Skip to main content

Pathologic Evaluation of Tissues Obtained by Interventional Radiology Techniques

  • Chapter
  • First Online:
Percutaneous Image-Guided Biopsy
  • 1665 Accesses

Abstract

Advancements in radiological techniques in the past two decades have facilitated the accurate detection of abnormalities in different organ systems in the body. Current imaging modalities can unequivocally document the presence of abnormalities, even when clinical manifestations are not apparent. Because of overlapping imaging features among different disease entities, pathological tissue evaluation is mandatory to establish a definite tissue diagnosis and initiate treatment. Tissue can be obtained via fine needle aspiration biopsy (FNAB) or core needle biopsy (CNB) under imaging guidance with sonography, computed tomography (CT), magnetic resonance imaging (MRI), or fluoroscopy. This chapter outlines handling and processing of the biopsy sample by the pathology department.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frable WF. Fine needle aspiration biopsy techniques. In: Bibbo M, Wilbur D, editors. Comprehensive cytopathology. 3rd ed. Philadelphia: Saunders, Elsevier; 2008. p. 579–98.

    Chapter  Google Scholar 

  2. Birge RF, McMullen T, Davis SK. A rapid method for paraffin section study of exfoliated neoplastic cells in body fluids. Am J Clin Pathol. 1948;18:754.

    PubMed  CAS  Google Scholar 

  3. Carson CP, Valdes DA. Coagulated plasma as an embedding medium in the cytologic study of body fluids. Am J Clin Pathol. 1951;21:96–8.

    PubMed  CAS  Google Scholar 

  4. Fahey C, Bedrosian UK. Collodion bag: a cell block technique for enhanced cell collection. Lab Med. 1993;74:94–6.

    Google Scholar 

  5. Akalin A, Lu D, Woda B, et al. Rapid cell blocks improve accuracy of breast FNAs beyond that provided by conventional cell blocks regardless of immediate adequacy evaluation. Diagn Cytopathol. 2008;36:523–9.

    Article  PubMed  CAS  Google Scholar 

  6. Hahn PF, Eisenberg PJ, Pitman MB, et al. Cytopathologic touch preparations (imprints) from core needle biopsies: accuracy compared with that of fine-needle aspirates. Am J Roentgenol. 1995;165:1277–9.

    Article  CAS  Google Scholar 

  7. Chandan VS, Zimmerman K, Baker P, et al. Usefulness of core roll preparations in immediate assessment of neoplastic lung lesions. Chest. 2004;126:739–43.

    Article  PubMed  Google Scholar 

  8. Jorgensen JL. State of the art symposium: flow cytometry in the diagnosis of lymphoproliferative disorders by fine needle aspiration. Cancer. 2005;105:443–51.

    Article  PubMed  Google Scholar 

  9. Bennert KW, Abdul-Karim FW. Fine needle aspiration cytology vs needle core biopsy of soft tissues tumors. A comparison. Acta Cytol. 1994;38:381–4.

    PubMed  CAS  Google Scholar 

  10. Ayala AG, ROJ Y, Fanning CV, et al. Core needle biopsy and fine-needle aspiration in the diagnosis of bone and soft tissue lesions. Hematol Oncol Clin North Am. 1995;9:633–51.

    PubMed  CAS  Google Scholar 

  11. Koscick RL, Petersilge CA, Makley JT, et al. CT-guided fine needle aspiration and needle core biopsy of skeletal lesions. Complementary diagnostic techniques. Acta Cytol. 1998;42:697–702.

    Article  PubMed  CAS  Google Scholar 

  12. Cochand-Priollet B, Chagnon S, Ferrand J, et al. Comparison of cytologic examination of smears and histologic examination of tissues cores obtained by fine needle aspiration biopsy of the liver. Acta Cytol. 1987;31:476–80.

    PubMed  CAS  Google Scholar 

  13. Stewart CJ, Coldewey J, Stewart IS. Comparison of fine needle aspiration cytology and needle core biopsy in the diagnosis of radiologically detected abdominal lesions. J Clin Pathol. 2002;55(2):93–7.

    Article  PubMed  CAS  Google Scholar 

  14. Gong Y, Sneige N, Guo M, et al. Transthoracic fine-needle aspiration vs concurrent core needle biopsy in diagnosis of intrathoracic lesions: a retrospective comparison of diagnostic accuracy. Am J Clin Pathol. 2006;125:438–44.

    PubMed  Google Scholar 

  15. Aviram G, Greif J, Man A, et al. Diagnosis of intrathoracic lesions: are sequential fine- needle aspiration (FNA) and core needle biopsy (CNB) combined better than either investigation alone? Clin Radiol. 2007;62:221–6.

    Article  PubMed  CAS  Google Scholar 

  16. Kraft M, Laeng H, Schmuziger N, et al. Comparison of ultrasound-guided core-needle biopsy and fine-needle aspiration in the assessment of head and neck lesions. Head Neck. 2008;30:1457–63.

    Article  PubMed  Google Scholar 

  17. Kupnick D, Sztajer S, Kordek R, et al. Comparison of core and fine needle aspiration biopsies for diagnosis of liver masses. Hepatogastroenterology. 2008;55:1710–15.

    Google Scholar 

  18. Taylor CR, Shi SR, Barr NJ. Techniques of immunohistochemistry: principles, pitfalls, and standardization. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Saunders, Elsevier; 2009. p. 1–41.

