Early Eye Development: Specification and Determination

  • Emmi Bürgy-Roukala
  • Sara Miellet
  • Abhishek K. Mishra
  • Simon G. Sprecher
Chapter

Abstract

The compound eye of Drosophila melanogaster consists of hundreds of stereotypically organized unit eyes called ommatidia. The development of the eye begins in the fly embryo with the formation of the precursor cells of the presumptive eye-antennal imaginal disc. The disc expresses genes that belong to a so-called retinal determination network (RDN). The interplay between the genes of the RDN specifies and directs the development of the adult eye. The RDN includes highly conserved genes and integrate canonical signalling pathways, yet the outcome is totally distinctive from a typical vertebrate lens eye. The members of the RDN are highly interconnected forming complex, non-hierarchal loops controlling the transcription of one another. Knowledge gained from studying the RDN has helped us to better understand important developmental processes, such as cell specification and tissue growth. Astonishingly it has also demonstrated that eyes across species and phyla, albeit so different, share a common origin. In this chapter we will summarize the current knowledge of the RDN with its members and their interactions. In addition, we will briefly introduce the early specification steps of the eye-antennal imaginal disc in the embryo and later in the larvae.

Keywords

Zinc Tyrosine Recombination Hexagonal Retina 

References

  1. Amore G, Casares F (2010) Size matters: the contribution of cell proliferation to the progression of the specification Drosophila eye gene regulatory network. Dev Biol 344(2):569–577. doi:10.1016/j.ydbio.2010.06.015PubMedGoogle Scholar
  2. Baker NE, Firth LC (2011) Retinal determination genes function along with cell-cell signals to regulate Drosophila eye development: examples of multi-layered regulation by master regulators. Bioessays 33(7):538–546. doi:10.1002/bies.201000131PubMedGoogle Scholar
  3. Baonza A, Freeman M (2002) Control of Drosophila eye specification by wingless signaling. Development 129(23):5313–5322PubMedGoogle Scholar
  4. Bessa J, Carmona L, Casares F (2009) Zinc-finger paralogues tsh and tio are functionally equivalent during imaginal development in Drosophila and maintain their expression levels through auto- and cross-negative feedback loops. Dev Dyn 238(1):19–28. doi:10.1002/dvdy.21808PubMedGoogle Scholar
  5. Bessa J, Casares F (2005) Restricted teashirt expression confers eye-specific responsiveness to Dpp and Wg signals during eye specification in Drosophila. Development 132(22):5011–5020. doi:10.1242/dev.02082PubMedGoogle Scholar
  6. Bessa J, Gebelein B, Pichaud F, Casares F, Mann RS (2002) Combinatorial control of Drosophila eye development by eyeless, homothorax, and teashirt. Genes Dev 16(18):2415–2427. doi:10.1101/gad.1009002PubMedGoogle Scholar
  7. Blanco J, Gehring WJ (2008) Analysis of twin of eyeless regulation during early embryogenesis in Drosophila melanogaster. Gene Expr Patterns 8(7–8):523–527. doi:10.1016/j.gep.2008.06.002PubMedGoogle Scholar
  8. Blanco J, Pauli T, Seimiya M, Udolph G, Gehring WJ (2010) Genetic interactions of eyes absent, twin of eyeless and orthodenticle regulate sine oculis expression during ocellar development in Drosophila. Dev Biol 344(2):1088–1099. doi:10.1016/j.ydbio.2010.05.494PubMedGoogle Scholar
