Advertisement

A Brief History of Anderson Localization

  • Victor Chulaevsky
  • Yuri Suhov
Chapter
Part of the Progress in Mathematical Physics book series (PMP, volume 65)

Abstract

This chapter outlines physical origins and the development of rigorous mathematical methods of the Anderson localization theory, describing unusual propagation properties of quantum particles (as well as electromagnetic and acoustic waves) in disordered media. While the main scope of the book is restricted to the analysis of Anderson localization in a strongly disordered environment, Chap. 1 gives the reader a broad perspective and indicates directions for possible future research in the area of multi-particle localization theory.

Keywords

Anderson localization Delocalization Lyapunov exponents Almost periodic operators Harper’s equation 

References

  1. 1.
    Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)Google Scholar
  2. 2.
    Abrahams, E. (ed.): 50 Years of Anderson Localization. World Scientific, Singapore (2010); reprinted in Int. J. Mod. Phys. B 24(12–13) (2010)Google Scholar
  3. 3.
    Abrahams, E., Anderson, P.W., Licciardello, D.C., Ramakrishnan, T.C.: Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979)Google Scholar
  4. 4.
    Abu-Chacra, R., Anderson, P.W., Thouless, D.J.: A self consistent theory of localization. J. Phys. C 6, 1734–1752 (1973)Google Scholar
  5. 5.
    Abu-Chacra, R., Anderson, P.W., Thouless, D.J.: Self consistent theory of localization. II. Localization near the band edges. J. Phys. C 7, 65–75 (1974)Google Scholar
  6. 6.
    Aizenman, M.: Localization at weak disorder: some elementary bounds. Rev. Math. Phys. 06(special issue), 1163–1182 (1994)Google Scholar
  7. 7.
    Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993)MathSciNetMATHGoogle Scholar
  8. 8.
    Aizenman, M., Warzel, S.: The canopy graph and level statistics for random operators on trees. Math. Phys. Anal. Geom. 9(4), 291–333 (2007)MathSciNetGoogle Scholar
  9. 9.
    Aizenman, M., Warzel, S.: Localization bounds for multiparticle systems. Commun. Math. Phys. 290, 903–934 (2009)MathSciNetMATHGoogle Scholar
  10. 10.
    Aizenman, M., Warzel, S.: Complete dynamical localization in disordered quantum multi-particle systems. In: XVIth International Congress on Mathematical Physics, Prague, pp. 556–565. World Scientific (2010)Google Scholar
  11. 11.
    Aizenman, M., Warzel, S.: Extended states in a Lifshits tail regime for random Schrödinger operators on trees. Phys. Rev. Lett. 106, 136801 (2011)Google Scholar
  12. 12.
    Aizenman, M., Warzel, S.: Resonant delocalization for random Schrödinger operators on tree graphs. J. Eur. Math. Soc. (2011, to appear). Preprint, arXiv:math-ph/1104:0969 Google Scholar
  13. 13.
    Aizenman, M., Schenker, J.H., Friedrich, R.M., Hundertmark, D.: Finite-volume fractional-moment criteria for Anderson localization. Commun. Math. Phys. 224, 219–253 (2001)MathSciNetMATHGoogle Scholar
  14. 14.
    Aizenman, M., Elgart, A., Naboko, S., Schenker, J.H., Stoltz, G.: Moment analysis for localization in random Schrödinger operators. Invent. Math. 163, 343–413 (2006)MathSciNetMATHGoogle Scholar
  15. 15.
    Aizenman, M., Sims, R., Warzel, S.: Stability of the absolutely continuous spectrum of random Schrödinger operators on tree graphs. Probab. Theory Relat. Fields 136, 363–394 (2006)MathSciNetMATHGoogle Scholar
  16. 16.
    Aizenman, M., Sims, R., Warzel, S.: Absolutely continuous spectra of quantum tree graphs with weak disorder. Commun. Math. Phys. 264, 371–389 (2006)MathSciNetMATHGoogle Scholar
  17. 17.
    Aizenman, M., Germinet, F., Klein, A., Warzel, S.: On Bernoulli decompositions for random variables, concentration bounds and spectral localization. Probab. Theory Relat. Fields 143, 219–238 (2009)MathSciNetMATHGoogle Scholar
  18. 18.
