Imaging Platforms and Drug Development: An Introduction

  • Brian R. Moyer
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 8)


Medical imaging over the last century contributed significantly in the knowledge of disease, disease mechanisms, and even in the molecular manipulation of disease with drugs and biologics. The discovery of how molecular biomarkers express, locate, change, and often drive physiologic processes has been greatly expanded using imaging. The advances in medicine from imaging have driven even more development of imaging platforms toward miniaturization for use in the nonclinical laboratory. The recent additions in the area of optical imaging with self-illuminating quantum dots (QDs), the advances in the libraries of knockout/in animal models, chemical analytical methods now applied to imaging (MALDI and SIMS-MS and MRS imaging) have made small regional in vivo sampling possible. The drug development paradigm is now shifting from the formalism of the pharmacology and toxicology paths of the last century that has served us well to a potentially revolutionary path which will reduce animal usage and obtain time rate of change of biomarker and physiologic responses to drugs and interventional strategies. This chapter is intended to be a broad overview of imaging platforms for the readers to introduce themselves into this subject matter and to come away with a new knowledge of these technologies and how they may assist in the advanced development of drug or biologics and toward regulatory approval.


Positron Emission Tomography Single Photon Emission Compute Tomography Standardize Uptake Value Hounsfield Unit Single Photon Emission Compute Tomography Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agdeppa ED, Spilker ME (2009) A review of imaging agent development. AAPS J 11(2):286–299. doi: 10.1208/s12248-009-9104-5 PubMedGoogle Scholar
  2. Anderson CJ, Ferdani R (2009) Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm 24(4):379–393PubMedGoogle Scholar
  3. Anderson RM, Sumption ND, Papworth DG, Goodhead DT (2006) Chromosome breakpoint distribution of damage induced in peripheral blood lymphocytes by densely ionizing radiation. Intrnl J Rad Biol 82(1):49–58Google Scholar
  4. Arndt JW, Van der Sluys VA, Blok D, Griffloen G, Verspaget HW, Lamers CBHW, Pauwels EKJ (1993) Prospective comparative study of Technetium 99m-WBCs and Indium-111 granulocytes for examination of patients with inflammatory bowel disease. J Nucl Med 34:1052–1057PubMedGoogle Scholar
  5. Baek H-M, Chen J-H, Nalcioglu O, Su M-Y (2008) Letter to the editor. Choline as a biomarker for cell proliferation: Do the results from proton MR spectroscopy show difference between HER2/neu positive and negative breast cancers? Int J Cancer 123(5):219–1221Google Scholar
  6. Bates SM, Lister-James J, Julian JA, Math M, Taillefer R, Moyer BR, Ginsberg JS (2003) Imaging characteristics of a novel Technetium Tc-99m–labeled platelet glycoprotein Iib/IIIa receptor antagonist in patients with acute deep vein thrombosis or a history of deep vein thrombosis. Arch Intern Med 163:452–456PubMedGoogle Scholar
  7. Blankenburg FG (2008) In-vivo detection of apoptosis. J Nucl Med 49:81S–95SGoogle Scholar
  8. Bocan T (2010) Platform imaging biomarkers: applications across pre-clinical drug discovery with a focus on neuroscience, oncology, cardiovascular and future horizons. Am Pharm Rev 13(5):16–21Google Scholar
  9. Brooks DJ (2004) Neuroimaging in Parkinson disease. NeuroRx 1(2):243–254PubMedGoogle Scholar
  10. Brouwers AH, Laverman P, Boerman OC, Oyen WJ, Barrett JA, Harris TD, Edwards DS, Corstens FH (2000) A99mTc-labelled leukotriene B4 receptor antagonist for scintigraphic detection of infection in rabbits. Nucl Med Commun 21(11):1043–1050PubMedGoogle Scholar
  11. Brown AP, Citrin DE, Camphausen KA (2008) Clinical biomarkers of angiogenic inhibition. Cancer Metastasis Rev 27:415–434PubMedGoogle Scholar
  12. Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49:113S–128SPubMedGoogle Scholar
  13. Caro LG, Van Tubergen RP (1962) High-resolution autoradiography. I. Methods. J Cell Biol 15:173–182PubMedGoogle Scholar
  14. Cercignani M, Bozzali M, Iannucci G, Comi G, Filippi M (2001) Magnetization transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 70:311–317PubMedGoogle Scholar
  15. Charlton J, Sennello J, Smith D (1997) In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 4:809–816PubMedGoogle Scholar
  16. Chenevert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3:1457–1466PubMedGoogle Scholar
  17. Christian PE, Bernier DBR, Langham JK (eds) (2004) Nuclear medicine and PET: technology and techniques, 5th edn. Mosby, St. LouisGoogle Scholar
  18. Cogo A, Lensing AW, Koopman MMW (1998) Compression ultrasound for diagnostic management of patients with clinically suspected deep vein thrombosis: prospective cohort study. BMJ 316:17–20PubMedGoogle Scholar
  19. Colburn WA (1995) Surrogate markers and clinical pharmacology. J Clin Pharmacol 35(5):441–442, comment 464–470PubMedGoogle Scholar
  20. Colburn WA (1997) Selecting and validating biologic markers for drug development. J Clin Pharmacol 37(5):355–362PubMedGoogle Scholar
  21. Corbett JR, Ficaro EP (2004) Gated SPECT and the visual gold standard: gold standard or not? J Nucl Med 42(11):1639–1642Google Scholar
  22. Daniels MJ, Hughes MD (1997) Meta-analysis for the evaluation of potential surrogate markers. Stat Med 16(17):1965–1982PubMedGoogle Scholar
  23. DaSilva JN, Kilbourn MR, Domino EF (1993) In vivo imaging of monoaminergic nerve terminals in normal and MPTP-lesioned primate brain using positron emission tomography (PET) and [11C] tetrabenazine. Synapse 14:128–131PubMedGoogle Scholar
  24. De Gruttola V, Fleming T, Lin DY, Coombs R (1997) Perspective: validating surrogate markers–Are we being naive? J Infect Dis 175(2):237–246PubMedGoogle Scholar
  25. DeMeyer G, Shapiro F (2003) Biomarker development. The road to clinical utility. Curr Drug Discov 12:23–27Google Scholar
  26. Deyton L (1996) Importance of surrogate markers in evaluation of antiviral therapy for HIV infection. JAMA 276(2):159–160PubMedGoogle Scholar
  27. Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang Y, Aldape K, Cha S, Kuo MD (2008) Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci USA 105:5213–5218Google Scholar
  28. Dougan H, Weitz JI, Stafford AR, Gillespie KD, Klement P, Hobbs JB, Lyster DM (2003) Evaluation of DNA aptamers directed to thrombin as potential thrombus imaging agents. Nucl Med Biol 30:61–72PubMedGoogle Scholar
  29. Dressman H, Muramoto GG, Chao NJ, Meadows S, Marshall D, Ginsburg GS, Nevins JR, Chute JP (2007) Gene expression signatures that predict radiation exposure in mice and humans. PLoS Med 4:1–9Google Scholar
  30. Dugas JP, Garbow JR, Kobayashi DK, Conradi MS (2004) Hyperpolarized 3He MRI of mouse lung. Magn Reson Med 52:1310–1317PubMedGoogle Scholar
  31. Eckelman WC (2003) The use of PET and knockout mice in the drug discovery process. Drug Discov Today 8:404–410PubMedGoogle Scholar
  32. Ellenberg SS, Hamilton JM (1989) Surrogate endpoints in clinical trials: cancer. Stat Med 8(4):405–413PubMedGoogle Scholar
  33. Esposito G, Giovacchini G, Liow J-S, Bhattacharjee AK, Greenstein D, Schapiro M, Hallett M, Herscovich P, Eckelman WC, Carson RE, Rappoport SI (2008) Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. J Nucl Med 49:1414–1421PubMedGoogle Scholar