  9. Blanco J, Seimiya M, Pauli T, Reichert H, Gehring WJ (2009) Wingless and hedgehog signaling pathways regulate orthodenticle and eyes absent during ocelli development in Drosophila. Dev Biol 329(1):104–115. doi:10.1016/j.ydbio.2009.02.027PubMedGoogle Scholar
  10. Bodmer R, Barbel S, Sheperd S, Jack JW, Jan LY, Jan YN (1987) Transformation of sensory organs by mutations of the cut locus of D. melanogaster. Cell 51(2):293–307PubMedGoogle Scholar
  11. Bonini NM, Bui QT, Gray-Board GL, Warrick JM (1997) The Drosophila eyes absent gene directs ectopic eye formation in a pathway conserved between flies and vertebrates. Development 124(23):4819–4826PubMedGoogle Scholar
  12. Bonini NM, Leiserson WM, Benzer S (1993) The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72(3):379–395PubMedGoogle Scholar
  13. Braid LR, Verheyen EM (2008) Drosophila nemo promotes eye specification directed by the retinal determination gene network. Genetics 180(1):283–299. doi:10.1534/genetics.108.092155PubMedGoogle Scholar
  14. Brockmann A, Dominguez-Cejudo MA, Amore G, Casares F (2011) Regulation of ocellar specification and size by twin of eyeless and homothorax. Dev Dyn 240(1):75–85. doi:10.1002/dvdy.22494PubMedGoogle Scholar
  15. Bui QT, Zimmerman JE, Liu H, Gray-Board GL, Bonini NM (2000) Functional analysis of an eye enhancer of the Drosophila eyes absent gene: differential regulation by eye specification genes. Dev Biol 221(2):355–364. doi:10.1006/dbio.2000.9688PubMedGoogle Scholar
  16. Callaerts P, Leng S, Clements J, Benassayag C, Cribbs D, Kang YY, Walldorf U, Fischbach KF, Strauss R (2001) Drosophila Pax-6/eyeless is essential for normal adult brain structure and function. J Neurobiol 46(2):73–88. doi:10.1002/1097-4695(20010205)46:2<73::AID-NEU10>3.0.CO;2–NPubMedGoogle Scholar
  17. Chao JL, Tsai YC, Chiu SJ, Sun YH (2004) Localized Notch signal acts through eyg and upd to promote global growth in Drosophila eye. Development 131(16):3839–3847. doi:10.1242/dev.01258PubMedGoogle Scholar
  18. Chen R, Amoui M, Zhang Z, Mardon G (1997) Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell 91(7):893–903PubMedGoogle Scholar
  19. Chen R, Halder G, Zhang Z, Mardon G (1999) Signaling by the TGF-beta homolog decapentaplegic functions reiteratively within the network of genes controlling retinal cell fate determination in Drosophila. Development 126(5):935–943PubMedGoogle Scholar
  20. Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12(5):977–996PubMedGoogle Scholar
  21. Cho KO, Chern J, Izaddoost S, Choi KW (2000) Novel signaling from the peripodial membrane is essential for eye disc patterning in Drosophila. Cell 103(2):331–342PubMedGoogle Scholar
  22. Cho KO, Choi KW (1998) Fringe is essential for mirror symmetry and morphogenesis in the Drosophila eye. Nature 396(6708):272–276. doi:10.1038/24394PubMedGoogle Scholar
  23. Choi KW, Benzer S (1994) Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell 78(1):125–136PubMedGoogle Scholar
  24. Crick FH, Lawrence PA (1975) Compartments and polyclones in insect development. Science 189(4200):340–347PubMedGoogle Scholar
  25. Curtiss J, Burnett M, Mlodzik M (2007) Distal antenna and distal antenna-related function in the retinal determination network during eye development in Drosophila. Dev Biol 306(2):685–702. doi:10.1016/j.ydbio.2007.04.006PubMedGoogle Scholar
  26. Curtiss J, Mlodzik M (2000) Morphogenetic furrow initiation and progression during eye development in Drosophila: the roles of decapentaplegic, hedgehog and eyes absent. Development 127(6):1325–1336PubMedGoogle Scholar