    Altshuler, B.L., Aronov, A.G., Khmelnitskii, D.E.: Effects of electron-electron collisions with small energy transfers on quantum localization. J. Phys. C 15, 7367–7386 (1982)Google Scholar
  19. 19.
    Amrein, W., Georgescu, V.: On the characterization of bound states and scattering states in quantum mechanics. Helv. Phys. Acta 46, 635–658 (1973)MathSciNetGoogle Scholar
  20. 20.
    Anderson, P.W.: Thoughts on localization. In: Abrahams, E. (ed.) 50 Years of Anderson Localization. World Scientific, Singapore (2010); reprinted in Int. J. Mod. Phys. B 24, 1501–1506 (2010)MATHGoogle Scholar
  21. 21.
    André, G., Aubry, S.: Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc. 3, 133–164 (1980)Google Scholar
  22. 22.
    Aubry, S.: The new concept of transition by breaking of analyticity. Solid State Sci. 8, 264–277 (1978)MathSciNetGoogle Scholar
  23. 23.
    Avila, A., Damanik, D.: Absolute continuity of the integrated density of states for the almost Mathieu operator with non-critical coupling. Invent. Math. 172(2), 439–453 (2008)MathSciNetMATHGoogle Scholar
  24. 24.
    Avila, A., Jitomirskaya, S.: Solving the ten martini problem. In: Mathematical Physics of Quantum Mechanics. Lecture Notes in Physics, vol. 690, pp. 5–16. Springer, Berlin (2006)Google Scholar
  25. 25.
    Avila, A., Jitomirskaya, S.: The ten martini problem. Ann. Math. 170, 303–342 (2009)MathSciNetMATHGoogle Scholar
  26. 26.
    Avila, A., Jitomirskaya, S.: Almost localization and almost reducibility. J. Eur. Math. Soc. 12, 93–131 (2010)MathSciNetMATHGoogle Scholar
  27. 27.
    Avila, A., Jitomirskaya, S.: Hölder continuity of absolutely continuous spectral measures for one-frequency Schrödinger operators. Commun. Math. Phys. 301, 563–581 (2011)MathSciNetMATHGoogle Scholar
  28. 28.
    Avron, Y., Simon, B.: Almost periodic Schrödinger operators. I. Limit periodic potentials. Commun. Math. Phys. 82, 101–120 (1982)MathSciNetGoogle Scholar
  29. 29.
    Avron, Y., Simon, B.: Almost periodic Schrödinger operators. II. The integrated density of states. Duke Math. J. 50, 369–391 (1983)MathSciNetMATHGoogle Scholar
  30. 30.
    Barbaroux, J.M., Combes, J.M., Hislop, P.D.: Localization near band edges for random Schrödinger operators. Helv. Phys. Acta 70(1–2), 16–43 (1997)MathSciNetMATHGoogle Scholar
  31. 31.
    Basko, D.M., Aleiner, I.L., Altshuler, B.L.: Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006)MATHGoogle Scholar
  32. 32.
    Basko, D.M., Aleiner, L.I., Altshuler, B.L.: On the problem of many-body localization. In: Ivanov, A.L., Tikhodeev, S.G. (eds.) Problems of Condensed Matter Physics, pp. 50–70. Oxford University Press, Oxford (2008)Google Scholar
  33. 33.
    Bellissard, J., Simon, B.: Cantor spectrum for the almost Mathieu equation. J. Funct. Anal. 48, 408–419 (1982)MathSciNetMATHGoogle Scholar
  34. 34.
    Bellissard, J., Lima, R., Scoppola, E.: Localization in ν-dimensional incommensurate structures. Commun. Math. Phys. 88, 465–477 (1983)MathSciNetMATHGoogle Scholar
  35. 35.
    Bellissard, J.V., Hislop, P.D., Stolz, G.: Correlations estimates in the Anderson model. J. Stat. Phys. 129, 649–662 (2007)MathSciNetMATHGoogle Scholar
  36. 36.
    Berezanskii, J.M.: Expansion in Eigenfunctions of Self-Adjoint Operators. Translations of Mathematical Monographs, vol. 17. American Mathematical Society, Providence (1968)Google Scholar
  37. 37.
    Bjerklöv, K.: Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations. Ergod. Theory Dyn. Syst. 25, 1015–1045 (2005)MATHGoogle Scholar
  38. 38.
