Skip to main content

Imaging Platforms and Drug Development: An Introduction

  • Chapter
  • First Online:
Pharmaco-Imaging in Drug and Biologics Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 8))

  • 1204 Accesses

Abstract

Medical imaging over the last century contributed significantly in the knowledge of disease, disease mechanisms, and even in the molecular manipulation of disease with drugs and biologics. The discovery of how molecular biomarkers express, locate, change, and often drive physiologic processes has been greatly expanded using imaging. The advances in medicine from imaging have driven even more development of imaging platforms toward miniaturization for use in the nonclinical laboratory. The recent additions in the area of optical imaging with self-illuminating quantum dots (QDs), the advances in the libraries of knockout/in animal models, chemical analytical methods now applied to imaging (MALDI and SIMS-MS and MRS imaging) have made small regional in vivo sampling possible. The drug development paradigm is now shifting from the formalism of the pharmacology and toxicology paths of the last century that has served us well to a potentially revolutionary path which will reduce animal usage and obtain time rate of change of biomarker and physiologic responses to drugs and interventional strategies. This chapter is intended to be a broad overview of imaging platforms for the readers to introduce themselves into this subject matter and to come away with a new knowledge of these technologies and how they may assist in the advanced development of drug or biologics and toward regulatory approval.

Mr. Moyer is currently contracted to the Biomedical Advanced Research and Development Authority (BARDA), Health and Human Services (HHS), Washington, DC as Sr. Science Advisor, Project BioShield, Chemical, Radiologic and Nuclear Threats (CRN Group, through Tunnell Government Services (TGS), Bethesda, MD; He owns and operates his consulting firm, BRMoyer & Associates, LLC, out of Bedford, NH, specializing in imaging systems and approaches for drug development, radiation and chemical injury medical countermeasures, and pharmacokinetics and toxicokinetics of drugs and biologics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    RECIST: Response Evaluation Criteria in Solid Tumors (Therasse 2002).

  2. 2.

    http://www.bioclinica.com/blog/evolution-ct-scan-clinical-trials, The Evolution of CT Scan Clinical Trials, Stuart Jackson blog on July 22, 2011.

  3. 3.

    The Hounsfield unit (HU) scale is a measure of the attenuation coefficients within an object in which the radiodensity of distilled water at standard pressure and temperature (STP) is defined as zero HU and the radiodensity of air at STP is defined as −1,000 HU. Muscle and bone will measure as HU exceeding 30 and 300 HU, on average, respectively.

  4. 4.

    A Doctor’s Guide to Nuclear Medicine, Barry E Chatterton, Sr. Dir., Nuclear Medicine, Royal Adelaide Hospital; http://www.rah.sa.gov.au/nucmed/nucmed/ncmd_docguide.htm .

  5. 5.

    β-CFT, is a cocaine-derived drug used in dopamine stimulation scientific research. CFT is a phenyltropane-based dopamine reuptake inhibitor.

  6. 6.

    ASNC IMAGING GUIDELINES FOR NUCLEAR CARDIOLOGY PROCEDURES, Stress protocols and tracers Milena J. Henzlova MJ, Cerqueira MD, Hansen CL, Taillefer R, Siu-Sun Yao S-S, http://www.asnc.org/imageuploads/ImagingGuidelinesStressProtocols021109.pdf and, ASNC IMAGING GUIDELINES FOR NUCLEAR CARDIOLOGY PROCEDURES Single Photon-Emission Computed Tomography, Thomas A. Holly TA, Abbott BG, Al-Mallah M, Calnon DA, Cohen MC, DiFilippo FP, Ficaro EP, Freeman MR, Hendel RC, Jain D, Leonard SM, Nichols KJ, Polk DM, Soman P, http://www.asnc.org/imageuploads/ImagingGuidelineSPECTJune2010.pdf.

  7. 7.

    Animation of gated F-18 FDG cardiac PET images (from the Univ. of Kansas Medical School, Nuclear Medicine Dept.: http://www.rad.kumc.edu/nucmed//clinical/pet_gated_fdg.htm and http://www.rad.kumc.edu/nucmed/clinical/PET_gated_FDG_3v_animated.htm.

References

  • Agdeppa ED, Spilker ME (2009) A review of imaging agent development. AAPS J 11(2):286–299. doi:10.1208/s12248-009-9104-5

    PubMed  CAS  Google Scholar 

  • Anderson CJ, Ferdani R (2009) Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm 24(4):379–393

    PubMed  CAS  Google Scholar 

  • Anderson RM, Sumption ND, Papworth DG, Goodhead DT (2006) Chromosome breakpoint distribution of damage induced in peripheral blood lymphocytes by densely ionizing radiation. Intrnl J Rad Biol 82(1):49–58

    Google Scholar 

  • Arndt JW, Van der Sluys VA, Blok D, Griffloen G, Verspaget HW, Lamers CBHW, Pauwels EKJ (1993) Prospective comparative study of Technetium 99m-WBCs and Indium-111 granulocytes for examination of patients with inflammatory bowel disease. J Nucl Med 34:1052–1057

    PubMed  CAS  Google Scholar 

  • Baek H-M, Chen J-H, Nalcioglu O, Su M-Y (2008) Letter to the editor. Choline as a biomarker for cell proliferation: Do the results from proton MR spectroscopy show difference between HER2/neu positive and negative breast cancers? Int J Cancer 123(5):219–1221