  27. Czerny T, Halder G, Kloter U, Souabni A, Gehring WJ, Busslinger M (1999) twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol Cell 3(3):297–307PubMedGoogle Scholar
  28. de Zulueta P, Alexandre E, Jacq B, Kerridge S (1994) Homeotic complex and teashirt genes co-operate to establish trunk segmental identities in Drosophila. Development 120(8):2287–2296Google Scholar
  29. Desplan C (1997) Eye development: governed by a dictator or a junta? Cell 91(7):861–864PubMedGoogle Scholar
  30. Dominguez M, Casares F (2005) Organ specification-growth control connection: new in-sights from the Drosophila eye-antennal disc. Dev Dyn 232(3):673–684. doi:10.1002/dvdy.20311PubMedGoogle Scholar
  31. Dominguez M, Ferres-Marco D, Gutierrez-Avino FJ, Speicher SA, Beneyto M (2004) Growth and specification of the eye are controlled independently by eyegone and eyeless in Drosophila melanogaster. Nat Genet 36(1):31–39. doi:10.1038/ng1281PubMedGoogle Scholar
  32. Dong PD, Chu J, Panganiban G (2000) Coexpression of the homeobox genes Distal-less and homothorax determines Drosophila antennal identity. Development 127(2):209–216PubMedGoogle Scholar
  33. Doroquez DB, Rebay I (2006) Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 41(6):339–385. doi:10.1080/10409230600914344PubMedGoogle Scholar
  34. Emerald BS, Curtiss J, Mlodzik M, Cohen SM (2003) Distal antenna and distal antenna related encode nuclear proteins containing pipsqueak motifs involved in antenna development in Drosophila. Development 130(6):1171–1180PubMedGoogle Scholar
  35. Fasano L, Roder L, Core N, Alexandre E, Vola C, Jacq B, Kerridge S (1991) The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs. Cell 64(1):63–79PubMedGoogle Scholar
  36. Finkelstein R, Smouse D, Capaci TM, Spradling AC, Perrimon N (1990) The orthodenticle gene encodes a novel homeo domain protein involved in the development of the Drosophila nervous system and ocellar visual structures. Genes Dev 4(9):1516–1527PubMedGoogle Scholar
  37. Friedrich M (2006) Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila. Arthropod Struc Dev 35(4):357–378. doi:10.1016/j.asd.2006.08.010Google Scholar
  38. Fristrom JW, Fristrom DK, Fekete E, Kuniyuki AH (1977) The mechanism of evagination of imaginal discs of Drosophila melanogaster. Am Zool 17(3):671–684. doi:10.1093/icb/17.3.671Google Scholar
  39. Garcia-Alonso L, Fetter RD, Goodman CS (1996) Genetic analysis of laminin A in Drosophila: extracellular matrix containing laminin A is required for ocellar axon pathfinding. Development 122(9):2611–2621PubMedGoogle Scholar
  40. Gehring WJ (2002) The genetic control of eye development and its implications for the evolution of the various eye-types. Int J Dev Biol 46(1):65–73PubMedGoogle Scholar
  41. Green P, Hartenstein AY, Hartenstein V (1993) The embryonic development of the Drosophila visual system. Cell Tissue Res 273(3):583–598PubMedGoogle Scholar
  42. Halder G, Callaerts P, Flister S, Walldorf U, Kloter U, Gehring WJ (1998) Eyeless initiates the expression of both sine oculis and eyes absent during Drosophila compound eye development. Development 125(12):2181–2191PubMedGoogle Scholar
  43. Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267(5205):1788–1792PubMedGoogle Scholar
  44. Hammond KL, Hanson IM, Brown AG, Lettice LA, Hill RE (1998) Mammalian and Drosophila dachshund genes are related to the ski proto-oncogene and are expressed in eye and limb. Mech Dev 74(1–2):121–131PubMedGoogle Scholar