    Bjerklöv, K.: Positive Lyapunov exponent and minimality for the continuous 1-D quasi-periodic Schrödinger equations with two basic frequencies. Ann. Inst. Henri Poincaré 8, 687–730 (2007)MATHGoogle Scholar
  39. 39.
    Bougerol, P., Lacroix, J.: Products of Random Matrices with Applications to Schrödinger Operators. Birkhäuser, Boston (1985)MATHGoogle Scholar
  40. 40.
    Bourgain, J.: Recent progress in quasi-periodic lattice Schrödinger operators and Hamiltonian partial differential equations. (Russian) Uspekhi Mat. Nauk 59, 37–52 (2004); translation in Russ. Math. Surv. 59, 231–246 (2004)Google Scholar
  41. 41.
    Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)Google Scholar
  42. 42.
    Bourgain, J.: Anderson-Bernoulli models. Mosc. Math. J. 5, 523–536 (2005)MathSciNetMATHGoogle Scholar
  43. 43.
    Bourgain, J.: Anderson localization for quasi-periodic lattice Schrödinger operators on \({\mathbb{Z}}^{d}\), d arbitrary. Geom. Funct. Anal. 17, 682–706 (2007)MathSciNetMATHGoogle Scholar
  44. 44.
    Bourgain, J.: An approach to Wegner’s estimate using subharmonicity. J. Stat. Phys. 134, 969–978 (2009)MathSciNetMATHGoogle Scholar
  45. 45.
    Bourgain, J., Goldstein, M.: On nonperturbative localization with quasi-periodic potential. Ann. Math. 152, 835–879 (2000)MathSciNetMATHGoogle Scholar
  46. 46.
    Bourgain, J., Jitomirskaya, S.: Absolutely continuous spectrum for 1D quasiperiodic operators. Invent. Math. 148, 453–463 (2002)MathSciNetMATHGoogle Scholar
  47. 47.
    Bourgain, J., Kenig, C.E.: On localization in the continuous Anderson-Bernoulli model in higher dimension. Invent. Math. 161, 389–426 (2005)MathSciNetMATHGoogle Scholar
  48. 48.
    Bourgain, J., Goldstein, M., Schlag, W.: Anderson localization for Schrödinger operators on \({\mathbb{Z}}^{2}\) with quasi-periodic potential. Acta Math. 188, 41–86 (2002)MathSciNetMATHGoogle Scholar
  49. 49.
    Boutet de Monvel, A., Chulaevsky, V., Suhov, Y.: Wegner-type bounds for a two-particle Anderson model in a continuous space (2008). Preprint, arXiv:math-ph/0812.2627 Google Scholar
  50. 50.
    Boutet de Monvel, A., Chulaevsky, V., Stollmann, P., Suhov, Y.: Wegner-type bounds for a multi-particle continuous Anderson model with an alloy-type external potential. J. Stat. Phys. 138, 553–566 (2010)Google Scholar
  51. 51.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics. Springer, New York (1987)MATHGoogle Scholar
  52. 52.
    Carmona, R.: One-dimensional Schrödinger operators: a survey, Acta Appl. Math. 4, 65–91 (1985)MathSciNetMATHGoogle Scholar
  53. 53.
    Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Birkhäuser, Boston (1990)MATHGoogle Scholar
  54. 54.
    Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108, 41–66 (1987)MathSciNetMATHGoogle Scholar
  55. 55.
    Chulaevsky, V.: A Wegner-type estimate for correlated potentials. Math. Phys. Anal. Geom. 11, 117–129 (2008)MathSciNetMATHGoogle Scholar
  56. 56.
    Chulaevsky, V.: A remark on charge transfer processes in multi-particle systems (2010). Preprint, arXiv:math-ph/1005.3387 Google Scholar
  57. 57.
    Chulaevsky, V.: On resonances in disordered multi-particle systems. C. R. Acad. Sci. Paris I 350, 81–85 (2011)MathSciNetGoogle Scholar
  58. 58.
    Chulaevsky, V.: Direct scaling analysis of localization in disordered systems. II. Multi-particle lattice systems (2011). Preprint, arXiv:math-ph/1106.2234 Google Scholar
  59. 59.
    Chulaevsky, V.: Anderson localization for generic deterministtic potentials. J. Funct. Anal. 262, 1230–1250 (2011)MathSciNetGoogle Scholar
  60. 60.
