Skip to main content

Industrial Evaluation of Drug Transporters in ADME

  • Chapter
  • First Online:
Transporters in Drug Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 7))

  • 2114 Accesses

Abstract

To date, more than 400 absorptive and exsorptive membrane transporters have been identified in the human genome, many of which have been characterized and are known to be important from the perspective of pharmaceutical development. Determining the relative importance of these transporters and their influence on drug disposition, therapeutic efficacy and safety, e.g., drug–drug interactions, has been the focus of considerable research, both in academia and the pharmaceutical industry. The interaction of a drug with transporters can potentially lead to alterations in exposure, resulting in toxicity or in certain instances therapeutic failure. For scientists working in the pharmaceutical industry, the importance of understanding drug–transporter interactions is critical as evidenced by the inclusion of drug transporters in recent regulatory guidances. Transporter scientists at Boehringer Ingelheim provide experimental data and an expert interpretation of these data to project teams and work collaboratively with all supporting functions in efforts to determine the potential clinical impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ADME:

Absorption, distribution, metabolism, excretion

BBB:

Blood–brain barrier

BCRP:

Breast cancer resistance protein

BCS:

Biopharmaceutics Classification System

BSA:

Bovine serum albumin

CLr:

Renal clearance

CNS:

Central nervous system

CNT:

Concentrative nucleoside transporter

CYP450:

Cytochrome P450 enzyme

D :

Dose

DDI:

Drug–drug interaction

DIN:

Drug interaction number

DME:

Drug metabolizing enzyme

DMPK:

Drug metabolism and pharmacokinetics

ENT:

Equilibrative nucleoside transporter

EoPhII:

End of Phase 2

FDA:

US Food and Drug Administration

Fu:

Fraction unbound

GFR:

Glomerular filtration rate

hADME:

Human absorption, distribution, metabolism, and excretion study

HCV:

Hepatitis C virus

I :

Inhibitor

[I]:

Inhibitor concentration

[I 2]:

Inhibitor concentration in the gastrointestinal tract

IC50 :

Concentration at which 50 % inhibition occurs

ITC:

International Transporter Consortium

K i :

Dissociation constant of the transporter-inhibitor complex for competitive inhibition

K m :

Michaelis-Menten constant, substrate concentration at which the rate is half maximal

KO:

Knockout animal model

LC-MS/MS:

Liquid chromatography, tandem mass spectrometry

M&S:

Modeling and simulation

MATE:

Multidrug and toxin extrusion transporter

MDR1:

Multidrug resistance protein 1

MRP (1/2/3):

Multidrug resistance associate protein (1/2/3)

NCE:

New chemical entity

NDA:

New Drug Application

NTCP:

Sodium taurocholate co-transporting polypeptide

OAT(1/3):

Organic anion transporter (1/3)

OATP(1B1/1B3):

Organic anion transporting polypeptide (1B1/1B3)

OCT2:

Organic cation transporter 2

OCTN:

Organic cation transporter, novel

Papp:

Apparent membrane permeability

PBPK:

Physiologically based pharmacokinetic modeling

P-gp:

P-glycoprotein

PGx:

Pharmacogenomics

PK:

Pharmacokinetics

PoC:

Proof of Concept

R&D:

Research and development

S :

Substrate

SGLT-2:

Sodium-dependent glucose transporter 2

SLC:

Solute carrier protein

SNP:

Single nucleotide polymorphism

SoPD:

Start of pre-development

SoPhI/II/III:

Start of clinical Phase I, II, or III

SUR1:

Sulfone urea transporter 1

TR-M1/2:

Transporter milestone meeting 1 and 2

V g :

Volume of the gastrointestinal fluid

References

  • Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM (2003) P-glycoprotein: from genomics to mechanism. Oncogene 22(47):7468–7485

    CAS  PubMed  Google Scholar 

  • Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175(3):880–885

    CAS  PubMed  Google Scholar 

  • Ayrton A, Morgan P (2001) Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica 31(8–9):469–497