  34. Evelhoch JL, Gillies RJ, Karczmar GS, Koutcher JA, Maxwell RJ, Nalcioglu O, Raghunand N, Ronen SM, Ross BD, Swartz HM (2000) Applications of magnetic resonance in model systems: cancer therapeutics. Neoplasia 2:152–165PubMedGoogle Scholar
  35. Ferl GZ, Zhang X, Wu H-M, Huang S-C (2007) Estimation of the 18F-FDG input function in mice by use of dynamic small-animal PET and minimal blood sample data. J Nucl Med 48:2037–2045PubMedGoogle Scholar
  36. Ferris CF, Smerkers B, Kulkarni P, Caffrey M, Afacan O, Toddes S, Stolberg T, Febo M (2011) Functional magnetic resonance imaging in awake animals. Rev Neurosci 22:665–674PubMedGoogle Scholar
  37. Filippi M, Horsfield MA, Ader HJ, Barkhof F, Bruzzi P, Evans A, Frank JA, Grossman RI, McFarland HF, Molyneux P, Paty DW, Simon J, Tofts PS, Wolinsky JS, Miller DH (1998) Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 43:499–506PubMedGoogle Scholar
  38. Fleming TR, DeMets DL (1995) Surrogate end points in clinical trials: are we being misled? Ann Intern Med 125(7):605–613, comment. 1996; 126(8), 667Google Scholar
  39. Frangioni JV (2006) Self-illuminating quantum dots light the way. Nat Biotechnol 24(3):326–328PubMedGoogle Scholar
  40. Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2:566–580PubMedGoogle Scholar
  41. Friedland GW, Thurber BD (1996) Perspective: the birth of CT. AJR Am J Roentgenol 167:1365–1370, and, The Evolution of CT Scan Clinical Trials, Stuart Jackson blog on July 22, 2011PubMedGoogle Scholar
  42. Fukushima Y, Toba M, Ishihara K, Mizumura S, Seino T, Tanaka K, Mizuno K, Kumita S (2008) Usefulness of 201TlCl/ 123I-BMIPP dual-myocardial SPECT for patients with non-ST segment elevation myocardial infarction. Ann Nucl Med 22(5):363–369PubMedGoogle Scholar
  43. Gambhir SS (2006) Using radiolabeled DNA as an imaging agent to recognize protein targets. J Nucl Med 47(4):557–558PubMedGoogle Scholar
  44. Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, Hutton B, Sharir T, Haim SB, Haim SB (2009) A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 50:635–643PubMedGoogle Scholar
  45. Hansen CL, Goldstein RA, Akinboboye OO, Berman DS, Botvinick EH, Churchwell KB, Cooke CD et al (2007) Myocardial perfusion and function: single photon emission computed tomography. J Nucl Cardiol 14:e39–e60PubMedGoogle Scholar
  46. Hedlund L, Johnson G (2002) Mechanical ventilation for imaging the small animal. ILAR J 43:159–174PubMedGoogle Scholar
  47. Heiss W-D, Herholz K (2006) Brain receptor imaging. J Nucl Med 47:302–312PubMedGoogle Scholar
  48. Hiller K-H, Waller C, Nahrendorf M, Bauer WR, Jakob PM (2006) Assessment of cardiovascular apoptosis in the isolated rat heart by magnetic resonance molecular imaging. Mol Imaging 5:115–121PubMedGoogle Scholar
  49. Huang SC (2000) The anatomy of SUV (standardized uptake value). Nucl Med Biol 27:643–646PubMedGoogle Scholar
  50. Huang J, Chang C, Lee I, Sutcliffe JL, Cherry SR, Tarantal AF (2008) Radiolabeling rhesus monkey CD34+ hematopoietic and mesenchymal stem cells with 64Cu-Pyruvaldehyde-Bis(N4-Methylthiosemicarbazone) for micro-PET imaging. Mol Imaging 7(1):1–11PubMedGoogle Scholar
  51. Inoue T, Kato T, Uchida T, Sakuma M, Nakajima A, Shibazaki M, Imoto Y, Saito M, Hashimoto S, Hikichi Y, Node K (2005) Local release of C-reactive protein from vulnerable plaque or coronary arterial wall injured by stenting. J Am Coll Cardiol 46(2):239–245PubMedGoogle Scholar
  52. Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R (2006) Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 5:85–92PubMedGoogle Scholar