    Chulaevsky, V.: Direct scaling analysis of localization in single-particle quantum systems on graphs with diagonal disorder. Math. Phys. Anal. Geom. 15, 361–399 (2012)MathSciNetMATHGoogle Scholar
  61. 61.
    Chulaevsky, V.: From fixed-energy MSA to dynamical localization: a continuing quest for elementary proofs (2012). Preprint, arXiv:math-ph/1205.5763 Google Scholar
  62. 62.
    Chulaevsky, V.: Fixed-energy multi-particle MSA implies dynamical localization (2012). Preprint, arXiv:math-ph/1206.1952 Google Scholar
  63. 63.
    Chulaevsky, V.: On the regularity of the conditional distribution of the sample mean (2013). Preprint, arXiv:math-ph/1304.6913 Google Scholar
  64. 64.
    Chulaevsky, V., Delyon, F.: Purely absolutely continuous spectrum for almost Mathieu operators. J. Stat. Phys. 55, 1279–1284 (1989)MathSciNetGoogle Scholar
  65. 65.
    Chulaevsky, V., Dinaburg, E.: Methods of KAM theory for long-range quasi-periodic operators on \({\mathbb{Z}}^{n}\). Pure point spectrum. Commun. Math. Phys. 153, 559–577 (1993)MathSciNetMATHGoogle Scholar
  66. 66.
    Chulaevsky, V., Sinai, Y.: Anderson localization for the 1D discrete Schrödinger operator with two-frequency potential. Commun. Math. Phys. 125, 91–112 (1989)MathSciNetGoogle Scholar
  67. 67.
    Chulaevsky, V., Sinai, Y.: Anderson localization and KAM-theory. Analysis, et cetera, Res. Pap. in Honor of J. Moser’s 60th Birthd., pp. 237–249 (1990)Google Scholar
  68. 68.
    Chulaevsky, V., Spencer, T.: Positive Lyapunov exponents for a class of deterministic potentials. Commun. Math. Phys. 168, 455–466 (1995)MathSciNetMATHGoogle Scholar
  69. 69.
    Chulaevsky, V., Suhov, Y.: Anderson localisation for an interacting two-particle quantum system on \(\mathbb{Z}\) (2007). arXiv:math-ph/0705.0657 Google Scholar
  70. 70.
    Chulaevsky, V., Suhov, Y.: Eigenfunctions in a two-particle Anderson tight binding model. Commun. Math. Phys. 289, 701–723 (2009)MathSciNetMATHGoogle Scholar
  71. 71.
    Chulaevsky, V., Suhov, Y.: Multi-particle Anderson localisation: induction on the number of particles. Math. Phys. Anal. Geom. 12, 117–139 (2009)MathSciNetMATHGoogle Scholar
  72. 72.
    Chulaevsky, V., Boutet de Monvel, A., Suhov, Y.: Dynamical localization for a multi-particle model with an alloy-type external random potential. Nonlinearity 24(5), 1451–1472 (2011)Google Scholar
  73. 73.
    Chulaevsky, V., Boutet de Monvel, A., Suhov, Y.: Multi-particle dynamical localization in a Euclidean space with a Gaussian random potential (in preparation)Google Scholar
  74. 74.
    Combes, J.-M., Thomas, L.: Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators. Commun. Math. Phys. 34, 251–270 (1973)MathSciNetMATHGoogle Scholar
  75. 75.
    Combes, J.-M., Hislop, P.D., Klopp, F.: An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators. Duke Math. J. 140(3), 469–498 (2007)MathSciNetMATHGoogle Scholar
  76. 76.
    Combes, J.-M., Germinet, F., Hislop, P.: Conductivity and the current–current correlation measure. J. Phys. A 43, 474010 (2010)MathSciNetGoogle Scholar
  77. 77.
    Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators. Springer, Berlin (1987)MATHGoogle Scholar
  78. 78.
    Damanik, D., Stollmann, P.: Multi-scale analysis implies strong dynamical localization. Geom. Funct. Anal. 11(1), 11–29 (2001)MathSciNetMATHGoogle Scholar
  79. 79.
    Del Rio, R., Jitomirskaya, L., Last, Y., Simon, B.: Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization. J. Anal. Math. 69, 163–200 (1996)Google Scholar
  80. 80.