    Google Scholar 

  • Bates SM, Lister-James J, Julian JA, Math M, Taillefer R, Moyer BR, Ginsberg JS (2003) Imaging characteristics of a novel Technetium Tc-99m–labeled platelet glycoprotein Iib/IIIa receptor antagonist in patients with acute deep vein thrombosis or a history of deep vein thrombosis. Arch Intern Med 163:452–456

    PubMed  CAS  Google Scholar 

  • Blankenburg FG (2008) In-vivo detection of apoptosis. J Nucl Med 49:81S–95S

    Google Scholar 

  • Bocan T (2010) Platform imaging biomarkers: applications across pre-clinical drug discovery with a focus on neuroscience, oncology, cardiovascular and future horizons. Am Pharm Rev 13(5):16–21

    CAS  Google Scholar 

  • Brooks DJ (2004) Neuroimaging in Parkinson disease. NeuroRx 1(2):243–254

    PubMed  Google Scholar 

  • Brouwers AH, Laverman P, Boerman OC, Oyen WJ, Barrett JA, Harris TD, Edwards DS, Corstens FH (2000) A99mTc-labelled leukotriene B4 receptor antagonist for scintigraphic detection of infection in rabbits. Nucl Med Commun 21(11):1043–1050

    PubMed  CAS  Google Scholar 

  • Brown AP, Citrin DE, Camphausen KA (2008) Clinical biomarkers of angiogenic inhibition. Cancer Metastasis Rev 27:415–434

    PubMed  CAS  Google Scholar 

  • Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49:113S–128S

    PubMed  CAS  Google Scholar 

  • Campbell G (2006) Surrogate endpoints: a regulatory view; http://www.amstat.org; web link: http://www.amstat.org/meetings/fdaworkshop/presentations/2006/Greg%20Campbell%20Surrogate%20Endpoints.ppt

  • Caro LG, Van Tubergen RP (1962) High-resolution autoradiography. I. Methods. J Cell Biol 15:173–182

    PubMed  CAS  Google Scholar 

  • Cercignani M, Bozzali M, Iannucci G, Comi G, Filippi M (2001) Magnetization transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 70:311–317

    PubMed  CAS  Google Scholar 

  • Charlton J, Sennello J, Smith D (1997) In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 4:809–816

    PubMed  CAS  Google Scholar 

  • Chenevert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3:1457–1466

    PubMed  CAS  Google Scholar 

  • Christian PE, Bernier DBR, Langham JK (eds) (2004) Nuclear medicine and PET: technology and techniques, 5th edn. Mosby, St. Louis

    Google Scholar 

  • Cogo A, Lensing AW, Koopman MMW (1998) Compression ultrasound for diagnostic management of patients with clinically suspected deep vein thrombosis: prospective cohort study. BMJ 316:17–20

    PubMed  CAS  Google Scholar 

  • Colburn WA (1995) Surrogate markers and clinical pharmacology. J Clin Pharmacol 35(5):441–442, comment 464–470

    PubMed  CAS  Google Scholar 

  • Colburn WA (1997) Selecting and validating biologic markers for drug development. J Clin Pharmacol 37(5):355–362

    PubMed  CAS  Google Scholar 

  • Corbett JR, Ficaro EP (2004) Gated SPECT and the visual gold standard: gold standard or not? J Nucl Med 42(11):1639–1642

    Google Scholar 

  • Daniels MJ, Hughes MD (1997) Meta-analysis for the evaluation of potential surrogate markers. Stat Med 16(17):1965–1982

    PubMed  CAS  Google Scholar 

  • DaSilva JN, Kilbourn MR, Domino EF (1993) In vivo imaging of monoaminergic nerve terminals in normal and MPTP-lesioned primate brain using positron emission tomography (PET) and [11C] tetrabenazine. Synapse 14:128–131

    PubMed  CAS  Google Scholar 

  • De Gruttola V, Fleming T, Lin DY, Coombs R (1997) Perspective: validating surrogate markers–Are we being naive? J Infect Dis 175(2):237–246

    PubMed  Google Scholar 

  • DeMeyer G, Shapiro F (2003) Biomarker development. The road to clinical utility. Curr Drug Discov 12:23–27

    Google Scholar 

  • Deyton L (1996) Importance of surrogate markers in evaluation of antiviral therapy for HIV infection. JAMA 276(2):159–160

    PubMed  CAS  Google Scholar 

  • Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang Y, Aldape K, Cha S, Kuo MD (2008) Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci USA 105:5213–5218

    Google Scholar 

  • Dougan H, Weitz JI, Stafford AR, Gillespie KD, Klement P, Hobbs JB, Lyster DM (2003) Evaluation of DNA aptamers directed to thrombin as potential thrombus imaging agents. Nucl Med Biol 30:61–72

    PubMed  CAS  Google Scholar 

  • Dressman H, Muramoto GG, Chao NJ, Meadows S, Marshall D, Ginsburg GS, Nevins JR, Chute JP (2007) Gene expression signatures that predict radiation exposure in mice and humans. PLoS Med 4:1–9

    Google Scholar 

  • Dugas JP, Garbow JR, Kobayashi DK, Conradi MS (2004) Hyperpolarized 3He MRI of mouse lung. Magn Reson Med 52:1310–1317