  53. Johnston RF, Pickett SC, Barker DL (1990) Autoradiography using storage phosphor technology. Electrophoresis 11:355–360PubMedGoogle Scholar
  54. Kelloff GJ, Krohn KA, Larson SM, Weissleder R, Mankoff DA, Hoffman JM, Link JM, Guyton KZ, Eckelman WC, Scher HI, O’Shaughnessy J, Cheson BD, Sigman CC, Tatum JL, Mills GQ, Sullivan DC, Woodcock J (2005) The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 11(22):7967–7985PubMedGoogle Scholar
  55. Keyes JW (1995) SUV: standardized uptake or silly useless value? J Nucl Med 36:1836–1839PubMedGoogle Scholar
  56. Kiessling F, Fokong S, Koczera P, Lederle W, Lammers T (2012) Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J Nucl Med 53:345–348PubMedGoogle Scholar
  57. Koyama K, Akashi YJ, Kida K, Suzuki KK, Ishibashi Y, Musha H, Banach M (2011) Relevance of 123I-BMIPP delayed scintigraphic imaging for patients with angina pectoris – A pilot study. Arch Med Sci 7(3):428–432PubMedGoogle Scholar
  58. Krohn KA, Muzi M, Spence AM (2007) What is in a number? The FDG lumped constant in the rat brain. J Nucl Med 48:5–7PubMedGoogle Scholar
  59. Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49:129S–148SPubMedGoogle Scholar
  60. LaBaer J (2005) So, you want to look for biomarkers. Introduction to the special biomarkers issue. J Proteome Res 4:1053–1059PubMedGoogle Scholar
  61. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ, Christman DR (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747PubMedGoogle Scholar
  62. Lopez JC (2003) Quantum leap for quantum dots. Nat Rev Neurosci 4:163Google Scholar
  63. Lu L, Samuelson L, Bergstrom M, Sato K, Fasth K-J, Langstrom B (2002) Rat studies comparing C-11-FMAU, F-18 FLT and Br-76 BFU as proliferation markers. J Nucl Med 43:1688–1698PubMedGoogle Scholar
  64. Machac J, Bacharach SL, Bateman TM, Bax JJ, Beanlands R, Bengel F, Bergmann SR, Brunken RC, Case J, Delbeke D, DiCarli MF, Garcia EV, Goldstein RA, Gropler RJ, Travin M, Patterson R, Schelbert HR (2006) Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol 13:e121–e151PubMedGoogle Scholar
  65. Mankoff DA, Link JM, Linden HM, Sundararajan L, Krohn KA (2008) Tumor receptor imaging. J Nucl Med 49:149S–163SPubMedGoogle Scholar
  66. Marchetti F, Coleman MA, Jones IM, Wyrobek AJ (2006) Candidate protein biodosimeters of human exposure to ionizing radiation. Int J Radiat Biol 82:605–639PubMedGoogle Scholar
  67. Meadows SK, Dressman HK, Muramoto GG, Himburg H, Salter A, Wei ZZ, Ginsburg G, Chao NJ, Nevins JR, Chute JP (2008) Gene expression signatures of radiation response are specific, durable and accurate in mice and humans. PLoS Med 3:690–701Google Scholar
  68. Medintz IL, Testsuo-Uyeda H, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4:435–446PubMedGoogle Scholar
  69. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan J, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544PubMedGoogle Scholar
  70. Minn H, Zasadny KR, Quint LE, Wahl RL (1995) Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 196:167–173PubMedGoogle Scholar
  71. Mintun MA, LaRossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, Klunk WE, Mathis CA, DeKosky ST, Morris JC (2006) [11C]PIB in a nondemented population. Potential antecedent marker of Alzheimer disease. Neurology 67:446–452PubMedGoogle Scholar
  72. Molecular imaging of cancer: from molecules to humans (2008) J Nucl Med 49(Suppl 2):1S–195SGoogle Scholar
  73. Morse DL, Galons JP, Payne CM, Jennings DL, Day S, Xia G, Gillies RJ (2007) MRI-measured water mobility increases in response to chemotherapy via multiple cell death mechanisms. NMR Biomed 20:602–614PubMedGoogle Scholar