    Dinaburg, E.I., Sinai, Y.G.: On the spectrum of a one-dimensional Schrödinger operator with a quasi-periodic potential. Funct. Anal. Appl. 9, 8–21 (1975)MathSciNetGoogle Scholar
  81. 81.
    Disertori, M., Kirsch, W., Klein, A., Klopp, F., Rivasseau, V: Random Schrödinger Operators. Panoramas et Synthèses, vol. 25. Société Mathématique de France, Paris (2008)Google Scholar
  82. 82.
    Ekanga, T.: On two-particle Anderson localization at low energies. C. R. Acad. Sci. Paris I 349(3–4), 167–170 (2011)MathSciNetMATHGoogle Scholar
  83. 83.
    Ekanga, T.: Anderson localization in the multi-particle tight-binding model at low energies or with weak interaction (2012). Preprint, arXiv:math-ph/1201.2339 Google Scholar
  84. 84.
    Elgart, A., Tautenhahn, M., Veselić, I.: Anderson localization for a class of models with a sign-indefinite single-site potential via fractional moment method. Ann. Henri Poincaré 12(8), 1571–1599 (2010)Google Scholar
  85. 85.
    Eliasson, L.H.: Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146, 447–482 (1992)MathSciNetMATHGoogle Scholar
  86. 86.
    Eliasson, L.H.: Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math. 179, 153–196 (1997)MathSciNetMATHGoogle Scholar
  87. 87.
    Eliasson, L.H.: On the discrete one-dimensional quasi-periodic Schrödinger equation and other smooth quasi-periodic skew products. In: Hamiltonian Systems with Three or More Degrees of Freedom (S’Agaró, 1995). NATO Advanced Science Institute Series, vol. 533, pp. 55–61. Kluwer, Dordrecht (1999)Google Scholar
  88. 88.
    Enss, V.: Asymptotic completeness for quantum-mechanical potential scattering. Short-range potentials. Commun. Math. Phys. 61, 285–291 (1978)MathSciNetMATHGoogle Scholar
  89. 89.
    Exner, P., Helm, M., Stollmann, P.: Localization on a quantum graph with a random potential on edges. Rev. Math. Phys. 19, 923–939 (2007)MathSciNetMATHGoogle Scholar
  90. 90.
    Exner, P., Keating, J.P., Kuchment, P., Sunada, T., Teplyaev, A. (eds.): Analysis on Graphs and Its Applications. Proceedings of Symposia in Pure Mathematics, vol. 77. American Mathematical Society, Providence (2008)Google Scholar
  91. 91.
    Figotin, A., Pastur, L.: An exactly solvable model of a multidimensional incommensurate structure. Commun. Math. Phys. 95, 401–425 (1984)MathSciNetMATHGoogle Scholar
  92. 92.
    Fischer, W., Leschke, H., Müller, P.: Spectral localization by Gaussian random potentials in multi-dimensional continuous space. J. Stat. Phys. 101(5/6), 935–985 (2000)MATHGoogle Scholar
  93. 93.
    Fishman, S., Grempel, D., Prange, R.: Localization in a d-dimensional incommensurate structure. Phys. Rev. B 194, 4272–4276 (1984)MathSciNetGoogle Scholar
  94. 94.
    Fleishman, L., Anderson, P.W.: Interactions and the Anderson transition. Phys. Rev. B 21, 2366–2377 (1980)Google Scholar
  95. 95.
    Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight-binding model for large disorder or low energy. Commun. Math. Phys. 88, 151–184 (1983)MATHGoogle Scholar
  96. 96.
    Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight-binding model. Commun. Math. Phys. 101, 21–46 (1985)MATHGoogle Scholar
  97. 97.
    Fröhlich, J., Spencer, T., Wittwer, P.: Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys. 132, 5–25 (1990)MATHGoogle Scholar
  98. 98.
    Germinet, F., De Bièvre, S.: Dynamical localization for discrete and continuous random Schrödinger operators. Commun. Math. Phys. 194, 323–341 (1998)MATHGoogle Scholar
  99. 99.
    Germinet, F., Klein, A.: Bootstrap multi-scale analysis and localization in random media. Commun. Math. Phys. 222, 415–448 (2001)MathSciNetMATHGoogle Scholar
  100. 100.