  45. Hanson IM (2001) Mammalian homologues of the Drosophila eye specification genes. Semin Cell Dev Biol 12(6):475–484. doi:10.1006/scdb.2001.0271PubMedGoogle Scholar
  46. Hartenstein V, Jan Y (1992) Studying Drosophila embryogenesis with P-lacZ enhancer trap lines. Roux’s Arch Dev Biol 201(4):194–220. doi:10.1007/BF00188752Google Scholar
  47. Hayashi S, Hirose S, Metcalfe T, Shirras AD (1993) Control of imaginal cell development by the escargot gene of Drosophila. Development 118(1):105–115PubMedGoogle Scholar
  48. Haynie JL, Bryant PJ (1986) Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster. J Exp Zool 237(3):293–308. doi:10.1002/jez.1402370302PubMedGoogle Scholar
  49. Hazelett DJ, Bourouis M, Walldorf U, Treisman JE (1998) Decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development 125(18):3741–3751PubMedGoogle Scholar
  50. Heitzler P, Coulson D, Saenz-Robles MT, Ashburner M, Roote J, Simpson P, Gubb D (1993) Genetic and cytogenetic analysis of the 43A-E region containing the segment polarity gene costa and the cellular polarity genes prickle and spiny-legs in Drosophila melanogaster. Genetics 135(1):105–115PubMedGoogle Scholar
  51. Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, Prosser J, Jordan T, Hastie ND, van Heyningen V (1991) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354(6354):522–525. doi:10.1038/354522a0PubMedGoogle Scholar
  52. Hoge MA (1915) Another gene in the fourth chromosome of Drosophila. Am Nat 49:47–49Google Scholar
  53. Jacobsson L, Kronhamn J, Rasmuson-Lestander A (2009) The Drosophila Pax6 paralogs have different functions in head development but can partially substitute for each other. Mol Gen Genomics 282(3):217–231. doi:10.1007/s00438-009-0458-2Google Scholar
  54. Jang CC, Chao JL, Jones N, Yao LC, Bessarab DA, Kuo YM, Jun S, Desplan C, Beckendorf SK, Sun YH (2003) Two Pax genes, eye gone and eyeless, act cooperatively in promoting Drosophila eye development. Development 130(13):2939–2951PubMedGoogle Scholar
  55. Jemc J, Rebay I (2007) Identification of transcriptional targets of the dual-function transcription factor/phosphatase eyes absent. Dev Biol 310(2):416–429. doi:10.1016/j.ydbio.2007.07.024PubMedGoogle Scholar
  56. Jones NA, Kuo YM, Sun YH, Beckendorf SK (1998) The Drosophila Pax gene eye gone is required for embryonic salivary duct development. Development 125(21):4163–4174PubMedGoogle Scholar
  57. Jun S, Wallen RV, Goriely A, Kalionis B, Desplan C (1998) Lune/eye gone, a Pax-like protein, uses a partial paired domain and a homeodomain for DNA recognition. Proc Natl Acad Sci U S A 95(23):13720–13725PubMedGoogle Scholar
  58. Jurgens G, Hartenstein V (1993) The terminal regions of the body pattern. In: Bate M, Martinez AA (eds) The development of Dorsophilia melanogaster, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp. 687–746Google Scholar
  59. Kammermeier L, Leemans R, Hirth F, Flister S, Wenger U, Walldorf U, Gehring WJ, Reichert H (2001) Differential expression and function of the Drosophila Pax6 genes eyeless and twin of eyeless in embryonic central nervous system development. Mech Dev 103(1–2):71–78PubMedGoogle Scholar
  60. Kango-Singh M, Singh A, Henry Sun Y (2003) Eyeless collaborates with hedgehog and decapentaplegic signaling in Drosophila eye induction. Dev Biol 256(1):49–60PubMedGoogle Scholar
  61. Kawakami K, Ohto H, Ikeda K, Roeder RG (1996a) Structure, function and expression of a murine homeobox protein AREC3, a homologue of Drosophila sine oculis gene product, and implication in development. Nucleic Acids Res 24(2):303–310Google Scholar
  62. Kawakami K, Ohto H, Takizawa T, Saito T (1996b) Identification and expression of six family genes in mouse retina. FEBS Lett 393(2–3):259–263Google Scholar
  63. Kenyon KL, Ranade SS, Curtiss J, Mlodzik M, Pignoni F (2003) Coordinating proliferation and tissue specification to promote regional identity in the Drosophila head. Dev Cell 5(3):403–414PubMedGoogle Scholar
  64. Kenyon KL, Yang-Zhou D, Cai CQ, Tran S, Clouser C, Decene G, Ranade S, Pignoni F (2005) Partner specificity is essential for proper function of the SIX-type homeodomain proteins Sine oculis and Optix during fly eye development. Dev Biol 286(1):158–168. doi:10.1016/j.ydbio.2005.07.017PubMedGoogle Scholar
  65. Kronhamn J, Frei E, Daube M, Jiao R, Shi Y, Noll M, Rasmuson-Lestander A (2002) Headless flies produced by mutations in the paralogous Pax6 genes eyeless and twin of eyeless. Development 129(4):1015–1026PubMedGoogle Scholar
  66. Kumar JP (2009) The molecular circuitry governing retinal determination. Biochim Biophys Acta 1789(4):306–314. doi:10.1016/j.bbagrm.2008.10.001PubMedGoogle Scholar
  67. Kumar JP, Moses K (2001) EGF receptor and Notch signaling act upstream of eyeless/Pax6 to control eye specification. Cell 104(5):687–697PubMedGoogle Scholar
  68. Laugier E, Yang Z, Fasano L, Kerridge S, Vola C (2005) A critical role of teashirt for patterning the ventral epidermis is masked by ectopic expression of tiptop, a paralog of teashirt in Drosophila. Dev Biol 283(2):446–458. doi:10.1016/j.ydbio.2005.05.005PubMedGoogle Scholar
  69. Lawrence PA, Morata G (1977) The early development of mesothoracic compartments in Drosophila. An analysis of cell lineage and fate mapping and an assessment of methods. Dev Biol 56(1):40–51PubMedGoogle Scholar
  70. Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW, Rosenfeld MG (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426(6964):247–254. doi:10.1038/nature02083PubMedGoogle Scholar
  71. Mardon G, Solomon NM, Rubin GM (1994) dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development 120(12):3473–3486PubMedGoogle Scholar
  72. Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19(8):1745–1754. doi:10.1093/emboj/19.8.1745PubMedGoogle Scholar
  73. Michaut L, Flister S, Neeb M, White KP, Certa U, Gehring WJ (2003) Analysis of the eye developmental pathway in Drosophila using DNA microarrays. Proc Natl Acad Sci U S A 100(7):4024–4029. doi:10.1073/pnas.0630561100PubMedGoogle Scholar
  74. Morata G, Lawrence PA (1979) Development of the eye-antenna imaginal disc of Drosophila. Dev Biol 70(2):355–371PubMedGoogle Scholar
  75. Morillo SA, Braid LR, Verheyen EM, Rebay I (2012) Nemo phosphorylates eyes absent and enhances output from the Eya-Sine oculis transcriptional complex during Drosophila retinal determination. Dev Biol 365(1):267–276. doi:10.1016/j.ydbio.2012.02.030PubMedGoogle Scholar
  76. Nfonsam LE, Cano C, Mudge J, Schilkey FD, Curtiss J (2012) Analysis of the transcriptomes downstream of eyeless and the hedgehog, Decapentaplegic and Notch signaling pathways in Drosophila melanogaster. PLoS ONE 7(8):e44583. doi:10.1371/journal.pone.0044583PubMedGoogle Scholar
