Skip to main content

Prediction of Hepatic Transporter-Mediated Drug–Drug Interaction from In Vitro Data

  • Chapter
  • First Online:
Transporters in Drug Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 7))

Abstract

The importance of transporter-mediated drug–drug interaction (TP-DDI) has been rapidly recognized by the recent publication of its clinical evidences and subsequent updated regulatory guidance (guideline). The methods of TP-DDI prediction are roughly divided into two approaches; static model and dynamic model. Static model with theoretically maximum unbound concentration is useful to sensitively catch the signal of DDIs, but predicted DDI risk should always be overestimated. Dynamic model fully considers the time courses of the plasma and tissue concentrations of both substrate and inhibitor drugs by the physiologically based pharmacokinetic (PBPK) model, thus accurate estimation of DDI risk can be achieved. However, the universal methods to set up model parameters based on the in vitro results with scaling factors remain to be discussed. This chapter is mainly focused on the basic theory and recent progress of the methods for TP-DDI predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AUC:

Area under the concentration-time curve

BCRP:

Breast cancer resistance protein

BSP:

Bromosulfophthalein

CYP:

Cytochrome P450

DDI:

Drug–drug interaction

E217βG:

Estradiol-17β-d-glucuronide

EMA:

European Medicines Agency

FDA:

Food and Drug Administration

MRP:

Multidrug resistance-associated protein

NTCP:

Sodium taurocholate cotransporting polypeptide

OATP:

Organic anion transporting polypeptide

PBPK:

Physiologically based pharmacokinetic

PET:

Positron emission tomography

P-gp:

P-glycoprotein

TP-DDI:

Transporter-mediated drug–drug interaction

References

  • Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, Schellens JH, Koomen GJ, Schinkel AH (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1(6):417–425

    CAS  PubMed  Google Scholar 

  • Amundsen R, Christensen H, Zabihyan B, Asberg A (2010) Cyclosporine A, but not tacrolimus, shows relevant inhibition of organic anion-transporting protein 1B1-mediated transport of atorvastatin. Drug Metab Dispos 38(9):1499–1504. doi:10.1124/dmd.110.032268

    Article  CAS  PubMed  Google Scholar 

  • Barton HA, Lai Y, Goosen TC, Jones HM, El-Kattan AF, Gosset JR, Lin J, Varma MV (2013) Model-based approaches to predict drug–drug interactions associated with hepatic uptake transporters: preclinical, clinical and beyond. Expert Opin Drug Metab Toxicol 9(4):459–472. doi:10.1517/17425255.2013.759210

    Article  CAS  PubMed  Google Scholar 

  • Campbell SD, de Morais SM, Xu JJ (2004) Inhibition of human organic anion transporting polypeptide OATP 1B1 as a mechanism of drug-induced hyperbilirubinemia. Chem Biol Interact 150(2):179–187. doi:10.1016/j.cbi.2004.08.008

    Article  CAS  PubMed  Google Scholar 

  • Crespi CL, Penman BW (1997) Use of cDNA-expressed human cytochrome P450 enzymes to study potential drug–drug interactions. Adv Pharmacol 43:171–188

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Konig J, Leier I, Buchholz U, Keppler D (2001) Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem 276(13):9626–9630. doi:10.1074/jbc.M004968200

    Article  CAS  PubMed  Google Scholar 

  • Dantzig AH, Shepard RL, Cao J, Law KL, Ehlhardt WJ, Baughman TM, Bumol TF, Starling JJ (1996) Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res 56(18):4171–4179

    CAS  PubMed  Google Scholar 

  • European Medicines Agency (EMA) (2010) Guideline on the investigation of drug interactions. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/05/WC500090112.pdf

  • Gertz M, Cartwright CM, Hobbs MJ, Kenworthy KE, Rowland M, Houston JB, Galetin A (2013) Cyclosporine inhibition of hepatic and intestinal CYP3A4, uptake and efflux transporters: application of PBPK modeling in the assessment of drug–drug interaction potential. Pharm Res 30(3):761–780. doi:10.1007/s11095-012-0918-y

    Article  CAS  PubMed  Google Scholar 

  • Hagenbuch B, Scharschmidt BF, Meier PJ (1996) Effect of antisense oligonucleotides on the expression of hepatocellular bile acid and organic anion uptake systems in Xenopus laevis oocytes. Biochem J 316(pt 3):901–904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirano M, Maeda K, Shitara Y, Sugiyama Y (2004) Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther 311(1):139–146. doi:10.1124/jpet.104.068056

    Article  CAS  PubMed  Google Scholar 

  • Hirano M, Maeda K, Shitara Y, Sugiyama Y (2006) Drug–drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab Dispos 34(7):1229–1236. doi:10.1124/dmd.106.009290

    Article  CAS  PubMed  Google Scholar 

  • Houston JB, Rowland-Yeo K, Zanelli U (2012) Evaluation of the novel in vitro systems for hepatic drug clearance and assessment of their predictive utility. Toxicol In Vitro 26(8):1265–1271. doi:10.1016/j.tiv.2011.12.016

    Article  CAS  PubMed  Google Scholar 

  • Ishigami M, Tokui T, Komai T, Tsukahara K, Yamazaki M, Sugiyama Y (1995) Evaluation of the uptake of pravastatin by perfused rat liver and primary cultured rat hepatocytes. Pharm Res 12(11):1741–1745

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro N, Maeda K, Kishimoto W, Saito A, Harada A, Ebner T, Roth W, Igarashi T, Sugiyama Y (2006) Predominant contribution of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans. Drug Metab Dispos 34(7):1109–1115. doi:10.1124/dmd.105.009175

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Iwatsubo T, Kanamitsu S, Ueda K, Suzuki H, Sugiyama Y (1998) Prediction of pharmacokinetic alterations caused by drug–drug interactions: metabolic interaction in the liver. Pharmacol Rev 50(3):387–412

    CAS  PubMed  Google Scholar 

  • Ito K, Chiba K, Horikawa M, Ishigami M, Mizuno N, Aoki J, Gotoh Y, Iwatsubo T, Kanamitsu S, Kato M, Kawahara I, Niinuma K, Nishino A, Sato N, Tsukamoto Y, Ueda K, Itoh T, Sugiyama Y (2002) Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS PharmSci 4(4):E25. doi:10.1208/ps040425

    Article  PubMed  Google Scholar 

  • Jigorel E, Le Vee M, Boursier-Neyret C, Bertrand M, Fardel O (2005) Functional expression of sinusoidal drug transporters in primary human and rat hepatocytes. Drug Metab Dispos 33(10):1418–1422. doi:10.1124/dmd.105.004762

    Article  CAS  PubMed  Google Scholar 

  • Jones HM, Barton HA, Lai Y, Bi YA, Kimoto E, Kempshall S, Tate SC, El-Kattan A, Houston JB, Galetin A, Fenner KS (2012) Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data. Drug Metab Dispos 40(5):1007–1017. doi:10.1124/dmd.111.042994

    Article  CAS  PubMed  Google Scholar 

  • Kindla J, Muller F, Mieth M, Fromm MF, Konig J (2011) Influence of non-steroidal anti-inflammatory drugs on organic anion transporting polypeptide (OATP) 1B1- and OATP1B3-mediated drug transport. Drug Metab Dispos 39(6):1047–1053. doi:10.1124/dmd.110.037622

    Article  CAS  PubMed  Google Scholar 

  • Kotani N, Maeda K, Watanabe T, Hiramatsu M, Gong LK, Bi YA, Takezawa T, Kusuhara H, Sugiyama Y (2011) Culture period-dependent changes in the uptake of transporter substrates in sandwich-cultured rat and human hepatocytes. Drug Metab Dispos 39(9):1503–1510. doi:10.1124/dmd.111.038968

    Article  CAS  PubMed  Google Scholar 

  • Kouzuki H, Suzuki H, Ito K, Ohashi R, Sugiyama Y (1998) Contribution of sodium taurocholate co-transporting polypeptide to the uptake of its possible substrates into rat hepatocytes. J Pharmacol Exp Ther 286(2):1043–1050

    CAS  PubMed  Google Scholar 

  • Kouzuki H, Suzuki H, Ito K, Ohashi R, Sugiyama Y (1999) Contribution of organic anion transporting polypeptide to uptake of its possible substrates into rat hepatocytes. J Pharmacol Exp Ther 288(2):627–634

    CAS  PubMed  Google Scholar 

  • Kudo T, Hisaka A, Sugiyama Y, Ito K (2013) Analysis of the repaglinide concentration increase produced by gemfibrozil and itraconazole based on the inhibition of the hepatic uptake transporter and metabolic enzymes. Drug Metab Dispos 41(2):362–371. doi:10.1124/dmd.112.049460

    Article  CAS  PubMed  Google Scholar 

  • Kusunoki N, Takara K, Tanigawara Y, Yamauchi A, Ueda K, Komada F, Ku Y, Kuroda Y, Saitoh Y, Okumura K (1998) Inhibitory effects of a cyclosporin derivative, SDZ PSC 833, on transport of doxorubicin and vinblastine via human P-glycoprotein. Jpn J Cancer Res 89(11): 1220–1228

    Article  CAS  PubMed  Google Scholar 

  • Li N, Bi YA, Duignan DB, Lai Y (2009) Quantitative expression profile of hepatobiliary transporters in sandwich cultured rat and human hepatocytes. Mol Pharm 6(4):1180–1189. doi:10.1021/mp900044x

    Article  CAS  PubMed  Google Scholar 

  • Liao M, Raczynski AR, Chen M, Chuang BC, Zhu Q, Shipman R, Morrison J, Lee D, Lee FW, Balani SK, Xia CQ (2010) Inhibition of hepatic organic anion-transporting polypeptide by RNA interference in sandwich-cultured human hepatocytes: an in vitro model to assess transporter-mediated drug–drug interactions. Drug Metab Dispos 38(9):1612–1622. doi:10.1124/dmd.110.032995

    Article  CAS  PubMed  Google Scholar 

  • Group SC, Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, Gut I, Lathrop M, Collins R (2008) SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med 359(8):789–799. doi:10.1056/NEJMoa0801936

    Article  Google Scholar 

  • Maeda K, Ikeda Y, Fujita T, Yoshida K, Azuma Y, Haruyama Y, Yamane N, Kumagai Y, Sugiyama Y (2011) Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. Clin Pharmacol Ther 90(4):575–581. doi:10.1038/clpt.2011.142

    Article  CAS  PubMed  Google Scholar 

  • Martin NG, Li KW, Murray H, Putt W, Packard CJ, Humphries SE (2012) The effects of a single nucleotide polymorphism in SLCO1B1 on the pharmacodynamics of pravastatin. Br J Clin Pharmacol 73(2):303–306. doi:10.1111/j.1365-2125.2011.04090.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsushima S, Maeda K, Ishiguro N, Igarashi T, Sugiyama Y (2008) Investigation of the inhibitory effects of various drugs on the hepatic uptake of fexofenadine in humans. Drug Metab Dispos 36(4):663–669. doi:10.1124/dmd.107.017814

    Article  CAS  PubMed  Google Scholar 

  • Menochet K, Kenworthy KE, Houston JB, Galetin A (2012) Use of mechanistic modeling to assess interindividual variability and interspecies differences in active uptake in human and rat hepatocytes. Drug Metab Dispos 40(9):1744–1756. doi:10.1124/dmd.112.046193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakai D, Nakagomi R, Furuta Y, Tokui T, Abe T, Ikeda T, Nishimura K (2001) Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J Pharmacol Exp Ther 297(3):861–867

    CAS  PubMed  Google Scholar 

  • Naritomi Y, Terashita S, Kimura S, Suzuki A, Kagayama A, Sugiyama Y (2001) Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos 29(10):1316–1324

    CAS  PubMed  Google Scholar 

  • Niemi M, Backman JT, Neuvonen M, Neuvonen PJ (2003) Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics and pharmacodynamics of repaglinide: potentially hazardous interaction between gemfibrozil and repaglinide. Diabetologia 46(3):347–351. doi:10.1007/s00125-003-1034-7

    CAS  PubMed  Google Scholar 

  • Noe J, Portmann R, Brun ME, Funk C (2007) Substrate-dependent drug–drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos 35(8):1308–1314. doi:10.1124/dmd.106.012930

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki S, Uchida Y, Kubo Y, Terasaki T (2011) Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci 100(9):3547–3559. doi:10.1002/jps.22612

    Article  CAS  PubMed  Google Scholar 

  • Oostendorp RL, van de Steeg E, van der Kruijssen CM, Beijnen JH, Kenworthy KE, Schinkel AH, Schellens JH (2009) Organic anion-transporting polypeptide 1B1 mediates transport of Gimatecan and BNP1350 and can be inhibited by several classic ATP-binding cassette (ABC) B1 and/or ABCG2 inhibitors. Drug Metab Dispos 37(4):917–923. doi:10.1124/dmd.108.024901

    Article  CAS  PubMed  Google Scholar 

  • Poirier A, Cascais AC, Funk C, Lave T (2009) Prediction of pharmacokinetic profile of valsartan in human based on in vitro uptake transport data. J Pharmacokinet Pharmacodyn 36(6):585–611. doi:10.1007/s10928-009-9139-3

    Article  CAS  PubMed  Google Scholar 

  • Rippin SJ, Hagenbuch B, Meier PJ, Stieger B (2001) Cholestatic expression pattern of sinusoidal and canalicular organic anion transport systems in primary cultured rat hepatocytes. Hepatology 33(4):776–782. doi:10.1053/jhep.2001.23433

    Article  CAS  PubMed  Google Scholar 

  • Rowland M, Peck C, Tucker G (2011) Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 51:45–73. doi:10.1146/annurev-pharmtox-010510-100540

    Article  CAS  PubMed  Google Scholar 

  • Shitara Y, Horie T, Sugiyama Y (2006) Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 27(5):425–446. doi:10.1016/j.ejps.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  • Shitara Y, Nagamatsu Y, Wada S, Sugiyama Y, Horie T (2009) Long-lasting inhibition of the transporter-mediated hepatic uptake of sulfobromophthalein by cyclosporin a in rats. Drug Metab Dispos 37(6):1172–1178. doi:10.1124/dmd.108.025544

    Article  CAS  PubMed  Google Scholar 

  • Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y (2013) Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos 34(1):45–78. doi:10.1002/bdd.1823

    Article  CAS  PubMed  Google Scholar 

  • Soars MG, Grime K, Sproston JL, Webborn PJ, Riley RJ (2007) Use of hepatocytes to assess the contribution of hepatic uptake to clearance in vivo. Drug Metab Dispos 35(6):859–865. doi:10.1124/dmd.106.014464

    Article  CAS  PubMed  Google Scholar 

  • Soars MG, Barton P, Ismair M, Jupp R, Riley RJ (2012) The development, characterization, and application of an OATP1B1 inhibition assay in drug discovery. Drug Metab Dispos 40(8):1641–1648. doi:10.1124/dmd.111.042382

    Article  CAS  PubMed  Google Scholar 

  • Tachibana T, Kato M, Watanabe T, Mitsui T, Sugiyama Y (2009) Method for predicting the risk of drug–drug interactions involving inhibition of intestinal CYP3A4 and P-glycoprotein. Xenobiotica 39(6):430–443. doi:10.1080/00498250902846252

    Article  CAS  PubMed  Google Scholar 

  • Takashima T, Kitamura S, Wada Y, Tanaka M, Shigihara Y, Ishii H, Ijuin R, Shiomi S, Nakae T, Watanabe Y, Cui Y, Doi H, Suzuki M, Maeda K, Kusuhara H, Sugiyama Y, Watanabe Y (2012) PET imaging-based evaluation of hepatobiliary transport in humans with (15R)-11C-TIC-Me. J Nucl Med 53(5):741–748. doi:10.2967/jnumed.111.098681

    Article  PubMed  Google Scholar 

  • Tian X, Zamek-Gliszczynski MJ, Zhang P, Brouwer KL (2004) Modulation of multidrug resistance-associated protein 2 (Mrp2) and Mrp3 expression and function with small interfering RNA in sandwich-cultured rat hepatocytes. Mol Pharmacol 66(4):1004–1010. doi:10.1124/mol.66.4

    Article  CAS  PubMed  Google Scholar 

  • Ueda K, Kato Y, Komatsu K, Sugiyama Y (2001) Inhibition of biliary excretion of methotrexate by probenecid in rats: quantitative prediction of interaction from in vitro data. J Pharmacol Exp Ther 297(3):1036–1043

    CAS  PubMed  Google Scholar 

  • Umehara K, Camenisch G (2012) Novel in vitro–in vivo extrapolation (IVIVE) method to predict hepatic organ clearance in rat. Pharm Res 29(2):603–617. doi:10.1007/s11095-011-0607-2

    Article  CAS  PubMed  Google Scholar 

  • US Food and Drug Administration (FDA) (2012) Guidance for industry drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf

  • Varma MV, Lai Y, Feng B, Litchfield J, Goosen TC, Bergman A (2012) Physiologically based modeling of pravastatin transporter-mediated hepatobiliary disposition and drug–drug interactions. Pharm Res 29(10):2860–2873. doi:10.1007/s11095-012-0792-7

    Article  CAS  PubMed  Google Scholar 

  • Varma MV, Lin J, Bi YA, Rotter CJ, Fahmi OA, Lam J, El-Kattan AF, Goosen TC, Lai Y (2013) Quantitative prediction of repaglinide-rifampicin complex drug interactions using dynamic and static mechanistic models: delineating differential CYP3A4 induction and OATP1B1 inhibition potential of rifampicin. Drug Metab Dispos. doi:10.1124/dmd.112.050583

    Google Scholar 

  • Watanabe T, Maeda K, Kondo T, Nakayama H, Horita S, Kusuhara H, Sugiyama Y (2009a) Prediction of the hepatic and renal clearance of transporter substrates in rats using in vitro uptake experiments. Drug Metab Dispos 37(7):1471–1479. doi:10.1124/dmd.108.026062

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kusuhara H, Maeda K, Shitara Y, Sugiyama Y (2009b) Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther 328(2):652–662. doi:10.1124/jpet.108.146647

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kusuhara H, Maeda K, Kanamaru H, Saito Y, Hu Z, Sugiyama Y (2010) Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans. Drug Metab Dispos 38(2):215–222. doi:10.1124/dmd.109.030254

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kusuhara H, Watanabe T, Debori Y, Maeda K, Kondo T, Nakayama H, Horita S, Ogilvie BW, Parkinson A, Hu Z, Sugiyama Y (2011) Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug–drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments. Drug Metab Dispos 39(6):1031–1038. doi:10.1124/dmd.110.036129

    Article  CAS  PubMed  Google Scholar 

  • Williamson B, Soars AC, Owen A, White P, Riley RJ, Soars MG (2013) Dissecting the relative contribution of OATP1B1-mediated uptake of xenobiotics into human hepatocytes using siRNA. Xenobiotica. doi:10.3109/00498254.2013.776194

    PubMed  Google Scholar 

  • Yabe Y, Galetin A, Houston JB (2011) Kinetic characterization of rat hepatic uptake of 16 actively transported drugs. Drug Metab Dispos 39(10):1808–1814. doi:10.1124/dmd.111.040477

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Maeda K, Sugiyama Y (2012) Transporter-mediated drug–drug interactions involving OATP substrates: predictions based on in vitro inhibition studies. Clin Pharmacol Ther 91(6):1053–1064. doi:10.1038/clpt.2011.351

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Maeda K, Sugiyama Y (2013) Hepatic and intestinal drug transporters: prediction of pharmacokinetic effects caused by drug–drug interactions and genetic polymorphisms. Annu Rev Pharmacol Toxicol 53:581–612. doi:10.1146/annurev-pharmtox-011112-140309

    Article  CAS  PubMed  Google Scholar 

  • Yue W, Abe K, Brouwer KL (2009) Knocking down breast cancer resistance protein (Bcrp) by adenoviral vector-mediated RNA interference (RNAi) in sandwich-cultured rat hepatocytes: a novel tool to assess the contribution of Bcrp to drug biliary excretion. Mol Pharm 6(1):134–143. doi:10.1021/mp800100e

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Lee CA, Poirier A, Bentz J, Chu X, Ellens H, Ishikawa T, Jamei M, Kalvass JC, Nagar S, Pang KS, Kowzekwa K, Swaan PW, Taub ME, Zhao P, Galetin A (2013) ITC recommendations on transporter kinetic parameter estimation and translational modeling of transport-mediated PK and DDIs in humans. Clin Pharmacol Ther. doi:10.1038/clpt.2013.45

    PubMed Central  Google Scholar 

  • Zelcer N, Huisman MT, Reid G, Wielinga P, Breedveld P, Kuil A, Knipscheer P, Schellens JH, Schinkel AH, Borst P (2003) Evidence for two interacting ligand binding sites in human multidrug resistance protein 2 (ATP binding cassette C2). J Biol Chem 278(26):23538–23544. doi:10.1074/jbc.M303504200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Sugiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maeda, K., Sugiyama, Y. (2013). Prediction of Hepatic Transporter-Mediated Drug–Drug Interaction from In Vitro Data. In: Sugiyama, Y., Steffansen, B. (eds) Transporters in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8229-1_6

Download citation

Publish with us

Policies and ethics