    Germinet, F., Klein, A.: A comprehensive proof of localization for continuous Anderson models with singular random potentials. J. Eur. Math. Soc. (2011, to appear). arXiv:math-ph/1105.0213 Google Scholar
  101. 101.
    Goldsheid, I.Y., Molchanov, S.A.: On Mott’s problem. Sov. Math. Dokl. 17, 1369–1373 (1976)Google Scholar
  102. 102.
    Goldsheid, I.Y., Molchanov, S.A., Pastur, L.A.: A pure point spectrum of the one-dimensional Schrödinger operator. Funct. Anal. Appl. 11, 1–10 (1977)Google Scholar
  103. 103.
    Gordon, A.Y.: On the point spectrum of the one-dimensional Schrödinger operator. (Russian) Uspekhi Matem. Nauk 31, 257–258 (1976)MATHGoogle Scholar
  104. 104.
    Gordon, A.Y., Jitomirskaya, S., Last, Y., Simon, B.: Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math. 178, 169–183 (1997)MathSciNetMATHGoogle Scholar
  105. 105.
    Gornyi, I.V., Mirlin, A.D., Polyakov, D.G.: Interacting electrons in disordered wires: Anderson localization and low-temperature transport. Phys. Rev. Lett. 95, 206603 (2005)Google Scholar
  106. 106.
    Graf, G.M., Vaghi, A.: A remark on the estimate of a determinant by Minami. Lett. Math. Phys. 79, 17–22 (2007)MathSciNetMATHGoogle Scholar
  107. 107.
    Grempel, D., Fishman, S., Prange, R.: Localization in an incommensurate potential: an exactly solvable model. Phys. Rev. Lett. 49, 833 (1982)MathSciNetGoogle Scholar
  108. 108.
    Harper, P.G.: Single band motion of conducting electrons in a uniform magnetic field. Proc. Phys. Soc. Lond. A 68, 874–878 (1955)MATHGoogle Scholar
  109. 109.
    Hofstadter, D.R.: Energy levels and wavefunctions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976)Google Scholar
  110. 110.
    Hundertmark, D.: A short introduction to Anderson localization. In: Mörters, P., et al. (ed.) Analysis and Stochastics of Growth Processes an Interface Models. Oxford University Press (2008). http://dx.doi.org/10.1093/acprof:oso/9780199239252.001.0001
  111. 111.
    Jitomirskaya, S.Y.: Metal-insulator transition for the almost Mathieu operator. Ann. Math. 150, 1159–1175 (1999)MathSciNetMATHGoogle Scholar
  112. 112.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1976)MATHGoogle Scholar
  113. 113.
    Kirsch, W.: An invitation to random Schrödinger operators. With an appendix by F. Klopp, in Ref. [81], pp. 1–119 (2008)Google Scholar
  114. 114.
    Kirsch, W.: A Wegner estimate for multi-particle random Hamiltonians. Zh. Mat. Fiz. Anal. Geom. 4, 121–127 (2008)MathSciNetMATHGoogle Scholar
  115. 115.
    Kirsch, W., Stollmann, P., Stolz, G.: Anderson localization for random Schrödinger operators with long range interactions. Commun. Math. Phys. 195, 495–507 (1998)MathSciNetMATHGoogle Scholar
  116. 116.
    Klein, A.: Absolutely continuous spectrum in the Anderson model on the Bethe lattice. Math. Res. Lett. 1, 399–407 (1994)MathSciNetMATHGoogle Scholar
  117. 117.
    Klein, A.: Extended states in the Anderson model on the Bethe lattice. Adv. Math. 133(1), 163–184 (1998)MathSciNetMATHGoogle Scholar
  118. 118.
    Klein, A.: Multiscale analysis and localization of random operators. In: Ref. [81], pp. 121–159Google Scholar
  119. 119.
    Klein, A., Molchanov, S.: Simplicity of eigenvalues in the Anderson model. J. Stat. Phys. 122, 95–99 (2006)MathSciNetMATHGoogle Scholar
  120. 120.
    Klopp, F., Zenk, H.: The integrated density of states for an interacting multiparticle homogeneous model and applications to the Anderson model. Adv. Math. Phys. 2009, 1–15 (2009). Art. ID 679827Google Scholar
  121. 121.
    Kohn, W.: Theory of the insulating state. Phys. Rev. 133, A171–A181 (1964)MathSciNetGoogle Scholar
  122. 122.