  74. Mouchizuki T, Murase K, Higashuino H, Miyagawa M, Sugawara Y, Kikuchi T, Kezoe J (2002) Ischemic “memory image” in acute myocardial infarction of I- 123BMIPP after reperfusion therapy: a comparison withTc-99m pyrophosphate and Tl-201 dual-isotope SPECT. Ann Nucl Med 16(8):563–568Google Scholar
  75. Moyer BR, Barrett JB (2009) Biomarkers and Imaging: the physics and chemistry of imaging biomarkers. Bioanalysis 1(2):321–356PubMedGoogle Scholar
  76. Mueller-Lisse UG, Scherr MK (2007) Proton MR spectroscopy of the prostate. Eur J Radiol 63(3):351–360PubMedGoogle Scholar
  77. Muja M, Bulte JWM (2009) Magnetic resonance imaging of cells in experimental disease models. Prog Nucl Magn Reson Spectrosc 55:61–77PubMedGoogle Scholar
  78. Nagel E, Lehmkuhl H, Bocksch W, Klein C, Vogel U, Frantz E, Ellmer A, Dreysse S, Fleck EE (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99:763–770PubMedGoogle Scholar
  79. Niven R, Pearlman R, Wedeking T, Mackeigan J, Noker P, Simpson-Herren L, Smith JG (2000) Biodistribution of radiolabeled lipid-DNA complexes and DNA in mice. J Pharm Sci 87(11):1292–1299Google Scholar
  80. Obata A, Yoshimoto M, Kasamatsu S, Naiki H, Takamatsu S, Kashikura K, Furukawa T, Lewis JS, Welch MJ, Saji H (2003) Intra-tumoral distribution of 64Cu-ATSM: a comparison study with FDG. Nucl Med Biol 30(5):529–534PubMedGoogle Scholar
  81. Okunieff P, Chen Y, Maguire DJ, Huser AK (2008) Molecular markers of radiation-related normal tissue toxicity. Cancer Metastasis Rev 27(3):363–374PubMedGoogle Scholar
  82. Orlova A, Nilsson FY, Wikman M, Widström C, Ståhl S, Carlsson J, Tolmachev V (2006) Comparative in vivo evaluation of iodine and technetium labels on anti-HER2 affibody for single photon imaging of HER2 expression in tumors. J Nucl Med 47(3):512–519PubMedGoogle Scholar
  83. Oyajobi BO, Munoz S, Kakonen R, Williams PJ, Gupta A, Wideman CL, Story B, Grubbs B, Armstrong A, Dougall WC, Garrett IR, Mundy GR (2007) Detection of myeloma in skeleton of mice by whole body optical fluorescence imaging. Mol Cancer Ther 6(6):1701–1708PubMedGoogle Scholar
  84. Perket JM (2009) Mass spectacle: making the most of mass spectrometry imaging. The Scientist 23(3):61, Google Scholar
  85. Phelps ME (ed) (2004) PET: Molecular imaging and its biological applications. Springer-Verlag, New York, USAGoogle Scholar
  86. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388PubMedGoogle Scholar
  87. Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl 2):5S–23SPubMedGoogle Scholar
  88. Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM (2002) BOLD signal in stroke altered hemodynamic responses in patients after subcortical stroke measured by functional MRI. Stroke 33:103–109PubMedGoogle Scholar
  89. Prentice RL (1989) Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med 8:431–440PubMedGoogle Scholar
  90. Rabinovici GD, Furst AJ, O’Neil JP, Racine CA, Mormino EC, Baker SL, Chetty S, Patel P, Pagliaro TA, Klunk WE, Mathis CA, Rosen HJ, Miller BL, Jagust WJ (2007) C-11 PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 68:1205–1212PubMedGoogle Scholar
  91. Riess JG (2003) Fluorocarbon-based injectable gaseous microbubbles for diagnosis and therapy. Curr Opin Colloid Interface Sci 8:259–266Google Scholar
  92. Ross BD, Moffat BA, Lawrence TS, Mukherji SK, Gebarski SS, Quint DJ, Johnson TD, Junck L, Robertson PL, Muraszko KM, Dong Q, Meyer CR, Bland PH, McConville P, Geng H, Rehemtulla A, Chenevert TL (2003) Evaluation of cancer therapy using diffusion magnetic resonance imaging. Mol Cancer Ther 2:581–587PubMedGoogle Scholar
  93. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development—Review. Nat Rev Drug Discov 2:123–131PubMedGoogle Scholar