  77. Niimi T, Seimiya M, Kloter U, Flister S, Gehring WJ (1999) Direct regulatory interaction of the eyeless protein with an eye-specific enhancer in the sine oculis gene during eye induction in Drosophila. Development 126(10):2253–2260PubMedGoogle Scholar
  78. Oliver G, Mailhos A, Wehr R, Copeland NG, Jenkins NA, Gruss P (1995a) Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121(12):4045–4055Google Scholar
  79. Oliver G, Wehr R, Jenkins NA, Copeland NG, Cheyette BN, Hartenstein V, Zipursky SL, Gruss P (1995b) Homeobox genes and connective tissue patterning. Development 121(3):693–705Google Scholar
  80. Ostrin EJ, Li Y, Hoffman K, Liu J, Wang K, Zhang L, Mardon G, Chen R (2006) Genome-wide identification of direct targets of the Drosophila retinal determination protein eyeless. Genome Res 16(4):466–476. doi:10.1101/gr.4673006PubMedGoogle Scholar
  81. Pai CY, Kuo TS, Jaw TJ, Kurant E, Chen CT, Bessarab DA, Salzberg A, Sun YH (1998) The Homothorax homeoprotein activates the nuclear localization of another homeoprotein, extradenticle, and suppresses eye development in Drosophila. Genes Dev 12(3):435–446PubMedGoogle Scholar
  82. Pan D, Rubin GM (1998) Targeted expression of teashirt induces ectopic eyes in Drosophila. Proc Natl Acad Sci U S A 95(26):15508–15512PubMedGoogle Scholar
  83. Pappu KS, Ostrin EJ, Middlebrooks BW, Sili BT, Chen R, Atkins MR, Gibbs R, Mardon G (2005) Dual regulation and redundant function of two eye-specific enhancers of the Drosophila retinal determination gene dachshund. Development 132(12):2895–2905. doi:10.1242/dev.01869PubMedGoogle Scholar
  84. Pastor-Pareja JC, Grawe F, Martin-Blanco E, Garcia-Bellido A (2004) Invasive cell behavior during Drosophila imaginal disc eversion is mediated by the JNK signaling cascade. Dev Cell 7(3):387–399. doi:10.1016/j.devcel.2004.07.022PubMedGoogle Scholar
  85. Pauli T, Seimiya M, Blanco J, Gehring WJ (2005) Identification of functional sine oculis motifs in the autoregulatory element of its own gene, in the eyeless enhancer and in the signaling gene hedgehog. Development 132(12):2771–2782. doi:10.1242/dev.01841PubMedGoogle Scholar
  86. Pichaud F, Casares F (2000) homothorax and iroquois-C genes are required for the establishment of territories within the developing eye disc. Mech Dev 96(1):15–25PubMedGoogle Scholar
  87. Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL (1997) The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 91(7):881–891PubMedGoogle Scholar
  88. Pires-daSilva A, Sommer RJ (2003) The evolution of signaling pathways in animal development. Nat Rev Genet 4(1):39–49. doi:10.1038/nrg977PubMedGoogle Scholar
  89. Plaza S, Dozier C, Saule S (1993) Quail Pax-6 (Pax-QNR) encodes a transcription factor able to bind and trans-activate its own promoter. Cell Growth Differ 4(12):1041–1050PubMedGoogle Scholar
  90. Pollock JA, Benzer S (1988) Transcript localization of four opsin genes in the three visual organs of Drosophila; RH2 is ocellus specific. Nature 333(6175):779–782. doi:10.1038/333779a0PubMedGoogle Scholar
  91. Punzo C, Seimiya M, Flister S, Gehring WJ, Plaza S (2002) Differential interactions of eyeless and twin of eyeless with the sine oculis enhancer. Development 129(3):625–634PubMedGoogle Scholar
  92. Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the small eye gene in mice and Aniridia in humans. Science 265(5173):785–789PubMedGoogle Scholar
  93. Rieckhof GE, Casares F, Ryoo HD, Abu-Shaar M, Mann RS (1997) Nuclear translocation of extradenticle requires homothorax, which encodes an extradenticle-related homeodomain protein. Cell 91(2):171–183PubMedGoogle Scholar