    Kravchenko, S.V., Sarachik, M.P.: A metal–insulator transition in 2D: established facts and open questions. Preprint, arXiv:math-ph/1003.2968; also, In: Abrahams, E. (ed.) 50 Years of Anderson Localization, p. 473. World Scientific, Singapore (2010); reprinted in Int. J. Mod. Phys. B 24, 1640 1663 (2010)MATHGoogle Scholar
  123. 123.
    Kunz, H., Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires. Commun. Math. Phys. 78, 201–246 (1980)MathSciNetMATHGoogle Scholar
  124. 124.
    Kunz, H., Souillard, B.: The localization transition on the Bethe lattice. J. Phys. Lett. 44, 411–414 (1983)Google Scholar
  125. 125.
    Lagendiik, A., van Tiggelen, B., Wiersma, D.S.: Fifty years of Anderson localization. Phys. Today 62, 24–29 (2009)Google Scholar
  126. 126.
    Lifshitz, I.M.: Structure of the energy spectrum of the impurity bands in disordered solids. Sov. Phys. JETP 17, 1159–1170 (1963)Google Scholar
  127. 127.
    Lifshitz, I.M.: The energy spectrum of disordered systems. Adv. Phys. 13, 483–536 (1964)Google Scholar
  128. 128.
    Lifshitz, I.M., Gredescul, S.A., Pastur, L.A.: Introduction to the Theory of Disordered Systems. Wiley, New York (1988)Google Scholar
  129. 129.
    Martinelli, F.: A quantum particle in a hierarchical potential: a first step towards the analysis of complex quantum systems. In: Phénomènes critiques, systèmes aléatoires, théories de jauge, Les Houches, 1984, pp. 1197–1199. North-Holland, Amsterdam (1986)Google Scholar
  130. 130.
    Martinelli, F., Holden, H.: On absence of diffusion near the bottom of the spectrum for a random Schrödinger operator on \({L}^{2}({\mathbb{R}}^{d})\). Commun. Math. Phys. 93, 197–217 (1984)MathSciNetMATHGoogle Scholar
  131. 131.
    Martinelli, F., Scoppola, E.: Absence of absolutely continuous spectrum in the Anderson model for large disorder or low energy. In: Infinite-Dimensional Analysis and Stochastic Processes, Bielefeld, 1983. Research Notes in Mathematics, vol. 124, pp. 94–97. Pitman, Boston (1983)Google Scholar
  132. 132.
    Martinelli, F., Scoppola, E.: Remark on the absence of absolutely continuous spectrum for d-dimensional Schrödinger oerators with random potential for large disorder or low energy. Commun. Math. Phys. 97, 465–471 (1985)MathSciNetMATHGoogle Scholar
  133. 133.
    Minami, N.: Local fluctuation of the spectrum of a multidimensional Anderson tight-binding model. Commun. Math. Phys. 177, 709–725 (1996)MathSciNetMATHGoogle Scholar
  134. 134.
    Molchanov, S.A.: Structure of eigenfunctions of one-dimensional unordered structures. (Russian) Math. USSR Izv. 42, 70–100 (1978)Google Scholar
  135. 135.
    Molchanov, S.A.: The local structure of the spectrum of the one-dimensional Schrödinger operator. Commun. Math. Phys. 78, 429–446 (1981)MathSciNetMATHGoogle Scholar
  136. 136.
    Moser, J., Pöschel, J.: An extension of a result by Dinaburg and Sinai on quasi-periodic potentials. Comment. Math. Helv. 59, 39–85 (1984)MathSciNetMATHGoogle Scholar
  137. 137.
    Mott, N.F.: Metal–insulator transition. Rev. Mod. Phys. 40, 677–683 (1968)Google Scholar
  138. 138.
    Mott, N.F., Twose, W.D.: The theory of impurity conditions. Adv. Phys. 10, 107–163 (1961)Google Scholar
  139. 139.
    Nakano, F.: The repulsion between localization centers in the Anderson model. Commun. Math. Phys. 123(4), 803–810 (2006)MATHGoogle Scholar
  140. 140.
    Nakano, F.: Distribution of localization centers in some discrete random systems. Rev. Math. Phys. 19, 941–965 (2007)MathSciNetMATHGoogle Scholar
  141. 141.