    PubMed  CAS  Google Scholar 

  • Eckelman WC (2003) The use of PET and knockout mice in the drug discovery process. Drug Discov Today 8:404–410

    PubMed  CAS  Google Scholar 

  • Ellenberg SS, Hamilton JM (1989) Surrogate endpoints in clinical trials: cancer. Stat Med 8(4):405–413

    PubMed  CAS  Google Scholar 

  • Esposito G, Giovacchini G, Liow J-S, Bhattacharjee AK, Greenstein D, Schapiro M, Hallett M, Herscovich P, Eckelman WC, Carson RE, Rappoport SI (2008) Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. J Nucl Med 49:1414–1421

    PubMed  CAS  Google Scholar 

  • Evelhoch JL, Gillies RJ, Karczmar GS, Koutcher JA, Maxwell RJ, Nalcioglu O, Raghunand N, Ronen SM, Ross BD, Swartz HM (2000) Applications of magnetic resonance in model systems: cancer therapeutics. Neoplasia 2:152–165

    PubMed  CAS  Google Scholar 

  • Ferl GZ, Zhang X, Wu H-M, Huang S-C (2007) Estimation of the 18F-FDG input function in mice by use of dynamic small-animal PET and minimal blood sample data. J Nucl Med 48:2037–2045

    PubMed  CAS  Google Scholar 

  • Ferris CF, Smerkers B, Kulkarni P, Caffrey M, Afacan O, Toddes S, Stolberg T, Febo M (2011) Functional magnetic resonance imaging in awake animals. Rev Neurosci 22:665–674

    PubMed  Google Scholar 

  • Filippi M, Horsfield MA, Ader HJ, Barkhof F, Bruzzi P, Evans A, Frank JA, Grossman RI, McFarland HF, Molyneux P, Paty DW, Simon J, Tofts PS, Wolinsky JS, Miller DH (1998) Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 43:499–506

    PubMed  CAS  Google Scholar 

  • Fleming TR, DeMets DL (1995) Surrogate end points in clinical trials: are we being misled? Ann Intern Med 125(7):605–613, comment. 1996; 126(8), 667

    Google Scholar 

  • Frangioni JV (2006) Self-illuminating quantum dots light the way. Nat Biotechnol 24(3):326–328

    PubMed  CAS  Google Scholar 

  • Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2:566–580

    PubMed  CAS  Google Scholar 

  • Friedland GW, Thurber BD (1996) Perspective: the birth of CT. AJR Am J Roentgenol 167:1365–1370, and, http://www.bioclinica.com/blog/evolution-ct-scan-clinical-trials The Evolution of CT Scan Clinical Trials, Stuart Jackson blog on July 22, 2011

    PubMed  CAS  Google Scholar 

  • Fukushima Y, Toba M, Ishihara K, Mizumura S, Seino T, Tanaka K, Mizuno K, Kumita S (2008) Usefulness of 201TlCl/ 123I-BMIPP dual-myocardial SPECT for patients with non-ST segment elevation myocardial infarction. Ann Nucl Med 22(5):363–369

    PubMed  Google Scholar 

  • Gambhir SS (2006) Using radiolabeled DNA as an imaging agent to recognize protein targets. J Nucl Med 47(4):557–558

    PubMed  Google Scholar 

  • Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, Hutton B, Sharir T, Haim SB, Haim SB (2009) A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 50:635–643

    PubMed  Google Scholar 

  • Hansen CL, Goldstein RA, Akinboboye OO, Berman DS, Botvinick EH, Churchwell KB, Cooke CD et al (2007) Myocardial perfusion and function: single photon emission computed tomography. J Nucl Cardiol 14:e39–e60

    PubMed  Google Scholar 

  • Hedlund L, Johnson G (2002) Mechanical ventilation for imaging the small animal. ILAR J 43:159–174

    PubMed  CAS  Google Scholar 

  • Heiss W-D, Herholz K (2006) Brain receptor imaging. J Nucl Med 47:302–312

    PubMed  CAS  Google Scholar 

  • Hiller K-H, Waller C, Nahrendorf M, Bauer WR, Jakob PM (2006) Assessment of cardiovascular apoptosis in the isolated rat heart by magnetic resonance molecular imaging. Mol Imaging 5:115–121

    PubMed  Google Scholar 

  • Huang SC (2000) The anatomy of SUV (standardized uptake value). Nucl Med Biol 27:643–646

    PubMed  CAS  Google Scholar 

  • Huang J, Chang C, Lee I, Sutcliffe JL, Cherry SR, Tarantal AF (2008) Radiolabeling rhesus monkey CD34+ hematopoietic and mesenchymal stem cells with 64Cu-Pyruvaldehyde-Bis(N4-Methylthiosemicarbazone) for micro-PET imaging. Mol Imaging 7(1):1–11

    PubMed  CAS  Google Scholar 

  • Inoue T, Kato T, Uchida T, Sakuma M, Nakajima A, Shibazaki M, Imoto Y, Saito M, Hashimoto S, Hikichi Y, Node K (2005) Local release of C-reactive protein from vulnerable plaque or coronary arterial wall injured by stenting. J Am Coll Cardiol 46(2):239–245

    PubMed  CAS  Google Scholar 

  • Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R (2006) Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 5:85–92

    PubMed  Google Scholar 

  • Johnston RF, Pickett SC, Barker DL (1990) Autoradiography using storage phosphor technology. Electrophoresis 11:355–360

    PubMed  CAS  Google Scholar 

  • Kelloff GJ, Krohn KA, Larson SM, Weissleder R, Mankoff DA, Hoffman JM, Link JM, Guyton KZ, Eckelman WC, Scher HI, O’Shaughnessy J, Cheson BD, Sigman CC, Tatum JL, Mills GQ, Sullivan DC, Woodcock J (2005) The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 11(22):7967–7985

    PubMed  CAS  Google Scholar 

  • Keyes JW (1995) SUV: standardized uptake or silly useless value? J Nucl Med 36:1836–1839

    PubMed  Google Scholar 

  • Kiessling F, Fokong S, Koczera P, Lederle W, Lammers T (2012) Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J Nucl Med 53:345–348

    PubMed  CAS  Google Scholar 

  • Koyama K, Akashi YJ, Kida K, Suzuki KK, Ishibashi Y, Musha H, Banach M (2011) Relevance of 123I-BMIPP delayed scintigraphic imaging for patients with angina pectoris – A pilot study. Arch Med Sci 7(3):428–432

    PubMed  CAS  Google Scholar 

  • Krishna R (ed) (2006) Dose optimization in drug development, from the series “Drugs and the pharmaceutical sciences”,.Swarbrick J (exe. ed.), Taylor & Francis Group, LLC, New York/London; web link: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDMQFjAA&url=http%3A%2F%2Fslib.phys.msu.ru%2Fsl%2F79%2FKrishna%2520R.%2520-%2520Dose%2520Optimization%2520in%2520Drug%2520Development%2C%2520Vol.%2520161%2520(2006)(293s).pdf&ei=CJJgUbaaPMfD4AO98YCADw&usg=AFQjCNH6qbVW13B8rgEwmkCcB0z9C8J8YQ&sig2=_I3Q1IQ82s3eymUepazvEg&bvm=bv.44770516,d.dmg&cad=rja

  • Krohn KA, Muzi M, Spence AM (2007) What is in a number? The FDG lumped constant in the rat brain. J Nucl Med 48:5–7

    PubMed  CAS  Google Scholar 

  • Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49:129S–148S

    PubMed  CAS  Google Scholar 

  • LaBaer J (2005) So, you want to look for biomarkers. Introduction to the special biomarkers issue. J Proteome Res 4:1053–1059

    PubMed  CAS  Google Scholar 

  • Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ, Christman DR (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747

    PubMed  CAS  Google Scholar 

  • Lopez JC (2003) Quantum leap for quantum dots. Nat Rev Neurosci 4:163

    CAS  Google Scholar 

  • Lu L, Samuelson L, Bergstrom M, Sato K, Fasth K-J, Langstrom B (2002) Rat studies comparing C-11-FMAU, F-18 FLT and Br-76 BFU as proliferation markers. J Nucl Med 43:1688–1698

    PubMed  CAS  Google Scholar 

  • Machac J, Bacharach SL, Bateman TM, Bax JJ, Beanlands R, Bengel F, Bergmann SR, Brunken RC, Case J, Delbeke D, DiCarli MF, Garcia EV, Goldstein RA, Gropler RJ, Travin M, Patterson R, Schelbert HR (2006) Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol 13:e121–e151

    PubMed  Google Scholar 

  • Mankoff DA, Link JM, Linden HM, Sundararajan L, Krohn KA (2008) Tumor receptor imaging. J Nucl Med 49:149S–163S

    PubMed  CAS  Google Scholar 

  • Marchetti F, Coleman MA, Jones IM, Wyrobek AJ (2006) Candidate protein biodosimeters of human exposure to ionizing radiation. Int J Radiat Biol 82:605–639

    PubMed  CAS  Google Scholar 

  • Meadows SK, Dressman HK, Muramoto GG, Himburg H, Salter A, Wei ZZ, Ginsburg G, Chao NJ, Nevins JR, Chute JP (2008) Gene expression signatures of radiation response are specific, durable and accurate in mice and humans. PLoS Med 3:690–701

    Google Scholar 

  • Medintz IL, Testsuo-Uyeda H, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4:435–446

    PubMed  CAS  Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan J, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    PubMed  CAS  Google Scholar 

  • Minn H, Zasadny KR, Quint LE, Wahl RL (1995) Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 196:167–173

    PubMed  CAS  Google Scholar 

  • Mintun MA, LaRossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, Klunk WE, Mathis CA, DeKosky ST, Morris JC (2006) [11C]PIB in a nondemented population. Potential antecedent marker of Alzheimer disease. Neurology 67:446–452

    PubMed  CAS  Google Scholar 

  • Molecular imaging of cancer: from molecules to humans (2008) J Nucl Med 49(Suppl 2):1S–195S

    Google Scholar 

  • Morse DL, Galons JP, Payne CM, Jennings DL, Day S, Xia G, Gillies RJ (2007) MRI-measured water mobility increases in response to chemotherapy via multiple cell death mechanisms. NMR Biomed 20:602–614

    PubMed  CAS  Google Scholar 

  • Mouchizuki T, Murase K, Higashuino H, Miyagawa M, Sugawara Y, Kikuchi T, Kezoe J (2002) Ischemic “memory image” in acute myocardial infarction of I- 123BMIPP after reperfusion therapy: a comparison withTc-99m pyrophosphate and Tl-201 dual-isotope SPECT. Ann Nucl Med 16(8):563–568

    Google Scholar 

  • Moyer BR, Barrett JB (2009) Biomarkers and Imaging: the physics and chemistry of imaging biomarkers. Bioanalysis 1(2):321–356

    PubMed  CAS  Google Scholar 

  • Mueller-Lisse UG, Scherr MK (2007) Proton MR spectroscopy of the prostate. Eur J Radiol 63(3):351–360

    PubMed  Google Scholar 

  • Muja M, Bulte JWM (2009) Magnetic resonance imaging of cells in experimental disease models. Prog Nucl Magn Reson Spectrosc 55:61–77

    PubMed  CAS  Google Scholar 

  • Nagel E, Lehmkuhl H, Bocksch W, Klein C, Vogel U, Frantz E, Ellmer A, Dreysse S, Fleck EE (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99:763–770

    PubMed  CAS  Google Scholar 

  • Niven R, Pearlman R, Wedeking T, Mackeigan J, Noker P, Simpson-Herren L, Smith JG (2000) Biodistribution of radiolabeled lipid-DNA complexes and DNA in mice. J Pharm Sci 87(11):1292–1299

    Google Scholar 

  • Obata A, Yoshimoto M, Kasamatsu S, Naiki H, Takamatsu S, Kashikura K, Furukawa T, Lewis JS, Welch MJ, Saji H (2003) Intra-tumoral distribution of 64Cu-ATSM: a comparison study with FDG. Nucl Med Biol 30(5):529–534

    PubMed  CAS  Google Scholar 

  • Okunieff P, Chen Y, Maguire DJ, Huser AK (2008) Molecular markers of radiation-related normal tissue toxicity. Cancer Metastasis Rev 27(3):363–374

    PubMed  CAS  Google Scholar 

  • Orlova A, Nilsson FY, Wikman M, Widström C, Ståhl S, Carlsson J, Tolmachev V (2006) Comparative in vivo evaluation of iodine and technetium labels on anti-HER2 affibody for single photon imaging of HER2 expression in tumors. J Nucl Med 47(3):512–519

    PubMed  CAS  Google Scholar 

  • Oyajobi BO, Munoz S, Kakonen R, Williams PJ, Gupta A, Wideman CL, Story B, Grubbs B, Armstrong A, Dougall WC, Garrett IR, Mundy GR (2007) Detection of myeloma in skeleton of mice by whole body optical fluorescence imaging. Mol Cancer Ther 6(6):1701–1708

    PubMed  CAS  Google Scholar 

  • Perket JM (2009) Mass spectacle: making the most of mass spectrometry imaging. The Scientist 23(3):61, http://www.the-scientist.com/?articles.view/articleNo/27190/title/Mass-Spectacle/

    Google Scholar 

  • Phelps ME (ed) (2004) PET: Molecular imaging and its biological applications. Springer-Verlag, New York, USA

    Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    PubMed  CAS  Google Scholar 

  • Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl 2):5S–23S

    PubMed  Google Scholar 

  • Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM (2002) BOLD signal in stroke altered hemodynamic responses in patients after subcortical stroke measured by functional MRI. Stroke 33:103–109

    PubMed  CAS  Google Scholar 

  • Prentice RL (1989) Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med 8:431–440

    PubMed  CAS  Google Scholar 

  • Rabinovici GD, Furst AJ, O’Neil JP, Racine CA, Mormino EC, Baker SL, Chetty S, Patel P, Pagliaro TA, Klunk WE, Mathis CA, Rosen HJ, Miller BL, Jagust WJ (2007) C-11 PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 68:1205–1212

    PubMed  CAS  Google Scholar 

  • Riess JG (2003) Fluorocarbon-based injectable gaseous microbubbles for diagnosis and therapy. Curr Opin Colloid Interface Sci 8:259–266

    CAS  Google Scholar 

  • Ross BD, Moffat BA, Lawrence TS, Mukherji SK, Gebarski SS, Quint DJ, Johnson TD, Junck L, Robertson PL, Muraszko KM, Dong Q, Meyer CR, Bland PH, McConville P, Geng H, Rehemtulla A, Chenevert TL (2003) Evaluation of cancer therapy using diffusion magnetic resonance imaging. Mol Cancer Ther 2:581–587

    PubMed  CAS  Google Scholar 

  • Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development—Review. Nat Rev Drug Discov 2:123–131

    PubMed  CAS  Google Scholar 

  • Sampath L, Kwon S, Ke S, Wang W, Schiff R, Mawad ME, Sevick-Muraca E (2007) Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. J Nucl Med 48:1501–1510

    PubMed  CAS  Google Scholar 

  • Sandella A, Ohlsson T, Erlandsson K, Strand SE (1998) An alternative method to normalize clinical FDG studies. J Nucl Med 39(3):552–555

    Google Scholar 

  • Santana CA, Folks RD, Garcia EV, Verdes L, Sanya R, Hainer J, DiCarli MF, Esteves FP (2007) Quantitative 82Rb PET/CT. Development and validation of myocardial perfusion database. J Nucl Med 48:1122–1128

    PubMed  Google Scholar 

  • Schlaug G, Seiwert B, Benfield A, Edelman RR, Warach S (1997) Time course of the apparent diffusion coefficient (ADC) abnormality in stroke. Neurology 49:113–119

    PubMed  CAS  Google Scholar 

  • Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224. doi:10.1007/s00441-004-0938-y

    Google Scholar 

  • Shapiro D, Thibault P, Beetz T, Elser V, Howells M, Jacobsen C, Kirz J, Lima E, Miao H, Neiman AM, Sayre D (2005) Biological imaging by soft x-ray diffraction microscopy. Proc Natl Acad Sci USA 102:15343

    Google Scholar 

  • Sinha P, Conrad GR, Shyamashree SS (2004) Localization of In-111 white blood cells in rhabdomyolysis. Clin Nucl Med 29:367–369

    PubMed  Google Scholar 

  • Skarsgard LD, Harrison I (1991) Dose Dependence of the Oxygen Enhancement Ratio (OER) in Radiation Inactivation of Chinese Hamster V79-171 Cells. Rad Res 127(3):243–247

    Google Scholar 

  • Smith JJ, Sorenson AG, Thrall JH (2003) Biomarkers in imaging: realizing radiology’s future. Radiology 227:633–638

    PubMed  Google Scholar 

  • So M-K, Xu C, Loening AM, Gambhir SS, Rao J (2006) Self-illuminating quantum dot conjugates for in-vivo imaging. Nat Biotechnol 24(1):339–343

    PubMed  CAS  Google Scholar 

  • Solon E (2002) Correspondence: continued discussion of quantitative whole-body autoradiography in the pharmaceutical industry. Survey results on study design, methods and regulatory compliance. J Pharmacol Toxicol Methods 48:187–189

    CAS  Google Scholar 

  • Solon E (2007) Autoradiography: high resolution molecular imaging in pharmaceutical discovery and development. Expert Opin Drug Discov 2(4):1–12

    Google Scholar 

  • Solon EG, Kraus L (2002) Appraisal of state-of-the-art: quantitative whole-body autoradiography in the pharmaceutical industry. Survey results on study design, methods, and regulatory compliance. J Pharmacol Toxicol Methods 46:73–81

    Google Scholar 

  • Solon EG, Schweitzer A, Stoeckli M, Prideaux B (2010) Autoradiography, MALDI-MS, and SIMS-MS Imaging in pharmaceutical discovery and development. AAPS J 12(1):11. doi: 10.121208/s12248-009-9158-4

    PubMed  CAS  Google Scholar 

  • Sossi V (2007) Cutting edge brain imaging with positron emission tomography. Neuroimaging Clin N Am 17:427–440

    PubMed  Google Scholar 

  • Stollman TH, Scheer MGW, Leenders WPJ, Verrijp KCN, Soede AC, Oyen WJG, Ruers TJM, Boerman OC (2008) Specific imaging of VEGF-A expression with radiolabeled anti-VEGF monoclonal antibody. Int J Cancer 122:2310–2314

    PubMed  CAS  Google Scholar 

  • Sun Z, Ng KH, Ramli N (2001) Editorial: biomedical imaging research: a fast emerging area for interdisciplinary collaboration. Biomed Imaging Interv J 7(3):1–3

    CAS  Google Scholar 

  • Taillefer R, Edell S, Innes G, Lister-James J (2000) Acute thromboscintigraphy with 99m Tc-apcitide: results of the phase 3 multicenter clinical trial comparing Tc-99m-apcitide scintigraphy with contrast venography for imaging acute DVT. J Nucl Med 41:1214–1223

    Google Scholar 

  • Thakur ML (1995) Radiolabeled peptides: now and the future. Nucl Med Commun 16:724–732

    PubMed  CAS  Google Scholar 

  • Therasse P (2002) Measuring the clinical response. What does it mean? Eur J Cancer 38:1817–1823

    PubMed  CAS  Google Scholar 

  • Thurner MM, Sundgren PC (2008) Imaging of slow viruses. Neuroimaging Clin N Am 18:133–148

    Google Scholar 

  • Toomey JS, Bhatia S, Moon LT, Orchard EA, Tainter KH, J. Lokitz SJ, Terry T, Mathis JM (2012)PET Imaging a MPTP-Induced Mouse Model of Parkinson’s Disease Using the Fluoropropyl-Dihydrotetrabenazine Analog [18F]-DTBZ (AV-133). PLoS One 7(6):e39041. doi:10.1371/journal.pone.0039041

    Google Scholar 

  • Valk P, Bailey DL, Townsend DW, Maisey MM (eds) (2003) Positron emission tomography: basic science and clinical practice. Springer, London

    Google Scholar 

  • Van Waarde A, Cobben DCP, Suurmeijer AJH, Maas B, Vaalburg W, deVries EFJ, Jager PL, Hoekstra HJ, Elsinga PH (2004) Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 45:695–700

    PubMed  Google Scholar 

  • Van Westreenen HL, Cobben DCP, Jager PL, van Dullemen HM, Wesseling J, Elsinga PH, Plukker JT (2005) Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med 46:400–404

    PubMed  Google Scholar 

  • Vastenhouw B, Beekman F (2007) Submillimeter total-body murine imaging with U-SPECT-I. J Nucl Med 48:487–493

    PubMed  Google Scholar 

  • Verheij M (2008) Clinical biomarkers and imaging for radiotherapy-induced cell death. Cancer Metastasis Rev 27:471–480

    PubMed  Google Scholar 

  • Wagner H (2003) History notes. Hal Anger: nuclear medicine’s quiet genius. J Nucl Med 44:26N–34N

    Google Scholar 

  • Wagner JA (2006) Bridging preclinical and clinical development: biomarker validation and qualification, Chapter 3. In: Krishna R (ed) Dose optimization in drug development, from the series “Drugs and the pharmaceutical sciences”, Swarbrick J (exe. ed.), Taylor & Francis Group, LLC, New York/London, pp 35–44; web link: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDMQFjAA&url=http%3A%2F%2Fslib.phys.msu.ru%2Fsl%2F79%2FKrishna%2520R.%2520-%2520Dose%2520Optimization%2520in%2520Drug%2520Development%2C%2520Vol.%2520161%2520(2006)(293s).pdf&ei=CJJgUbaaPMfD4AO98YCADw&usg=AFQjCNH6qbVW13B8rgEwmkCcB0z9C8J8YQ&sig2=_I3Q1IQ82s3eymUepazvEg&bvm=bv.44770516,d.dmg&cad=rja

  • Wang Y-X, Deng M (2010) Medical imaging in new drug clinical development. J Thorac Dis 2:245–252

    PubMed  Google Scholar 

  • Westbrook C, Roth CK, Talbot J (eds) (2005) MRI in practice, 3rd edn. Blackwell, Malden, MA

    Google Scholar 

  • Wheeler KT, Wang L-M, Wallen CA, Childers SR, Cline JM, Keng PC, Mach RH (2000) Sigma-2 receptors as a biomarker of proliferation in solid tumours. Br J Cancer 82:1223–1232

    PubMed  CAS  Google Scholar 

  • Williams DL, Minshew NJ (2007) Understanding autism and related disorders: what has imaging taught us? Neuroimaging Clin N Am 17:495–509

    PubMed  Google Scholar 

  • Wirtzfeld LA, Wu G, Bygrave M, Yamasaki Y, Sakai H, Moussa M, Izawa JI, Downey DB, Greenberg NM, Fenster A, Xuan JW, Lacefield JC (2005) A new three-dimensional ultrasound microimaging technology for preclinical studies using a transgenic prostate cancer mouse model. Cancer Res 65(14):6337–6345

    PubMed  CAS  Google Scholar 

  • Woodcock J (1997) An FDA perspective on the drug development process. Food Drug Law J 52(2):145–161

    PubMed  CAS  Google Scholar 

  • Wu X, Liu H, Liu J, Kari N, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    PubMed  CAS  Google Scholar 

  • Yamada T, Matsumori A, Tamaki S, Sasayama S (1998) Myosin light chain I grade: a simple marker for the severity and prognosis of patients with acute myocardial infarction. Am Heart J 135(2 Pt 1):329–334

    PubMed  CAS  Google Scholar 

  • Yang M, Baranov E, Jiang P, Sun F-X, Li X-M, Li L, Hasegawa S, Bouvet M, Al-Tuwaijri M, Chishima T, Shimada H, Moossa AR, Penman S, Hoffman RM (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97(3):1206–1211

    Google Scholar 

  • Ylera F, Lurz R, Erdmann VA, Fürste JP (2002) Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide. Biochem Biophys Res Commun 290:1583–1588

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Moyer .

Editor information

Editors and Affiliations

Appendix 1. Selected Biomarkers and Interventional Probes Useful in Imaginga

Appendix 1. Selected Biomarkers and Interventional Probes Useful in Imaginga

Biomarkers/imaging targets (used in drug development)

Tracer or probe

Imaging modality

Suggested citations (see the full ref. listing)

Sugar and lipid metabolism:

F-18 FDG

PET

Phelps; Valk; Huang,

 Cancer chemo/radiation therapy

MR T2

 Cardiac metabolism

F-18 FDG

C-11palmitate;C-11-choline

PET

PET

 Brain metabolism/flow

 Lung cancer (SSTR+)

N-13 ammonia/Rb-82

Tc-99m Depreotide

PET

 Pancreatic cancer

Ga-68 DOTA-NOC or

SPECT

 Brain chemistry

F-18 DOPA

PET

 HDL and LDL metabolism

Tc-99m HDL and LDL

SPECT

 Free fatty oxidation rates

C-11 acetate

PET

Blood flow (vascular):

 

PET

 BOLD signal–oxygenated Hgb

 

fMR (@ 3Tb)

Ferris

 Cardiac and brain perfusion

Rb-82, O-15 H2O; N-13 ammonia

PET

SPECT

 Vascularobstruction/aneurysms

Tc-99m ECD *Neurolite®

 

 Blood cells or labeled albumin

Gd contrast; Fenanoparticles

In-111 oxine; Tc-99m HMPAO

MR

SPECT

 Apoptosis

Tc-99m Annexin V

 

Schlaug

 Stroke/hypoxia

ADC change

MR

Krohn, Corbett; Dugas

Elastase-induced emphysema

Hyperpolarized Helium-3

MR

Cardiac:

 Glucose metabolism

F-18 FDG

PET

Phelps

 Perfusion

Rb-82, O-15 H2O; N-13 ammonia

PET

 

 Fatty acid metabolism

I-123 BMIPP; I-124

SPECT; PET

 

 Cationic pumps

Tc-99m—Sestamibi

SPECT

Machac

Tc-99m Tetrofosmin

SPECT

Machac

Tc-99m furifosmin (Q12)

SPECT

 

Tl-201

SPECT

Machac

 Acetylcholinesterase

C-11 Edrophonium

C-11 Pyridostigmine

PET

 