    Google Scholar 

  19. Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol. 2000;13(9):962–72.

    Article  PubMed  CAS  Google Scholar 

  20. Bhargava R, Dabbs DJ. Immunohistology of metastatic carcinomas of unknown primary. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Saunders, Elsevier; 2009. p. 206–55.

    Google Scholar 

  21. Jagirdar J. Application of immunohistochemistry to the diagnosis of primary and metastatic carcinoma to the lung. Arch Pathol Lab Med. 2008;132(3):384–96.

    PubMed  Google Scholar 

  22. Krishna M. Diagnosis of metastatic neoplasms: an immunohistochemical approach. Arch Pathol Lab Med. 2010;134:207–15.

    PubMed  Google Scholar 

  23. Delellis RA, Shin SJ, Treaba DO. Immunohistology of endocrine tumors. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Saunders, Elsevier; 2009. p. 291–339.

    Google Scholar 

  24. Wick MR. Immunohistology of melanocytic neoplasms. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Saunders, Elsevier; 2009. p. 189–205.

    Google Scholar 

  25. Allred DC, Harvey JM, Berardo M, Clark GM. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;II:155–68.

    Google Scholar 

  26. Gown AM. Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol. 2008;21 Suppl 2:S8–15.

    Article  PubMed  CAS  Google Scholar 

  27. Letcher CD, Bermar JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol. 2002;33:459–65.

    Article  Google Scholar 

  28. Martin AW. Immunohistology of non-Hodgkin lymphoma. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Saunders, Elsevier; 2009. p. 156–88.

    Google Scholar 

  29. Swerdlow SH, Campo E, Harris NL, et al., editors. Mature B-cell neoplasms. WHO classification of tumors of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC Press; 2008. p. 180–266.

    Google Scholar 

  30. Meda BA, Buss DH, Woodruff RD, et al. Diagnosis and subclassification of primary and recurrent lymphoma: the usefulness and limitations of combined fine needle aspiration cytomorphology and flow cytometry. Am J Clin Pathol. 2008;113:688–99.

    Google Scholar 

  31. Ladanyi M, Antonescu CR, Dal Cin P. Cytogenetic and molecular genetic pathology of soft tissue tumors. In: Weiss SW, Goldblum JR, editors. Enzinger and Weiss’s soft tissue tumors. 5th ed. Philadelphia: Mosby, Elsevier; 2008.

    Google Scholar 

  32. Krishnamurthy S. Application of molecular techniques to fine-needle aspiration biopsy. Cancer. 2007;111(2):106–22.

    Article  PubMed  Google Scholar 

  33. Bender RA, Erlander MG. Molecular classification of unknown primary cancer. Semin Oncol. 2009;36:38–43.

    Article  PubMed  CAS  Google Scholar 

  34. Wolff AC, Hammond MEH, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25:118–45.

    Article  PubMed  CAS  Google Scholar 

  35. Penault-Llorca F, Bilous M, Dowsett M, et al. Emerging technologies for assessing HER2 amplification. Am J Clin Pathol. 2009;132:539–48.

    Article  PubMed  CAS  Google Scholar 

  36. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER2/neu oncogene. Science. 1987;235:177–82.

    Article  PubMed  CAS  Google Scholar 

  37. Paik S, Bryant J, Park C, et al. erbB2 and response to doxorubicin in patients with axillary lymph node-positive hormone receptor-negative breast cancer. J Natl Cancer Inst. 1998;90:1361–70.

    Article  PubMed  CAS  Google Scholar 

  38. Sequist LV, Joshi VA, Janne PA, et al. Epidermal growth factor receptor mutation testing in the care of lung cancer patients. Clin Cancer Res. 2006;12:44035–85.

    Article  Google Scholar 

  39. Mitsudoni T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitor sensitivity in lung cancer. Cancer Sci. 2007;98:1817–24.

    Article  Google Scholar 

  40. Girard N, Deshpande C, Azzoli CG, et al. Use of EGFR/KRAS mutation testing to define clonal relationships among multiple lung adenocarcinomas: comparison with clinical guidelines. Chest. 2010;137:46–52.

    Article  PubMed  CAS  Google Scholar 

  41. Raponi M, Winkler H, Dracopoli CN. KRAS mutations predict response to EGFR inhibitors. Curr Opin Pharmacol. 2008;8:413–18.

    Article  PubMed  CAS  Google Scholar 

  42. Smalley KS, Nathanson KL, Flaherty KT. Genetic subgrouping of melanoma reveals new opportunities for targeted therapy. Cancer Res. 2009;69:3241–4.

    Article  PubMed  CAS  Google Scholar 

  43. Wee S, Jagani Z, Xiang KX, et al. P13K pathology activation mediates resistance to MEK inhibitors in KRAS mutant cancer. Cancer Res. 2009;69:4286–93.

    Article  PubMed  CAS  Google Scholar 

  44. Demetri GD, von Mehron M, Blarke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savitri Krishnamurthy MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krishnamurthy, S. (2014). Pathologic Evaluation of Tissues Obtained by Interventional Radiology Techniques. In: Ahrar, K., Gupta, S. (eds) Percutaneous Image-Guided Biopsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8217-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8217-8_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8216-1

  • Online ISBN: 978-1-4614-8217-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics