Skip to main content

Role of RIP3 in Necrotic Cell Death

  • Chapter
  • First Online:

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

Gradually, it has been realized that some necrotic cell deaths are tightly controlled. Accumulating evidence has demonstrated that similar to apoptosis, cellular necrosis also plays an essential role in developmental and pathophysiological processes. Receptor-interacting protein 3 (RIP3)-dependent necrosis (also termed necroptosis) is a programmed necrosis that occurs when cells are exposed to a death stimulus such as tumor necrosis factor (TNF). Necroptosis also occurs in development and some disease conditions when caspase-8 is inhibited or RIP3 is upregulated. TNF-induced necroptosis is the most studied necrosis pathway. Based on its model system, RIP3 acts in a complex with RIP1 to mediate a necrosis signal; RIP1 alone, however, initiates apoptosis. This RIP3/RIP1 complex is termed the necrosome. RIP3 appears to be a switch molecule that converts apoptosis to necroptosis. On the other hand, caspase-8 is capable of cleaving RIP1 and RIP3 in the necrosome and therefore is a negative regulator of necroptosis. Going from signaling to necrosis execution requires mixed lineage kinase domain-like (MLKL), which most likely acts as a scaffold protein. Whether it has kinase activity, however, is still in debate. A number of events downstream of the necrosome have also been reported. Mitochondrial reactive oxygen species (ROS) production has been implicated in TNF-induced necroptosis but might be cell type dependent. RIP3 can directly interact with and enhance the activity of the energy metabolism-related enzymes, glycogen phosphorylase (PYGL), glutamate-ammonia ligase (GLUL; also called glutamine synthetase), and mitochondrial matrix-localized glutamate dehydrogenase 1 (GLUD1) and thus contributes to the ROS production. Mitochondrial phosphoglycerate mutase 5 (PGAM5) was recently implicated to be a direct substrate of RIP3. PGAM5 can dephosphorylate GTPase dynamin-related protein-1 (Drp1) and thus induces mitochondrial fission. Further understanding of the mechanisms of RIP3-mediated necroptosis is not only an interest in the fields of cell biology and immunology but also a need for our fight against necrosis-related diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700

    Article  PubMed  CAS  Google Scholar 

  • Bouche C, Serdy S, Kahn CR, Goldfine AB (2004) The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev 25:807–830

    Article  PubMed  CAS  Google Scholar 

  • Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451

    Article  PubMed  CAS  Google Scholar 

  • Ch’en IL, Tsau JS, Molkentin JD, Komatsu M, Hedrick SM (2011) Mechanisms of necroptosis in T cells. J Exp Med 208:633–641

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Csomos RA, Brady GF, Duckett CS (2009) Enhanced cytoprotective effects of the inhibitor of apoptosis protein cellular IAP1 through stabilization with TRAF2. J Biol Chem 284:20531–20539

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davis CW, Hawkins BJ, Ramasamy S, Irrinki KM, Cameron BA, Islam K, Daswani VP, Doonan PJ, Manevich Y, Madesh M (2010) Nitration of the mitochondrial complex I subunit NDUFB8 elicits RIP1- and RIP3-mediated necrosis. Free Radic Biol Med 48:306–317

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  PubMed  CAS  Google Scholar 

  • Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Vanden Berghe T, Declercq W, Libert C, Cauwels A, Vandenabeele P (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35:908–918

    Article  PubMed  CAS  Google Scholar 

  • Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22:245–257

    Article  PubMed  CAS  Google Scholar 

  • Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095

    Article  PubMed  CAS  Google Scholar 

  • Ermolaeva MA, Michallet MC, Papadopoulou N, Utermohlen O, Kranidioti K, Kollias G, Tschopp J, Pasparakis M (2008) Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 9:1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N, Castanares M, Wu M (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19:2056–2067

    Article  PubMed  CAS  Google Scholar 

  • Festjens N, Kalai M, Smet J, Meeus A, Van Coster R, Saelens X, Vandenabeele P (2006a) Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death Differ 13:166–169

    Article  PubMed  CAS  Google Scholar 

  • Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P (2007) RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ 14:400–410

    Article  PubMed  CAS  Google Scholar 

  • Festjens N, Vanden Berghe T, Vandenabeele P (2006b) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757:1371–1387

    Article  PubMed  CAS  Google Scholar 

  • Fiers W, Beyaert R, Declercq W, Vandenabeele P (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–7730

    Article  PubMed  CAS  Google Scholar 

  • Francois M, Le Cabec V, Dupont MA, Sansonetti PJ, Maridonneau-Parini I (2000) Induction of necrosis in human neutrophils by Shigella flexneri requires type III secretion, IpaB and IpaC invasins, and actin polymerization. Infect Immun 68:1289–1296

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Galluzzi L, Kepp O, Morselli E, Vitale I, Senovilla L, Pinti M, Zitvogel L, Kroemer G (2010) Viral strategies for the evasion of immunogenic cell death. J Intern Med 267:526–542

    Article  PubMed  CAS  Google Scholar 

  • Goossens V, Grooten J, De Vos K, Fiers W (1995) Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci U S A 92:8115–8119

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goossens V, Grooten J, Fiers W (1996) The oxidative metabolism of glutamine. A modulator of reactive oxygen intermediate-mediated cytotoxicity of tumor necrosis factor in L929 fibrosarcoma cells. J Biol Chem 271:192–196

    Article  PubMed  CAS  Google Scholar 

  • Goossens V, Stange G, Moens K, Pipeleers D, Grooten J (1999) Regulation of tumor necrosis factor-induced, mitochondria- and reactive oxygen species-dependent cell death by the electron flux through the electron transport chain complex I. Antioxid Redox Signal 1:285–295

    Article  PubMed  CAS  Google Scholar 

  • Gunther C, Martini E, Wittkopf N, Amann K, Weigmann B, Neumann H, Waldner MJ, Hedrick SM, Tenzer S, Neurath MF, Becker C (2011) Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477:335–339

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • He S, Liang Y, Shao F, Wang X (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A 108:20054–20059

    Article  PubMed Central  PubMed  Google Scholar 

  • He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111

    Article  PubMed  CAS  Google Scholar 

  • Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T, Mocarski ES (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:368–372

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kalai M, Van Loo G, Vanden Berghe T, Meeus A, Burm W, Saelens X, Vandenabeele P (2002) Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death Differ 9:981–994

    Article  PubMed  CAS  Google Scholar 

  • Karsan A, Yee E, Harlan JM (1996) Endothelial cell death induced by tumor necrosis factor-alpha is inhibited by the Bcl-2 family member, A1. J Biol Chem 271:27201–27204

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Morgan MJ, Choksi S, Liu ZG (2007) TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 26:675–687

    Article  PubMed  CAS  Google Scholar 

  • Koterski JF, Nahvi M, Venkatesan MM, Haimovich B (2005) Virulent Shigella flexneri causes damage to mitochondria and triggers necrosis in infected human monocyte-derived macrophages. Infect Immun 73:504–513

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 16:3–11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lamkanfi M, Dixit VM (2010) Manipulation of host cell death pathways during microbial infections. Cell Host Microbe 8:44–54

    Article  PubMed  CAS  Google Scholar 

  • Laster SM, Wood JG, Gooding LR (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol 141:2629–2634

    PubMed  CAS  Google Scholar 

  • Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, Chan FK, Wu H (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150:339–350

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li Q, Li G, Lan X, Zheng M, Chen KH, Cao CM, Xiao RP (2010) Receptor interacting protein 3 suppresses vascular smooth muscle cell growth by inhibition of the phosphoinositide 3-kinase-Akt axis. J Biol Chem 285:9535–9544

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mates JM, Segura JA, Campos-Sandoval JA, Lobo C, Alonso L, Alonso FJ, Marquez J (2009) Glutamine homeostasis and mitochondrial dynamics. Int J Biochem Cell Biol 41:2051–2061

    Article  PubMed  CAS  Google Scholar 

  • Meylan E, Tschopp J (2005) The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci 30:151–159

    Article  PubMed  CAS  Google Scholar 

  • Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    Article  PubMed  CAS  Google Scholar 

  • Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ray CA, Pickup DJ (1996) The mode of death of pig kidney cells infected with cowpox virus is governed by the expression of the crmA gene. Virology 217:384–391

    Article  PubMed  CAS  Google Scholar 

  • Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83:1243–1252

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, Heinrich M, Merkel O, Ehrenschwender M, Adam D, Mentlein R, Kabelitz D, Schutze S (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21:415–428

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 267:5317–5323

    PubMed  CAS  Google Scholar 

  • Shu HB, Takeuchi M, Goeddel DV (1996) The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc Natl Acad Sci U S A 93:13973–13978

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Yin J, Starovasnik MA, Fairbrother WJ, Dixit VM (2002) Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem 277:9505–9511

    Article  PubMed  CAS  Google Scholar 

  • Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J, MacFarlane M, Cain K, Meier P (2011) The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43:432–448

    Article  PubMed  CAS  Google Scholar 

  • Trichonas G, Murakami Y, Thanos A, Morizane Y, Kayama M, Debouck CM, Hisatomi T, Miller JW, Vavvas DG (2010) Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc Natl Acad Sci U S A 107:21695–21700

    Article  PubMed Central  PubMed  Google Scholar 

  • Upton JW, Kaiser WJ, Mocarski ES (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11:290–297

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T (2010) The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal 3:re4

    Article  PubMed  CAS  Google Scholar 

  • Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 Opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149:1536–1548

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187:1477–1485

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vince JE, Pantaki D, Feltham R, Mace PD, Cordier SM, Schmukle AC, Davidson AJ, Callus BA, Wong WW, Gentle IE, Carter H, Lee EF, Walczak H, Day CL, Vaux DL, Silke J (2009) TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (tnf) to efficiently activate nf-{kappa}b and to prevent tnf-induced apoptosis. J Biol Chem 284:35906–35915

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133:693–703

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–243

    Article  PubMed  CAS  Google Scholar 

  • Zamzami N, Larochette N, Kroemer G (2005) Mitochondrial permeability transition in apoptosis and necrosis. Cell Death Differ 12(Suppl 2):1478–1480

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Lin J, Han J (2010) Receptor-interacting protein (RIP) kinase family. Cell Mol Immunol 7:243–249

    Article  PubMed  CAS  Google Scholar 

  • Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336

    Article  PubMed  CAS  Google Scholar 

  • Zhang DW, Zheng M, Zhao J, Li YY, Huang Z, Li Z, Han J (2011a) Multiple death pathways in TNF-treated fibroblasts: RIP3- and RIP1-dependent and independent routes. Cell Res 21:368–371

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J (2011b) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471:373–376

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A 109:5322–5327

    Article  PubMed Central  PubMed  Google Scholar 

  • Zorde-Khvalevsky E, Abramovitch R, Barash H, Spivak-Pohis I, Rivkin L, Rachmilewitz J, Galun E, Giladi H (2009) Toll-like receptor 3 signaling attenuates liver regeneration. Hepatology 50:198–206

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahuai Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, T., Chen, W., Han, J. (2014). Role of RIP3 in Necrotic Cell Death. In: Shen, HM., Vandenabeele, P. (eds) Necrotic Cell Death. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8220-8_3

Download citation

Publish with us

Policies and ethics