  94. Roder L, Vola C, Kerridge S (1992) The role of the teashirt gene in trunk segmental identity in Drosophila. Development 115(4):1017–1033PubMedGoogle Scholar
  95. Royet J, Finkelstein R (1996) Hedgehog, wingless and orthodenticle specify adult head development in Drosophila. Development 122(6):1849–1858PubMedGoogle Scholar
  96. Salzer CL, Kumar JP (2010) Identification of retinal transformation hot spots in developing Drosophila epithelia. PLoS ONE 5(1):e8510. doi:10.1371/journal.pone.0008510PubMedGoogle Scholar
  97. Schmucker D, Jackle H, Gaul U (1997) Genetic analysis of the larval optic nerve projection in Drosophila. Development 124(5):937–948PubMedGoogle Scholar
  98. Seimiya M, Gehring WJ (2000) The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development 127(9):1879–1886PubMedGoogle Scholar
  99. Seo HC, Curtiss J, Mlodzik M, Fjose A (1999) Six class homeobox genes in drosophila belong to three distinct families and are involved in head development. Mech Dev 83(1–2):127–139PubMedGoogle Scholar
  100. Serikaku MA, O’Tousa JE (1994) Sine oculis is a homeobox gene required for Drosophila visual system development. Genetics 138(4):1137–1150PubMedGoogle Scholar
  101. Shen W, Mardon G (1997) Ectopic eye development in Drosophila induced by directed dachshund expression. Development 124(1):45–52PubMedGoogle Scholar
  102. Shilo BZ (2003) Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp Cell Res 284(1):140–149PubMedGoogle Scholar
  103. Silver SJ, Davies EL, Doyon L, Rebay I (2003) Functional dissection of eyes absent reveals new modes of regulation within the retinal determination gene network. Mol Cell Biol 23(17):5989–5999PubMedGoogle Scholar
  104. Simcox AA, Sang JH (1983) When does determination occur in Drosophila embryos? Dev Biol 97(1):212–221PubMedGoogle Scholar
  105. Simeone A, Acampora D, Mallamaci A, Stornaiuolo A, D’Apice MR, Nigro V, Boncinelli E (1993) A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12(7):2735–2747PubMedGoogle Scholar
  106. Singh A, Kango-Singh M, Sun YH (2002) Eye suppression, a novel function of teashirt, requires wingless signaling. Development 129(18):4271–4280PubMedGoogle Scholar
  107. Sprecher SG, Pichaud F, Desplan C (2007) Adult and larval photoreceptors use different mechanisms to specify the same Rhodopsin fates. Genes Dev 21(17):2182–2195. doi:10.1101/gad.1565407PubMedGoogle Scholar
  108. Suzanne M (2004) Expression analysis of the Drosophila pipsqueak family members fernandez/distal antenna and hernandez/distal antenna related. Dev Dyn 230(2):361–365. doi:10.1002/dvdy.20046PubMedGoogle Scholar
  109. Suzanne M, Estella C, Calleja M, Sanchez-Herrero E (2003) The Hernandez and Fernandez genes of Drosophila specify eye and antenna. Dev Biol 260(2):465–483PubMedGoogle Scholar
  110. Suzuki T, Saigo K (2000) Transcriptional regulation of atonal required for Drosophila larval eye development by concerted action of eyes absent, sine oculis and hedgehog signaling independent of fused kinase and cubitus interruptus. Development 127(7):1531–1540PubMedGoogle Scholar
  111. Tabin C, Wolpert L (2007) Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev 21(12):1433–1442. doi:10.1101/gad.1547407PubMedGoogle Scholar
  112. Tavsanli BC, Ostrin EJ, Burgess HK, Middlebrooks BW, Pham TA, Mardon G (2004) Structure-function analysis of the Drosophila retinal determination protein Dachshund. Dev Biol 272(1):231–247. doi:10.1016/j.ydbio.2004.05.005PubMedGoogle Scholar
  113. Ton CC, Hirvonen H, Miwa H, Weil MM, Monaghan P, Jordan T, van Heyningen V, Hastie ND, Meijers-Heijboer H, Drechsler M et al. (1991) Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell 67(6):1059–1074PubMedGoogle Scholar
  114. Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, Selengut JD, Parlikar BE, Rebay I (2003) The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature 426(6964):299–302. doi:10.1038/nature02097PubMedGoogle Scholar
  115. Toy J, Yang JM, Leppert GS, Sundin OH (1998) The optx2 homeobox gene is expressed in early precursors of the eye and activates retina-specific genes. Proc Natl Acad Sci U S A 95(18):10643–10648PubMedGoogle Scholar
  116. Treisman J, Harris E, Desplan C (1991) The paired box encodes a second DNA-binding domain in the paired homeo domain protein. Genes Dev 5(4):594–604PubMedGoogle Scholar
  117. Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113(4):1435–1449PubMedGoogle Scholar
  118. Wang CW, Sun YH (2012) Segregation of eye and antenna fates maintained by mutual antagonism in Drosophila. Development 139(18):3413–3421. doi:10.1242/dev.078857PubMedGoogle Scholar
  119. Wawersik S, Maas RL (2000) Vertebrate eye development as modeled in Drosophila. Hum Mol Genet 9(6):917–925PubMedGoogle Scholar
  120. Weasner B, Salzer C, Kumar JP (2007) Sine oculis, a member of the SIX family of transcription factors, directs eye formation. Dev Biol 303(2):756–771. doi:10.1016/j.ydbio.2006.10.040PubMedGoogle Scholar
  121. Wolff T, Ready DF (1993) Pattern formation in the Drosophila retina. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster, vol 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1277–1325Google Scholar
  122. Yao JG, Weasner BM, Wang LH, Jang CC, Weasner B, Tang CY, Salzer CL, Chen CH, Hay B, Sun YH, Kumar JP (2008) Differential requirements for the Pax6(5a) genes eyegone and twin of eyegone during eye development in Drosophila. Dev Biol 315(2):535–551. doi:10.1016/j.ydbio.2007.12.037PubMedGoogle Scholar
  123. Yoon CS, Hirosawa K, Suzuki E (1996) Studies on the structure of ocellar photoreceptor cells of Drosophila melanogaster with special reference to subrhabdomeric cisternae. Cell Tissue Res 284(1):77–85PubMedGoogle Scholar
  124. Younossi-Hartenstein A, Tepass U, Hartenstein V (1993) Embryonic origin of the imaginal discs of the head of Drosophila melanogaster. Roux’s Arch Dev Biol 203(1–2):60–73. doi:10.1007/BF00539891Google Scholar
  125. Zhang T, Ranade S, Cai CQ, Clouser C, Pignoni F (2006) Direct control of neurogenesis by selector factors in the fly eye: regulation of atonal by Ey and So. Development 133(24):4881–4889. doi:10.1242/dev.02669PubMedGoogle Scholar
  126. Zimmerman JE, Bui QT, Liu H, Bonini NM (2000) Molecular genetic analysis of Drosophila eyes absent mutants reveals an eye enhancer element. Genetics 154(1):237–246PubMedGoogle Scholar
  127. Zipursky SL, Venkatesh TR, Teplow DB, Benzer S (1984) Neuronal development in the Drosophila retina: monoclonal antibodies as molecular probes. Cell 36(1):15–26PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Emmi Bürgy-Roukala
    • 1
  • Sara Miellet
    • 1
  • Abhishek K. Mishra
    • 1
  • Simon G. Sprecher
    • 1
  1. 1.Institute of Cell and Developmental Biology, Department of BiologyUniversity of FribourgFribourgSwitzerland

Personalised recommendations