    CAS  PubMed  Google Scholar 

  • Benet LZ, Cummins CL (2001) The drug efflux-metabolism alliance: biochemical aspects. Adv Drug Deliv Rev 50(suppl 1):S3

    CAS  PubMed  Google Scholar 

  • Bengsch B, Thimme R (2010) Ribavirin ante portas: uptake transporters into hepatocytes dissected. J Hepatol 52(4):469–471

    PubMed  Google Scholar 

  • Bow DA, Perry JL, Miller DS, Pritchard JB, Brouwer KL (2008) Localization of P-gp (Abcb1) and Mrp2 (Abcc2) in freshly isolated rat hepatocytes. Drug Metab Dispos 36(1):198–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bunting KD (2002) ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20(1):11–20

    CAS  PubMed  Google Scholar 

  • Burton PS, Conradi RA, Hilgers AR, Ho NF (1993) Evidence for a polarized efflux system for peptides in the apical membrane of Caco-2 cells. Biochem Biophys Res Commun 190(3):760–766

    CAS  PubMed  Google Scholar 

  • Chinn LW, Kroetz DL (2007) ABCB1 pharmacogenetics: progress, pitfalls, and promise. Clin Pharmacol Ther 81:265–269

    CAS  PubMed  Google Scholar 

  • Choo EF, Leake B, Wandel C, Imamura H, Wood AJ, Wilkinson GR et al (2000) Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos 28(6):655–660

    CAS  PubMed  Google Scholar 

  • Cummins CL, Jacobsen W, Benet LZ (2002) Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 300(3):1036–1045

    CAS  PubMed  Google Scholar 

  • Cusatis G, Sparreboom A (2008) Pharmacogenomic importance of ABCG2. Pharmacogenomics 9:1005–1009

    CAS  PubMed  Google Scholar 

  • Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO et al (2008) ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem 107(6):1518–1528

    CAS  PubMed  Google Scholar 

  • Doran A, Obach RS, Smith BJ, Hosea NA, Becker S, Callegari E et al (2005) The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos 33(1):165–174

    CAS  PubMed  Google Scholar 

  • Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95(26):15665–15670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Errasti-Murugarren E, Pastor-Anglada M (2010) Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics 11(6):809–841

    CAS  PubMed  Google Scholar 

  • Eyal S, Hsiao P, Unadkat JD (2009) Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther 123:80–104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer V, Einolf HJ, Cohen D (2005) Efflux transporters and their clinical relevance. Mini Rev Med Chem 5(2):183–195

    CAS  PubMed  Google Scholar 

  • Fletcher JI, Haber M, Henderson MJ, Norris MD (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10(2):147–156

    CAS  PubMed  Google Scholar 

  • Fukuchi Y, Furihata T, Hashizume M, Iikura M, Chiba K (2010) Characterization of ribavirin uptake systems in human hepatocytes. J Hepatol 52(4):486–492

    CAS  PubMed  Google Scholar 

  • Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9(3):215–236

    CAS  PubMed  Google Scholar 

  • Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58

    CAS  PubMed  Google Scholar 

  • Hanada S, Maeshima A, Matsuno Y, Ohta T, Ohki M, Yoshida T et al (2008) Expression profile of early lung adenocarcinoma: identification of MRP3 as a molecular marker for early progression. J Pathol 216(1):75–82

    CAS  PubMed  Google Scholar 

  • Hinoshita E, Taguchi K, Inokuchi A, Uchiumi T, Kinukawa N, Shimada M et al (2001) Decreased expression of an ATP-binding cassette transporter, MRP2, in human livers with hepatitis C virus infection. J Hepatol 35(6):765–773

    CAS  PubMed  Google Scholar 

  • Hodge LS, Taub ME, Tracy TS (2011) Effect of its deaminated metabolite, 2′,2′-difluorodeoxyuridine, on the transport and toxicity of gemcitabine in HeLa cells. Biochem Pharmacol 81(7):950–956

    CAS  PubMed  Google Scholar 

  • Horvath G, Mendes ES, Schmid N, Schmid A, Conner GE, Salathe M et al (2007) The effect of corticosteroids on the disposal of long-acting beta2-agonists by airway smooth muscle cells. J Allergy Clin Immunol 120(5):1103–1109

    CAS  PubMed  Google Scholar 

  • Huang SM (2008) New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. J Clin Pharmacol 48:662–670

    CAS  PubMed  Google Scholar 

  • Huang SM, Woodcock J (2010) Transporters in drug development: advancing on the critical path. Nat Rev Drug Discov 9(3):175–176

    CAS  PubMed  Google Scholar 

  • Huang SM, Temple R, Throckmorton DC, Lesko LJ (2007) Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clin Pharmacol Ther 81(2):298–304

    CAS  PubMed  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455(1):152–162

    CAS  PubMed  Google Scholar 

  • Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K et al (2008) Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res 25(6):1469–1483

    CAS  PubMed  Google Scholar 

  • Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26(1):120–126

    CAS  PubMed  Google Scholar 

  • Kikuchi R, McCown M, Olson P, Tateno C, Morikawa Y, Katoh Y et al (2010) Effect of hepatitis C virus infection on the mRNA expression of drug transporters and cytochrome p450 enzymes in chimeric mice with humanized liver. Drug Metab Dispos 38(11):1954–1961

    PubMed  Google Scholar 

  • Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T et al (2005) Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet 20(5):379–386

    CAS  PubMed  Google Scholar 

  • Koehn J, Fountoulakis M, Krapfenbauer K (2008) Multiple drug resistance associated with function of ABC-transporters in diabetes mellitus: molecular mechanism and clinical relevance. Infect Disord Drug Targets 8(2):109–118

    CAS  PubMed  Google Scholar 

  • Kotani N, Maeda K, Watanabe T, Hiramatsu M, Gong LK, Bi YA et al (2011) Culture-period-dependent changes in the uptake of transporter substrates in sandwich-cultured rat and human hepatocytes. Drug Metab Dispos 39(9):1503–1510

    CAS  PubMed  Google Scholar 

  • Kusuhara H, Sugiyama Y (2002) Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J Control Release 78(1–3):43–54

    CAS  PubMed  Google Scholar 

  • Lee E (2005) Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin Pharmacol Ther 78:330–341

    CAS  PubMed  Google Scholar 

  • Lee CA, Hillgren KM, Zhang L, Polli JW (2011) Response from the International Transporter Consortium. Nat Rev Drug Discov 10(1):75

    CAS  Google Scholar 

  • Letschert K, Keppler D, Konig J (2004) Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8). Pharmacogenetics 14(7):441–452

    CAS  PubMed  Google Scholar 

  • Levin VA (1980) Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23(6):682–684

    CAS  PubMed  Google Scholar 

  • Link E (2008) SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med 359:789–799

    CAS  PubMed  Google Scholar 

  • Litman T, Druley TE, Stein WD, Bates SE (2001) From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci 58(7):931–959

    CAS  PubMed  Google Scholar 

  • Liu X, Chism JP, LeCluyse EL, Brouwer KR, Brouwer KL (1999) Correlation of biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats. Drug Metab Dispos 27(6):637–644

    CAS  PubMed  Google Scholar 

  • Luo FR, Paranjpe PV, Guo A, Rubin E, Sinko P (2002) Intestinal transport of irinotecan in Caco-2 cells and MDCK II Cells overexpressing efflux transporters Pgp, cMOAT, and MRP1. Drug Metab Dispos 30(7):763–770

    CAS  PubMed  Google Scholar 

  • Matsushima S, Maeda K, Ishiguro N, Igarashi T, Sugiyama Y (2008) Investigation of the inhibitory effects of various drugs on the hepatic uptake of fexofenadine in humans. Drug Metab Dispos 36:663–669

    CAS  PubMed  Google Scholar 

  • Mendes ES, Horvath G, Campos M, Wanner A (2008) Rapid corticosteroid effect on beta(2)-adrenergic airway and airway vascular reactivity in patients with mild asthma. J Allergy Clin Immunol 121(3):700–704