  94. Sampath L, Kwon S, Ke S, Wang W, Schiff R, Mawad ME, Sevick-Muraca E (2007) Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. J Nucl Med 48:1501–1510PubMedGoogle Scholar
  95. Sandella A, Ohlsson T, Erlandsson K, Strand SE (1998) An alternative method to normalize clinical FDG studies. J Nucl Med 39(3):552–555Google Scholar
  96. Santana CA, Folks RD, Garcia EV, Verdes L, Sanya R, Hainer J, DiCarli MF, Esteves FP (2007) Quantitative 82Rb PET/CT. Development and validation of myocardial perfusion database. J Nucl Med 48:1122–1128PubMedGoogle Scholar
  97. Schlaug G, Seiwert B, Benfield A, Edelman RR, Warach S (1997) Time course of the apparent diffusion coefficient (ADC) abnormality in stroke. Neurology 49:113–119PubMedGoogle Scholar
  98. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224. doi:10.1007/s00441-004-0938-yGoogle Scholar
  99. Shapiro D, Thibault P, Beetz T, Elser V, Howells M, Jacobsen C, Kirz J, Lima E, Miao H, Neiman AM, Sayre D (2005) Biological imaging by soft x-ray diffraction microscopy. Proc Natl Acad Sci USA 102:15343Google Scholar
  100. Sinha P, Conrad GR, Shyamashree SS (2004) Localization of In-111 white blood cells in rhabdomyolysis. Clin Nucl Med 29:367–369PubMedGoogle Scholar
  101. Skarsgard LD, Harrison I (1991) Dose Dependence of the Oxygen Enhancement Ratio (OER) in Radiation Inactivation of Chinese Hamster V79-171 Cells. Rad Res 127(3):243–247Google Scholar
  102. Smith JJ, Sorenson AG, Thrall JH (2003) Biomarkers in imaging: realizing radiology’s future. Radiology 227:633–638PubMedGoogle Scholar
  103. So M-K, Xu C, Loening AM, Gambhir SS, Rao J (2006) Self-illuminating quantum dot conjugates for in-vivo imaging. Nat Biotechnol 24(1):339–343PubMedGoogle Scholar
  104. Solon E (2002) Correspondence: continued discussion of quantitative whole-body autoradiography in the pharmaceutical industry. Survey results on study design, methods and regulatory compliance. J Pharmacol Toxicol Methods 48:187–189Google Scholar
  105. Solon E (2007) Autoradiography: high resolution molecular imaging in pharmaceutical discovery and development. Expert Opin Drug Discov 2(4):1–12Google Scholar
  106. Solon EG, Kraus L (2002) Appraisal of state-of-the-art: quantitative whole-body autoradiography in the pharmaceutical industry. Survey results on study design, methods, and regulatory compliance. J Pharmacol Toxicol Methods 46:73–81Google Scholar
  107. Solon EG, Schweitzer A, Stoeckli M, Prideaux B (2010) Autoradiography, MALDI-MS, and SIMS-MS Imaging in pharmaceutical discovery and development. AAPS J 12(1):11. doi:  10.121208/s12248-009-9158-4 PubMedGoogle Scholar
  108. Sossi V (2007) Cutting edge brain imaging with positron emission tomography. Neuroimaging Clin N Am 17:427–440PubMedGoogle Scholar
  109. Stollman TH, Scheer MGW, Leenders WPJ, Verrijp KCN, Soede AC, Oyen WJG, Ruers TJM, Boerman OC (2008) Specific imaging of VEGF-A expression with radiolabeled anti-VEGF monoclonal antibody. Int J Cancer 122:2310–2314PubMedGoogle Scholar
  110. Sun Z, Ng KH, Ramli N (2001) Editorial: biomedical imaging research: a fast emerging area for interdisciplinary collaboration. Biomed Imaging Interv J 7(3):1–3Google Scholar
  111. Taillefer R, Edell S, Innes G, Lister-James J (2000) Acute thromboscintigraphy with 99m Tc-apcitide: results of the phase 3 multicenter clinical trial comparing Tc-99m-apcitide scintigraphy with contrast venography for imaging acute DVT. J Nucl Med 41:1214–1223Google Scholar
  112. Thakur ML (1995) Radiolabeled peptides: now and the future. Nucl Med Commun 16:724–732PubMedGoogle Scholar
