg DM, Mattes MJ (1994) The processing and fate of antibodies and their radiolabels bound to the surface of tumor cells in vitro: a comparison of nine radiolabels. J Nucl Med 35:899–908

    PubMed  CAS  Google Scholar 

  • Smith TB, Nayak KS (2010) MRI artifacts and correction strategies. Imaging Med 2(4):445–457

    Article  PubMed  Google Scholar 

  • Smith G, Carroll L, Aboagye EO (2012) New frontiers in the design and synthesis of imaging probes for PET oncology: current challenges and future directions. Mol Imaging Biol 14:653–666

    Article  PubMed  Google Scholar 

  • Spratlin JL, Serkova NJ, Eckhardt SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15:431–440

    Article  PubMed  CAS  Google Scholar 

  • Tai JH, Tessier J, Ryan AJ, Hoffman L, Chen X, Lee T-Y (2010) Assessment of acute antivascular effects of vandetanib with high-resolution dynamic contrast-enhanced computed tomographic imaging in a human colon tumor xenograft model in the nude rat. Neoplasia 12:697–707

    PubMed  CAS  Google Scholar 

  • Therasse P, Eisenhauer EA, Verweij J (2006) RECIST revisited: a review of validation studies on tumour assessment. Eur J Cancer 42:1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Velikyan I, Beyer GJ, Bergström-Pettermann E, Johansen P, Bergström M, Långström B (2008) The importance of high specific radioactivity in the performance of 68Ga-labeled peptide. Nucl Med Biol 35:529–536

    Article  PubMed  CAS  Google Scholar 

  • Velikyan I, Sundin A, Eriksson B, Lundqvist H, Sörensen J, Bergström M, Långström B (2010) In vivo binding of [68Ga]-DOTATOC to somatostatin receptors in neuroendocrine tumours–impact of peptide mass. Nucl Med Biol 37:265–275

    Article  PubMed  CAS  Google Scholar 

  • Verel I, Visser GWM, Boellaard R, Stigter-van Walsum M, Snow GB, Van Dongen GAMS (2003) 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med 44:1271–1281

    PubMed  CAS  Google Scholar 

  • Vincent MD, Kuruvilla MS, Leighl NB, Kamel-Reid S (2012) Biomarkers that currently affect clinical practice: EGFR, ALK, MET, KRAS. Curr Oncol 19:S33–S44

    Article  PubMed  CAS  Google Scholar 

  • Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9:4227–4239

    PubMed  Google Scholar 

  • Willekens I, Buls N, Lahoutte T, Baeyens L, Vanhove C, Caveliers V, Deklerck R, Bossuyt A, De Mey J (2010) Evaluation of the radiation dose in micro-CT with optimization of the scan protocol. Contrast Media Mol Imaging 5:201–207

    Article  PubMed  CAS  Google Scholar 

  • Yim H, Seo S, Na K (2011) MRI contrast agent-based multifunctional materials: diagnosis and therapy. J Nanomater 11 page

    Google Scholar 

  • Yuneva MO, Fan TWM, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, Matés JM, Alonso FJ, Wang C, Seo Y et al (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 15:157–170

    Article  PubMed  CAS  Google Scholar 

  • Zechmann CM, Woenne EC, Brix G, Radzwill N, Ilg M, Bachert P, Peschke P, Kirsch S, Kauczor H-U, Delorme S et al (2007) Impact of stroma on the growth, microcirculation, and metabolism of experimental prostate tumors. Neoplasia 9:57–67

    Article  PubMed  CAS  Google Scholar 

  • Zieba A, Grannas K, Söderberg O, Gullberg M, Nilsson M, Landegren U (2012) Molecular tools for companion diagnostics. N Biotechnol 29:634–640

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Bradley Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Bradley, D.P., Wyant, T. (2014). Preclinical Imaging in Oncology: Considerations and Recommendations for the Imaging Scientist. In: Moyer, B., Cheruvu, N., Hu, TC. (eds) Pharmaco-Imaging in Drug and Biologics Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8247-5_7

Download citation

Publish with us

Policies and ethics