    CAS  PubMed  Google Scholar 

  • Munoz M, Henderson M, Haber M, Norris M (2007) Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life 59(12):752–757

    CAS  PubMed  Google Scholar 

  • Nakagomi-Hagihara R, Nakai D, Tokui T (2007) Inhibition of human organic anion transporter 3 mediated pravastatin transport by gemfibrozil and the metabolites in humans. Xenobiotica 37(4):416–426

    CAS  PubMed  Google Scholar 

  • Nakai K, Tanaka H, Hanada K, Ogata H, Suzuki F, Kumada H et al (2008) Decreased expression of cytochromes P450 1A2, 2E1, and 3A4 and drug transporters Na+-taurocholate-cotransporting polypeptide, organic cation transporter 1, and organic anion-transporting peptide-C correlates with the progression of liver fibrosis in chronic hepatitis C patients. Drug Metab Dispos 36(9):1786–1793

    CAS  PubMed  Google Scholar 

  • Neumiller JJ, White JR Jr, Campbell RK (2010) Sodium-glucose co-transport inhibitors: progress and therapeutic potential in type 2 diabetes mellitus. Drugs 70(4):377–385

    CAS  PubMed  Google Scholar 

  • Niemi M (2005) Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther 77:468–478

    CAS  PubMed  Google Scholar 

  • Niemi M (2007) Role of OATP transporters in the disposition of drugs. Pharmacogenomics 8(7):787–802

    CAS  PubMed  Google Scholar 

  • Niemi M (2010) Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther 87(1):130–133

    CAS  PubMed  Google Scholar 

  • Nishizato Y (2003) Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther 73:554–565

    CAS  PubMed  Google Scholar 

  • Norrby SR (1985) Role of cephalosporins in the treatment of bacterial meningitis in adults. Overview with special emphasis on ceftazidime. Am J Med 79(2A):56–61

    CAS  PubMed  Google Scholar 

  • Oda Y, Saito T, Tateishi N, Ohishi Y, Tamiya S, Yamamoto H et al (2005) ATP-binding cassette superfamily transporter gene expression in human soft tissue sarcomas. Int J Cancer 114(6):854–862

    CAS  PubMed  Google Scholar 

  • Oevermann L, Scheitz J, Starke K, Kock K, Kiefer T, Dolken G et al (2009) Hematopoietic stem cell differentiation affects expression and function of MRP4 (ABCC4), a transport protein for signaling molecules and drugs. Int J Cancer 124(10):2303–2311

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Terasaki T (2007) Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 24(9):1745–1758

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Kamoi M, Watanabe Y, Suzuki H, Hori S, Terasaki T (2007) Correlation of induction of ATP binding cassette transporter A5 (ABCA5) and ABCB1 mRNAs with differentiation state of human colon tumor. Biol Pharm Bull 30(6):1144–1146

    CAS  PubMed  Google Scholar 

  • Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M (2006) SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics 16:873–879

    CAS  PubMed  Google Scholar 

  • Pasanen MK, Neuvonen PJ, Niemi M (2008) Global analysis of genetic variation in SLCO1B1. Pharmacogenomics 9:19–33

    CAS  PubMed  Google Scholar 

  • Poirier A, Funk C, Scherrmann JM, Lave T (2009) Mechanistic modeling of hepatic transport from cells to whole body: application to napsagatran and fexofenadine. Mol Pharm 6(6):1716–1733

    CAS  PubMed  Google Scholar 

  • Robey RW, Polgar O, Deeken J, To KW, Bates SE (2007) ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 26(1):39–57

    CAS  PubMed  Google Scholar 

  • Ros JE, Libbrecht L, Geuken M, Jansen PL, Roskams TA (2003) High expression of MDR1, MRP1, and MRP3 in the hepatic progenitor cell compartment and hepatocytes in severe human liver disease. J Pathol 200(5):553–560

    CAS  PubMed  Google Scholar 

  • Sakamoto A, Matsumaru T, Ishiguro N, Schaefer O, Ohtsuki S, Inoue T et al (2011) Reliability and robustness of simultaneous absolute quantification of drug transporters, cytochrome P450 enzymes, and Udp-glucuronosyltransferases in human liver tissue by multiplexed MRM/selected reaction monitoring mode tandem mass spectrometry with nano-liquid chromatography. J Pharm Sci 100(9):4037–4043

    CAS  PubMed  Google Scholar 

  • Sasongko L (2005) Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin Pharmacol Ther 77:503–514

    CAS  PubMed  Google Scholar 

  • Scheepers A, Joost HG, Schurmann A (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN J Parenter Enteral Nutr 28(5):364–371

    CAS  PubMed  Google Scholar 

  • Schinkel AH (1999) P-glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 36(2–3):179–194

    CAS  PubMed  Google Scholar 

  • Shah MV, Audus KL, Borchardt RT (1989) The application of bovine brain microvessel endothelial-cell monolayers grown onto polycarbonate membranes in vitro to estimate the potential permeability of solutes through the blood-brain barrier. Pharm Res 6(7):624–627

    CAS  PubMed  Google Scholar 

  • Shi JG, Zhang Y, Yeleswaram S (2011) The relevance of assessment of intestinal P-gp inhibition using digoxin as an in vivo probe substrate. Nat Rev Drug Discov 10(1):75

    CAS  PubMed  Google Scholar 

  • Shirasaka Y, Sakane T, Yamashita S (2008) Effect of P-glycoprotein expression levels on the concentration-dependent permeability of drugs to the cell membrane. J Pharm Sci 97(1):553–565

    CAS  PubMed  Google Scholar 

  • Shitara Y, Sato H, Sugiyama Y (2005) Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 45:689–723

    CAS  PubMed  Google Scholar 

  • Shitara Y, Horie T, Sugiyama Y (2006) Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 27(5):425–446

    CAS  PubMed  Google Scholar 

  • Shugarts S, Benet LZ (2009) The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res 26:2039–2054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Somogyi A, Stockley C, Keal J, Rolan P, Bochner F (1987) Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol 23(5):545–551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song IS (2008) Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther 84:559–562

    CAS  PubMed  Google Scholar 

  • Sun H, Chow EC, Liu S, Du Y, Pang KS (2008) The Caco-2 cell monolayer: usefulness and limitations. Expert Opin Drug Metab Toxicol 4(4):395–411

    CAS  PubMed  Google Scholar 

  • Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234

    CAS  PubMed  Google Scholar 

  • Tachibana T, Kato M, Watanabe T, Mitsui T, Sugiyama Y (2009) Method for predicting the risk of drug-drug interactions involving inhibition of intestinal CYP3A4 and P-glycoprotein. Xenobiotica 39(6):430–443

    CAS  PubMed  Google Scholar 

  • Taipalensuu J, Tornblom H, Lindberg G, Einarsson C, Sjoqvist F, Melhus H et al (2001) Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther 299(1):164–170

    CAS  PubMed  Google Scholar 

  • Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K (2007) Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol 74(2):359–371

    CAS  PubMed  Google Scholar 

  • Taub ME, Podila L, Ely D, Almeida I (2005) Functional assessment of multiple P-glycoprotein (P-gp) probe substrates: influence of cell line and modulator concentration on P-gp activity. Drug Metab Dispos 33(11):1679–1687

    CAS  PubMed  Google Scholar 

  • Tirona RG, Leake BF, Merino G, Kim RB (2001) Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem 276:35669–35675

    CAS  PubMed  Google Scholar 

  • Tuschl G, Hrach J, Walter Y, Hewitt PG, Mueller SO (2009) Serum-free collagen sandwich cultures of adult rat hepatocytes maintain liver-like properties long term: a valuable model for in vitro toxicity and drug-drug interaction studies. Chem Biol Interact 181(1):124–137

    CAS  PubMed  Google Scholar 

  • van Bree JB, de Boer AG, Danhof M, Ginsel LA, Breimer DD (1988) Characterization of an “in vitro” blood-brain barrier: effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J Pharmacol Exp Ther 247(3):1233–1239

    PubMed  Google Scholar 

  • Vander BS, Komuta M, Libbrecht L, Katoonizadeh A, Aerts R, Dymarkowski S et al (2008) Expression of multidrug resistance-associated protein 1 in hepatocellular carcinoma is associated with a more aggressive tumour phenotype and may reflect a progenitor cell origin. Liver Int 28(10):1370–1380

    Google Scholar 

  • Wacher VJ, Wu CY, Benet LZ (1995) Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 13:129–134

    CAS  PubMed  Google Scholar 

  • Wang WW, Khetani SR, Krzyzewski S, Duignan DB, Obach RS (2010) Assessment of a micropatterned hepatocyte coculture system to generate major human excretory and circulating drug metabolites. Drug Metab Dispos 38(10):1900–1905

    CAS  PubMed  Google Scholar 

  • Watanabe T, Kusuhara H, Watanabe T, Debori Y, Maeda K, Kondo T et al (2011) Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments. Drug Metab Dispos 39(6):1031–1038

    CAS  PubMed  Google Scholar 

  • Weinstein RS, Jakate SM, Dominguez JM, Lebovitz MD, Koukoulis GK, Kuszak JR et al (1991) Relationship of the expression of the multidrug resistance gene product (P-glycoprotein) in human colon carcinoma to local tumor aggressiveness and lymph node metastasis. Cancer Res 51(10):2720–2726

    CAS  PubMed  Google Scholar 

  • Williams JA (2008) PhRMA white paper on ADME pharmacogenomics. J Clin Pharmacol 48:849–889

    CAS  PubMed  Google Scholar 

  • Winjnen PAHM, Op den Buijsch RAM, Drent M, Kuipers PMJC, Neef C, Bast A et al (2007) Review article: the prevalence and clinical relevance of cytochrome P450 polymorphisms. Aliment Pharmacol Ther 26:211–219

    Google Scholar 

  • Xia CQ, Milton MN, Gan LS (2007) Evaluation of drug-transporter interactions using in vitro and in vivo models. Curr Drug Metab 8:341–363

    CAS  PubMed  Google Scholar 

  • Yamakawa Y, Hamada A, Nakashima R, Yuki M, Hirayama C, Kawaguchi T et al (2011) Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia. Ther Drug Monit 33(2):244–250

    CAS  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Hoffmaster KA, Humphreys JE, Tian X, Nezasa K, Brouwer KL (2006) Differential involvement of Mrp2 (Abcc2) and Bcrp (Abcg2) in biliary excretion of 4-methylumbelliferyl glucuronide and sulfate in the rat. J Pharmacol Exp Ther 319(1):459–467

    CAS  PubMed  Google Scholar 

  • Zhang Y, Benet LZ (2001) The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet 40:159–168

    CAS  PubMed  Google Scholar 

  • Zhang HX, Wang LS (2008) Effect of genetic polymorphism on the activity of drug transporters and its clinical significance. Zhong Nan Da Xue Xue Bao Yi Xue Ban 33(8):765–769

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhang YD, Strong JM, Reynolds KS, Huang SM (2008) A regulatory viewpoint on transporter-based drug interactions. Xenobiotica 38:709–724

    CAS  PubMed  Google Scholar 

  • Zhou SF (2008) Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38:802–832

    CAS  PubMed  Google Scholar 

  • Zochbauer-Muller S, Filipits M, Rudas M, Brunner R, Krajnik G, Suchomel R et al (2001) P-glycoprotein and MRP1 expression in axillary lymph node metastases of breast cancer patients. Anticancer Res 21(1A):119–124

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell E. Taub Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taub, M.E., Ishiguro, N., Schaefer, O., Tweedie, D.J. (2013). Industrial Evaluation of Drug Transporters in ADME. In: Sugiyama, Y., Steffansen, B. (eds) Transporters in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8229-1_12

Download citation

Publish with us

Policies and ethics