  113. Therasse P (2002) Measuring the clinical response. What does it mean? Eur J Cancer 38:1817–1823PubMedGoogle Scholar
  114. Thurner MM, Sundgren PC (2008) Imaging of slow viruses. Neuroimaging Clin N Am 18:133–148Google Scholar
  115. Toomey JS, Bhatia S, Moon LT, Orchard EA, Tainter KH, J. Lokitz SJ, Terry T, Mathis JM (2012)PET Imaging a MPTP-Induced Mouse Model of Parkinson’s Disease Using the Fluoropropyl-Dihydrotetrabenazine Analog [18F]-DTBZ (AV-133). PLoS One 7(6):e39041. doi:10.1371/journal.pone.0039041Google Scholar
  116. Valk P, Bailey DL, Townsend DW, Maisey MM (eds) (2003) Positron emission tomography: basic science and clinical practice. Springer, LondonGoogle Scholar
  117. Van Waarde A, Cobben DCP, Suurmeijer AJH, Maas B, Vaalburg W, deVries EFJ, Jager PL, Hoekstra HJ, Elsinga PH (2004) Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 45:695–700PubMedGoogle Scholar
  118. Van Westreenen HL, Cobben DCP, Jager PL, van Dullemen HM, Wesseling J, Elsinga PH, Plukker JT (2005) Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med 46:400–404PubMedGoogle Scholar
  119. Vastenhouw B, Beekman F (2007) Submillimeter total-body murine imaging with U-SPECT-I. J Nucl Med 48:487–493PubMedGoogle Scholar
  120. Verheij M (2008) Clinical biomarkers and imaging for radiotherapy-induced cell death. Cancer Metastasis Rev 27:471–480PubMedGoogle Scholar
  121. Wagner H (2003) History notes. Hal Anger: nuclear medicine’s quiet genius. J Nucl Med 44:26N–34NGoogle Scholar
  122. Wagner JA (2006) Bridging preclinical and clinical development: biomarker validation and qualification, Chapter 3. In: Krishna R (ed) Dose optimization in drug development, from the series “Drugs and the pharmaceutical sciences”, Swarbrick J (exe. ed.), Taylor & Francis Group, LLC, New York/London, pp 35–44; web link:,d.dmg&cad=rja
  123. Wang Y-X, Deng M (2010) Medical imaging in new drug clinical development. J Thorac Dis 2:245–252PubMedGoogle Scholar
  124. Westbrook C, Roth CK, Talbot J (eds) (2005) MRI in practice, 3rd edn. Blackwell, Malden, MAGoogle Scholar
  125. Wheeler KT, Wang L-M, Wallen CA, Childers SR, Cline JM, Keng PC, Mach RH (2000) Sigma-2 receptors as a biomarker of proliferation in solid tumours. Br J Cancer 82:1223–1232PubMedGoogle Scholar
  126. Williams DL, Minshew NJ (2007) Understanding autism and related disorders: what has imaging taught us? Neuroimaging Clin N Am 17:495–509PubMedGoogle Scholar
  127. Wirtzfeld LA, Wu G, Bygrave M, Yamasaki Y, Sakai H, Moussa M, Izawa JI, Downey DB, Greenberg NM, Fenster A, Xuan JW, Lacefield JC (2005) A new three-dimensional ultrasound microimaging technology for preclinical studies using a transgenic prostate cancer mouse model. Cancer Res 65(14):6337–6345PubMedGoogle Scholar
  128. Woodcock J (1997) An FDA perspective on the drug development process. Food Drug Law J 52(2):145–161PubMedGoogle Scholar
  129. Wu X, Liu H, Liu J, Kari N, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46PubMedGoogle Scholar
  130. Yamada T, Matsumori A, Tamaki S, Sasayama S (1998) Myosin light chain I grade: a simple marker for the severity and prognosis of patients with acute myocardial infarction. Am Heart J 135(2 Pt 1):329–334PubMedGoogle Scholar
  131. Yang M, Baranov E, Jiang P, Sun F-X, Li X-M, Li L, Hasegawa S, Bouvet M, Al-Tuwaijri M, Chishima T, Shimada H, Moossa AR, Penman S, Hoffman RM (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97(3):1206–1211Google Scholar
  132. Ylera F, Lurz R, Erdmann VA, Fürste JP (2002) Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide. Biochem Biophys Res Commun 290:1583–1588PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  1. 1.BRMoyer & Associates, LLCBedfordUSA

Personalised recommendations