    Novikov, S.P.: Periodic problem for the Korteveg–de Vries equation. Funct. Anal. Appl. 8, 54–66 (1974)Google Scholar
  142. 142.
    Pankrashkin, K.: Quasiperiodic surface Maryland models on quantum graphs. J. Phys. A 42, 265–304 (2009)MathSciNetGoogle Scholar
  143. 143.
    Pastur, L., Figotin, A.: An exactly solvable model of a multidimensional incommensurate structure. Commun. Math. Phys. 95, 401–425 (1984)MathSciNetMATHGoogle Scholar
  144. 144.
    Pastur, L., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Springer, Berlin (1992)MATHGoogle Scholar
  145. 145.
    Puig, J.: Cantor spectrum for the almost Mathieu operator. Commun. Math. Phys. 244, 297–309 (2004)MathSciNetMATHGoogle Scholar
  146. 146.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 1. Academic, New York (1980)MATHGoogle Scholar
  147. 147.
    Ruelle, D.: A remark on bound states in potential scattering theory. Nouvo Cimento 61A, 655–662 (1969)MathSciNetGoogle Scholar
  148. 148.
    Sabri, M.: Anderson localization for a multi-particle quantum graph. Rev. Math. Phys. (2012, to appear). Preprint, arXiv:math-ph/1201.6247 Google Scholar
  149. 149.
    Shepelyansky, D.L.: Coherent propagation of two interacting particles in a random potential. Phys. Rev. Lett. 73, 2607–2610 (1994)Google Scholar
  150. 150.
    Shnol, I.: On the behaviour of the Schrödinger equation. (Russian) Mat. Sb. 42, 273–286 (1957)Google Scholar
  151. 151.
    Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. 7, 447–526 (1983)Google Scholar
  152. 152.
    Simon, B.: Almost periodic Schrödinger operators. IV: The Maryland model. Ann. Phys. 159, 157–183 (1985)MATHGoogle Scholar
  153. 153.
    Simon, B., Wolff, T.: Singular continuous spectrum under rank-one perturbations and localization for random Hamiltonians. Commun. Pure Appl. Math. 39, 75–90 (1986)MathSciNetMATHGoogle Scholar
  154. 154.
    Sinai, Y.G.: Anderson localization for one-dimensional difference Schrödinger operator with quasi-periodic potential. J. Stat. Phys. 46, 861–909 (1987)MathSciNetGoogle Scholar
  155. 155.
    Spencer, T.: The Schrödinger equation with a random potential. A mathematical review. In: Critical Phenomena, Random Systems, Gauge Theories. Proc. Summer Sch. Theor. Phys. Sess., vol. 43, pp. 895–942. Les Houches, France 1984, Pt. 2 (1986)Google Scholar
  156. 156.
    Spencer, T.: Localization for random and quasi-periodic potentials. J. Stat. Phys. 51, 1009–1019 (1988)MATHGoogle Scholar
  157. 157.
    Stollmann, P.: Wegner estimates and localization for continuum Anderson models with some singular distributions. Arch. Math. 75, 307–311 (2000)MathSciNetMATHGoogle Scholar
  158. 158.
    Stollmann, P.: Caught by Disorder. Birkhäuser, Boston (2001)MATHGoogle Scholar
  159. 159.
    Suhov, Y., Kelbert, M.: Probability and Statistics by Example. Markov Chains: A Primer in Random Processes and Their Applications, vol. 2. Cambridge University Press, Cambridge (2007)Google Scholar
  160. 160.
    von Dreifus, H.: On effect of randomness in ferromagneic models and Schrödinger operators. PhD dissertation, New York University, New York (1987)Google Scholar
  161. 161.
    von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight-binding model. Commun. Math. Phys. 124, 285–299 (1989)MATHGoogle Scholar
  162. 162.
    von Dreifus, H., Klein, A.: Localization for random Schrödinger operators with correlated potentials. Commun. Math. Phys. 140, 133–147 (1991)MATHGoogle Scholar
  163. 163.
    Wegner, F.: Bounds on the density of states of disordered systems. Z. Phys. B44, 9–15 (1981)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Victor Chulaevsky
    • 1
  • Yuri Suhov
    • 2
  1. 1.Département de MathématiquesUniversité de Reims Champagne-ArdenneReimsFrance
  2. 2.Statistical LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations