Skip to main content

In Vitro Kinetic Characterization of Transporter-Mediated Permeability

  • Chapter
  • First Online:
  • 2087 Accesses

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 7))

Abstract

Permeability studies across cells or tissue are often applied to investigate for permeability being rate limiting in bioavailability. In addition permeability of drug substances/candidates is investigated in order to identify transport mechanism across the cells or tissues, i.e., by passive diffusion and/or by membrane transport proteins. Characterization of transport mechanism is important in order to elucidate if permeability could be altered/dose-dependent as drug substance/candidate is interacting on saturable transporters. In the present chapter is described how especially transporter-mediated permeability may be studied in vitro exemplified by using E1S as probe. Furthermore, it is speculated upon if E1S can be used as biomarker, in vivo, for the identification of possible clinical effects of drug substances/candidates interacting on transporter(s) which E1S is substrate for and it is suggested that future studies should elucidate such possibilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Refers to the single hydroxyl functionality in the third position of the steroid molecule. Thus, the abbreviation E1 is used to differentiate E1 from the other estrogens, estradiol (E2) and estriol (E3), which contain 2 and 3 hydroxyl functionalities, respectively. The sulfonic acid ester of E1 is named estrone-3-sulfate to indicate that the sulfonic acid ester is in the third position of the steroid molecule and for this reason E1S is also sometimes abbreviated as E3S. In the present chapter, however, the abbreviation E1S is applied.

Abbreviations

ADME:

Absorption, distribution metabolism and elimination

BCRP:

Breast cancer resistance protein

C 0 :

Initial donor concentration

DDI:

Drug–drug interactions

E1 :

Estrone

E1S:

Estrone-3-sulfate

E2 :

Estradiol

[I]:

Inhibiting drug substance/candidate concentration

IC50 :

Drug substance/candidate concentration at which 50 % inhibition occurs

I max :

Maximal inhibitory effect of the drug substance/candidate

IVIVC:

In vitro–in vivo correlation

J :

Flux

J max :

Maximal carrier-mediated flux

K i :

Inhibitory affinity constant

K m :

Michaelis–Menten-derived substrate affinity constant

MATE 1/2-K:

Multidrug and toxin extrusion 1/2-K

MRP 1/2:

Multidrug resistance protein 1/2

NTCP:

Na+/taurocholate cotransporting polypeptide

OAT 3/4:

Organic anion transporter 3/4

OATP 1A2/1B1/1B3/2B1/3A1/4A1:

Organic anion transporting protein

OSTα/β:

Organic solute transporter α/β

OSTα/β:

Organic solute transporter α/β

PAPP:

Apparent transcellular permeability

P Pas :

Passive permeability

P UP :

Uptake permeability

SLC:

Solute carrier

SOAT:

Sodium-dependent organic anion transporter

References

  • Artursson P (1990) Epithelial transport of drugs in cell culture. I: a model for studying the passive diffusion of drugs over intestinal absorptive (caco-2) cells. J Pharm Sci 79:476–482

    Article  CAS  PubMed  Google Scholar 

  • Badagnani I, Castro RA, Taylor TR, Brett CM, Huang CC, Stryke D, Kawamoto M, Johns SJ, Ferrin TE, Carlson EJ, Burchard EG, Giacomini KM (2006) Interaction of methotrexate with organic-anion transporting polypeptide 1A2 and its genetic variants. J Pharmacol Exp Ther 318:521–529

    Article  CAS  PubMed  Google Scholar 

  • Ballatori N, Christian WV, Lee JY, Dawson PA, Soroka CJ, Boyer JL, Madejczyk MS, Li N (2005) OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42:1270–1279

    Article  CAS  PubMed  Google Scholar 

  • Bossuyt X, Muller M, Meier PJ (1996) Multispecific amphipathic substrate transport by an organic anion transporter of human liver. J Hepatol 25:733–738

    Article  CAS  PubMed  Google Scholar 

  • Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim DK, Sugiyama Y, Kanai Y, Endou H (2000) Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem 275:4507–4512

    Article  CAS  PubMed  Google Scholar 

  • Cha SH, Sekine T, Fukushima JI, Kanai Y, Kobayashi Y, Goya T, Endou H (2001) Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol 59:1277–1286

    CAS  PubMed  Google Scholar 

  • EMA (2012) Final Guideline on investigation of drug interactions. In EMA the guidance is available at http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf

  • FDA. 2000. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid dosage forms based on biopharmaceutics classification system. In Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), the guidance is available at: http://www.fda.gov/OHRMS/DOCKETS/98fr/3657gd3.pdf

  • Fick A (1855) Ueber diffusion. Ann Phys Chem 94:59–86

    Article  Google Scholar 

  • Gao J, Murase O, Schowen RL, Aube J, Borchardt RT (2001) A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in caco-2 cells. Pharm Res 18:171–176

    Article  CAS  PubMed  Google Scholar 

  • Geyer J, Doring B, Meerkamp K, Ugele B, Bakhiya N, Fernandes CF, Godoy JR, Glatt H, Petzinger E (2007) Cloning and functional characterization of human sodium-dependent organic anion transporter (SLC10A6). J Biol Chem 282:19728–19741

    Article  CAS  PubMed  Google Scholar 

  • Giacomini K, Huang S-M, Tweedie D, Benet LZ, Brouwer K, Chu X, Dahlin A, Evers R, Fischer W, Hillgren K, Hoffmaster K, Ishikawa T, Keppler D, Kim R, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan P, Ware JA, Wright S, Yee S, Samek-Gliszczynski M, Zhang L (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236

    Article  CAS  PubMed  Google Scholar 

  • Gram LK, Rist GM, Lennernas H, Steffansen B (2009) Impact of carriers in oral absorption: permeation across caco-2 cells for the organic anions estrone-3-sulfate and glipizide. Eur J Pharm Sci 37:378–386

    Article  CAS  PubMed  Google Scholar 

  • Grandvuinet AS, Steffansen B (2011) Interactions between organic anions on multiple transporters in Caco-2 cells. J Pharm Sci 100:3817–3830

    Article  CAS  PubMed  Google Scholar 

  • Grandvuinet AS, Gustavsson L, Steffansen B (2013) New insights into the carrier-mediated transport of estrone-3-sulfate in the Caco-2 cell model. Mol Pharm, E-Pub ahead of print

    Google Scholar 

  • Grandvuinet AS, Vestergaard HT, Rapin N, Steffansen B (2012) Intestinal transporters for endogenic and pharmaceutical organic anions: the challenges of deriving in vitro kinetic parameters for the prediction of clinically relevant drug–drug interactions. J Pharm Pharmacol 64:1523–1548

    Article  CAS  PubMed  Google Scholar 

  • Gui C, Miao Y, Thompson L, Wahlgren B, Mock M, Stieger B, Hagenbuch B (2008) Effect of pregnane X receptor ligands on transport mediated by human OATP1B1 and OATP1B3. Eur J Pharmacol 584:57–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirano M, Maeda K, Shitara Y, Sugiyama Y (2004) Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther 311:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hirano M, Maeda K, Matsushima S, Nozaki Y, Kusuhara H, Sugiyama Y (2005) Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol 68:800–807

    CAS  PubMed  Google Scholar 

  • Hirano M, Maeda K, Shitara Y, Sugiyama Y (2006) Drug–drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab Dispos 34:1229–1236

    Article  CAS  PubMed  Google Scholar 

  • Ho RH, Leake BF, Roberts RL, Lee W, Kim RB (2004) Ethnicity-dependent polymorphism in Na + -taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J Biol Chem 279:7213–7222

    Article  CAS  PubMed  Google Scholar 

  • Idris S, El-Bajaj W (2013) The influence of selected substances on the permeability of 3[H]-estrone-3-sulfate in caco-2 cells. In University of Copenhagen, Department of Pharmacy, pp 1–79

    Google Scholar 

  • Imai Y, Asada S, Tsukahara S, Ishikawa E, Tsuruo T, Sugimoto Y (2003) Breast cancer resistance protein exports sulfated estrogens but not free estrogens. Mol Pharmacol 64:610–618

    Article  CAS  PubMed  Google Scholar 

  • Karlsson JE, Heddle C, Rozkov A, Rotticci-Mulder J, Tuvesson O, Hilgendorf C, Andersson TB (2010) High-activity p-glycoprotein, multidrug resistance protein 2, and breast cancer resistance protein membrane vesicles prepared from transiently transfected human embryonic kidney 293-epstein-barr virus nuclear antigen cells. Drug Metab Dispos 38:705–714

    Article  CAS  PubMed  Google Scholar 

  • Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B (2001) Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120:525–533

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Glaeser H, Smith LH, Roberts RL, Moeckel GW, Gervasini G, Leake BF, Kim RB (2005) Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2): implications for altered drug disposition and central nervous system drug entry. J Biol Chem 280:9610–9617

    Article  CAS  PubMed  Google Scholar 

  • Menten L, Michaelis M (1913) Die kinetik der invertinwirkung. Biochem Z 49:333–369

    Google Scholar 

  • Nielsen C, Steffansen B, Brodin B.(2010) Carrier-mediated transport kinetics. In Steffansen B, Brodin B, Nielsen C (eds.), Molecular Biopharmaceutics. Aspects of drug characterization, drug delivery and dosage form evaluation, Pharmaceutical Press, London. pp: 153–173

    Google Scholar 

  • Noe J, Portmann R, Brun ME, Funk C (2007) Substrate-dependent drug–drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos 35:1308–1314

    Article  CAS  PubMed  Google Scholar 

  • Nozawa T, Imai K, Nezu J, Tsuji A, Tamai I (2004) Functional characterization of pH-sensitive organic anion transporting polypeptide OATP-B in human. J Pharmacol Exp Ther 308:438–445

    Article  PubMed  Google Scholar 

  • Nunoya K, Grant CE, Zhang D, Cole SP, Deeley RG (2003) Molecular cloning and pharmacological characterization of rat multidrug resistance protein 1 (mrp1). Drug Metab Dispos 31:1016–1026

    Article  CAS  PubMed  Google Scholar 

  • Pizzagalli F, Varga Z, Huber RD, Folkers G, Meier PJ, St-Pierre MV (2003) Identification of steroid sulfate transport processes in the human mammary gland. J Clin Endocrinol Metab 88:3902–3912

    Article  CAS  PubMed  Google Scholar 

  • Qian YM, Song WC, Cui H, Cole SP, Deeley RG (2001) Glutathione stimulates sulfated estrogen transport by multidrug resistance protein 1. J Biol Chem 276:6404–6411

    Article  CAS  PubMed  Google Scholar 

  • Remy-Martin A, Prost O, Nicollier M, Burnod J, Adessi GL (1983) Estrone sulfate concentrations in plasma of normal individuals, postmenopausal women with breast cancer, and men with cirrhosis. Clin Chem 29:86–89

    CAS  PubMed  Google Scholar 

  • Rolsted K, Rapin N, Steffansen B (2011) Simulating kinetic parameters in transporter mediated permeability across Caco-2 cells. A case study of estrone-3-sulfate. Eur J Pharm Sci 44:218–226

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal HE, Pietrzak E, Slaunwhite WR Jr, Sandberg AA (1972) Binding of estrone sulfate in human plasma. J Clin Endocrinol Metab 34:805–813

    Article  CAS  PubMed  Google Scholar 

  • Ruder H, Loriaux L, Lipsett M (1972) Estrone sulfate: production rate and metabolism in man. J Clin Invest 51:1020–1033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sai Y, Kaneko Y, Ito S, Mitsuoka K, Kato Y, Tamai I, Artursson P, Tsuji A (2006) Predominant contribution of organic anion transporting polypeptide OATP-B (OATP2B1) to apical uptake of estrone-3-sulfate by human intestinal Caco-2 cells. Drug Metab Dispos 34:1423–1431

    Article  CAS  PubMed  Google Scholar 

  • Seward DJ, Koh AS, Boyer JL, Ballatori N (2003) Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTalpha-OSTbeta. J Biol Chem 278:27473–27482

    Article  CAS  PubMed  Google Scholar 

  • Shitara Y, Sato H, Sugiyama Y (2005) Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 45:689–723

    Article  CAS  PubMed  Google Scholar 

  • Spears KJ, Ross J, Stenhouse A, Ward CJ, Goh LB, Wolf CR, Morgan P, Ayrton A, Friedberg TH (2005) Directional trans-epithelial transport of organic anions in porcine LLC-PK1 cells that co-express human OATP1B1 (OATP-C) and MRP2. Biochem Pharmacol 69:415–423

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y (2003) ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 278:22644–22649

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Hosoyamada M, Cha SH, Sekine T, Endou H (2000) Hydrogen peroxide downregulates human organic anion transporters in the basolateral membrane of the proximal tubule. Life Sci 68:679–687

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Narikawa S, Hosoyamada M, Cha SH, Sekine T, Endou H (2001) Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol 419:113–120

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH, Sekine T, Endou H (2002) Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther 302:666–671

    Article  CAS  PubMed  Google Scholar 

  • Tamai I, Nezu J, Uchino H, Sai Y, Oku A, Shimane M, Tsuji A (2000) Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun 273:251–260

    Article  CAS  PubMed  Google Scholar 

  • Tamai I, Nozawa T, Koshida M, Nezu J, Sai Y, Tsuji A (2001) Functional characterization of human organic anion transporting polypeptide B (OATP-B) in comparison with liver-specific OATP-C. Pharm Res 18:1262–1269

    Article  CAS  PubMed  Google Scholar 

  • Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K (2007) Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol 74:359–371

    Article  CAS  PubMed  Google Scholar 

  • Ueo H, Motohashi H, Katsura T, Inui K (2005) Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem Pharmacol 70:1104–1113

    Article  CAS  PubMed  Google Scholar 

  • US FDA. 2012 Draft Guidance for industry. Drug Interaction Studies—Study Design, Data Analysis, Implications for Dosing, and Labeling recommendations. Available at http://www.fda.gov/downloads/drugs/GuidancecomplianceRegulatoryInformation/Guidances/UCM292362.pdf:accused may 23 2012, pp. 1–75

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bente Steffansen M.Sc. (pharm), Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steffansen, B., Grandvuinet, A.S. (2013). In Vitro Kinetic Characterization of Transporter-Mediated Permeability. In: Sugiyama, Y., Steffansen, B. (eds) Transporters in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8229-1_2

Download citation

Publish with us

Policies and ethics