DNA synthesis

F-18 FLT

C-11 FMAU

Br-76 BFU

PET

Lu

Inflammation/infection:

 Neutrophil elastase

Apatamer interference

SPECT

Charlton

 White blood cells

In-111-oxine

SPECT

Sinha

 Neuroinflammation

 

SPECT/PET

Deyton

 HIV

 

PET

Esposito

 Cell labeling

Various. Incl BLI.QD

SPECT/PET/BLI

 

 Generalized/focal infections

FDG/FLT

PET

Van Waarde

Muscarinic receptor:

 M2

F-18 FP TZTP

PET

Eckelman

Dopamine transporters

C-11 Cocaine

PET

Eckelman

Dopaminergic/Serotonin:

 D2 receptor

O-15 U91356a

C-11 Raclopride

C-11 β-CFT

C-11 β-CIT

C-11 β-CNT

PET

Eckelman

Dopamine metabolism:

 D1 receptor

O-15 SKF82958

PET

Eckelman

Benzodiazepine receptor

O-15 Lorazepam

PET

Eckelman

NMDA receptor (dopamine release)

C-11 Raclopride

PET

Eckelman

5-HT1A receptor

C-11 NMSP

PET

Eckelman

F-18 FCWAYS

 

Eckelman

5-HT2A receptor

F-18 Setoperone

PET

Eckelman

Neurologic disease:

 

PET

Klunk

 Alzheimer’s disease (AD)

F-18 FDG; C-11 PIB;

 

Sossi

 Aβ-amyloid

AMYViD; F-18

FDDNP; Fe accumulation

PET, MR T2

Esposito

 Neuroinflammation

C-11 Arachidonic acid

MR

 

ADC change (with contrast)

 Glioma

F-18 FDG

PET

 Pheochemocytoma

I-123/I-124 MIBG

SPECT/PET

 Multiple sclerosis

ADC changes

MR

Bone:

 

 Density/metastases

NaF (F-18); F-18-FLT

CT; PET

 Marrow cellularity

In-111 HPAMO WBCs

SPECT

Diffusion weighted MR

MR

F-18 FDG. F-18-FLT

PET

Cancer and Tumor Hypoxia:

 Hypoxia

F-18 FMISO

PET

Krohn

Other nitroimidazoles: FAZA, FETA, FETNIM, EF3, EF5, IAZA; Cu-64-ATSM

 

O2-sensitive MR contrast BOLD agents:

MR

 Perfluorotributylamine,

 Hexafluorobenzene,

 Hexomethyldisiloxane,

 Trifluoroethoxy-MISO

Lactate MRS as a consequence of hypoxia:

MRI, NIR, BLI

 O2-line width sensitivity

ESR

 Glioblastomas

F-18 FDG

PET

I-123/I-124 MIBG

PET

 Prostate

I-123-MIP-1095

SPECT

 Pheochromocytoma

C-11 Me-CGS 27023A

PET

 Matrix metalloproteinases

C-11 Me-halo-CGS 27023A

PET and BLI

C-11 Biphenylsulfonamide

PET

 Luciferase-PET probes (for mice)

C-11 d-luciferin methyl ester

PET/BLI

C-11 d-luciferin methyl ether

PET/BLI

Renal function:

 

 Renal stones

contrast

CT; MR

 Renal flow

Tc-99m inulin

SPECT

 Tubular secretion

In-111 DTPA

SPECT

Bowel function:

   

 Obstruction/torsion/transit time

X-ray (with contrast), CT

CT, US

 Appendicitis

In-111 WBCs, peptides

SPECT, PET, CT, US, MR

 Diffusion-weighted MR

DW-MR

 

Hepatic function:

 Biliary flow

Tc-99m HYNIC-GC

SPECT

 

Genitourinary function/cancers:

 Cervical cancer

Cu-64 DOTA-Cetuximab

PET

Anderson

 Prostate cancer

Lung function/cancers:

 

 Fibrosis

(ROI scoring; HU measures)

CT

 Ventilation

Xe-133, Tc-99m MAA

SPECT

 SSTR + lung cancer

Cu-64-TETA-octrotide

PET

Vascular disease and function :

 LDL

Gd-DTPA-SA-LDL

MR

 

 DVT (deep vein thrombosis) and pulmonary embolism

Tc-99m IIbIIIa receptor antagonists

SPECT

 Aneurysms

Gd-MS-325/vascular contrast

MR

 Angiography/Venography

X-ray contrast

CT

Taillefer; Bates

 GI flow/distortions

Microbubbles

US

  1. Abbreviations: NIR near infrared, BLI bioluminescent imaging, ESR electron spin resonance, OI and QD optical and quantum dot, PET positron emission tomography, SPECT single photon emission computed tomography, CT computed tomography, Planar single projection nuclear image, US ultrasound, MR magnetic resonance, fMR functional MR using the BOLD (blood oxygen level dependent)
  2. aThe listing is not meant to be exhaustive and does not intentionally exclude other innovative probes
  3. b3T: 3 Tesla (3T) magnetic field strength required

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Moyer, B.R. (2014). Imaging Platforms and Drug Development: An Introduction. In: Moyer, B., Cheruvu, N., Hu, TC. (eds) Pharmaco-Imaging in Drug and Biologics Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8247-5_1

Download citation

Publish with us

Policies and ethics