Advertisement

Catalyst-Free Chemical Vapor Deposition for Synthesis of SiC Nanowires with Controlled Morphology

  • Jyoti PrakashEmail author
  • Sunil Kumar Ghosh
  • Dakshinamoorthy Sathiyamoorthy
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 187)

Abstract

Chemical vapor deposition hydrogen reduction of methyltrichlorosilane (MTS) is most prominent method for production of silicon carbide (SiC) nanowires with controlled morphology. In a typical SiC nanowire synthesis process the cracking of MTS is carried out in reducing atmosphere of hydrogen using chemical vapor deposition technique at high temperature and normal atmospheric pressure. Taguchi method is very useful to design experiments specially in the cases where large numbers of variables are to be considered. This statistical method has been used to design the experiments to get the optimum parameters for bulk production of silicon carbide wires of uniform diameter in nanometer range. Further the effect of different parameters on the morphology of SiC deposit has been discussed. XRD and SEM analysis showed the growth of crystalline \(\upbeta \)-SiC wires having different morphology. From the analysis of variance (ANOVA) of data it has been observed that growth temperature and hydrogen to MTS ratio in carrier gas are the two important parameters which decide the final growth morphology of SiC deposition. At higher temperature (\(\ge \)1400 \(^{\circ }\)C), the SiC nuclei prefer to grow as SiC grains rather than wires. The optimum deposition conditions have been obtained by analyzing Signal to Noise (S/N) ratio corresponding to lowest deposition rate and minimum growth diameter of SiC wires. The optimum deposition conditions have been used for uniform diameter growth of SiC nanowires, smoothness of the surface, and homogeneous growth of SiC on the surface. It has been observed that the hydrogen to MTS flow rate ratio value should be above 20 for the growth of SiC wires of nanometer diameter. The deposition temperature for the growth of crystalline SiC wires should be 1100–1300 \(^{\circ }\)C. The total flow rate of carrier gas comprising of argon and hydrogen should be in moderate range for particular hydrogen to MTS ratio. The effect of H\(_{2}\)/MTS mole ratio on morphology of SiC deposition by varying H\(_{2}\)/MTS mole ratio from 0 to \(\sim \)80 has been discussed in detail. This detail process study has given a new perspective to produce SiC nanowires of high purity and homogeneous diameter by a simple atmospheric pressure CVD method without using a metallic catalyst. Even manipulation of growth parameters can be done to get desired morphology of SiC deposit.

Keywords

Silicon carbide  One-dimensional nanostructures Nanowires Chemical vapor deposition Methyltrichlorosilane Taguchi method  Nucleation and growth Vapor solid mechanism 

References

  1. 1.
    Wang, Z.L., et al.: Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater. 12, 1295 (2000)Google Scholar
  2. 2.
    Hu, J., et al.: Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999)Google Scholar
  3. 3.
    Levenson, M.D., et al.: Welcome to the duv revolution. Solid State Technol. 38(9), 81–98 (1995)Google Scholar
  4. 4.
    Gibson, J.M., et al.: Reading and writing with electron beams. Phys. Today 50, 56 (1997)Google Scholar
  5. 5.
    Hong, S.H., et al.: Multiple ink nanolithography: toward a multiple-pen nano-plotter. Science 286, 523 (1999)Google Scholar
  6. 6.
    Xia, Y., et al.: Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823 (1999)Google Scholar
  7. 7.
    Yang, P., et al.: Inorganic semiconductor nanowires. Int. J. Nanosci. 1, 1–39 (2002)Google Scholar
  8. 8.
    Xia, Y., et al.: One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater. 15, 353–389 (2003)Google Scholar
  9. 9.
    Givargizov E.I., et al.: Highly anisotropic crystals. In: Senechal M., College S. (eds.) Reidel, Dordrecht (1987)Google Scholar
  10. 10.
    Noll, W., et al.: Synthesis in system \({\rm{MgO}}/{\rm{SiO}}_{2}/{\rm{H}}_{2}{\rm{O}}\). Z. Anorg. Chem. 261, 1 (1950)Google Scholar
  11. 11.
    Cheetham, A.K., et al.: Solid State Chemistry (Compounds), p. 31. Clarendon Press, Oxford (1992)Google Scholar
  12. 12.
    Cheetham, A.K., et al.: Chemistry and Physics of One-Dimensional Metals. In: Keller, H.J. (ed.) Plenum Press, New York (1977)Google Scholar
  13. 13.
    Huiyu, C., et al.: Selenium nanowires and nanotubes synthesized via a facile template-free solution method. Mater. Res. Bull 45, 699–704 (2010)Google Scholar
  14. 14.
    Gates, B., et al.: Synthesis and characterization of uniform nanowires of trigonal selenium. Adv. Funct. Mater. 12, 219–227 (2002)Google Scholar
  15. 15.
    Mayers, B., et al.: One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J. Mater. Chem. 12, 1875–1881 (2002)Google Scholar
  16. 16.
    Messer, B., et al.: Surfactant-induced mesoscopic assemblies of inorganic molecular chains. Adv. Mater. 12, 1526–1528 (2000)Google Scholar
  17. 17.
    Song, J., et al.: MMo3Se3 (M = Li+, Na+, Rb+, Cs+, NMe4+) nanowire formation via cation exchange in organic solution. J. Am. Chem. Soc. 123, 9714–9715 (2001)Google Scholar
  18. 18.
    Meyer, K.H., et al.: Propriété des polymères on solution VI. Energie libre et chaleur de solution. Système nitrocellulose-cyclo-hexanone. Helv. Chim. Acta. 61, 783–790 (1937)Google Scholar
  19. 19.
    Stryer, L., et al.: Biochemistry, 3rd edn. W.H. Freeman and Company, New York (1988)Google Scholar
  20. 20.
    Jones, E.T.T., et al.: Preparation and characterization of molecule-based transistors with a 50-nanometer source-drain separation with use of shadow deposition techniques. Toward faster, more sensitive molecule-based devices. J. Am. Chem. Soc. 109, 5526 (1987)Google Scholar
  21. 21.
    Jorritsma, J., et al.: General technique for fabricating large arrays of nanowires. Nanotechnology 7, 263 (1996)Google Scholar
  22. 22.
    Penner, R.M., et al.: Mesoscopic metal particles and wires by electrodeposition. J. Phys. Chem. B 106, 3339 (2002)Google Scholar
  23. 23.
    Gao, T., et al.: Template synthesis of Y-junction metal nanowires. Appl. Phys. A 74, 403 (2002)Google Scholar
  24. 24.
    Masuda, H., et al.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995)Google Scholar
  25. 25.
    Brumlik, C.J., et al.: Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques. J. Mater. Res. 9, 1174 (1994)Google Scholar
  26. 26.
    Cao, H., et al.: Sol–gel template synthesis of an array of single crystal CdS nanowires on a porous alumina template. Adv. Mater. 13, 1393 (2001)Google Scholar
  27. 27.
    Hoyer, P., et al.: Formation of a titanium dioxide nanotube array. Langmuir 12, 1411 (1996)Google Scholar
  28. 28.
    Li, Y., et al.: Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 76, 2011 (2000)Google Scholar
  29. 29.
    Kwan, S., et al.: Synthesis and assembly of \({\rm {BaWO}}_{4}\) nanorods. Chem. Commun. 5, 447 (2001)Google Scholar
  30. 30.
    Yu, Y.-Y., et al.: Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B 101, 6661 (1997)Google Scholar
  31. 31.
    Yin, Y., et al.: Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett. 2, 427 (2002)Google Scholar
  32. 32.
    He, R.R., et al.: Functional bimorph composite nanotapes. Nano Lett. 2, 1109 (2002)Google Scholar
  33. 33.
    Zhang, Y., et al.: Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem. Phys. Lett. 331, 35 (2000)Google Scholar
  34. 34.
    Trentler, T.J., et al.: Solution–liquid–solid growth of crystalline III–V semiconductors: an analogy to vapor–liquid–solid growth. Science 270, 1791–1794 (1995)Google Scholar
  35. 35.
    Trentler, J.J., et al.: Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors: elucidation of molecular and nonmolecular components of the pathway. J. Am. Chem. Soc. 119, 2172–2182 (1997)Google Scholar
  36. 36.
    Markowitz, P.D., et al.: Phase separation in \({\rm{Al}}_{x}{\rm{Ga}}_{1-x}{\rm{As}}\) nanowhiskers grown by the solution-liquid-solid mechanism. J. Am. Chem. Soc. 123, 4502–4511 (2001)Google Scholar
  37. 37.
    Lourie, O.R., et al.: CVD growth of boron nitride nanotubes. Chem. Mater. 12, 1808–1810 (2000)Google Scholar
  38. 38.
    Yao, J., et al.: Solvothermal synthesis and characterization of CdS nanowires/PVA composite films. Mater. Lett. 59, 3652–3655 (2005)Google Scholar
  39. 39.
    Cheng, H.M., et al.: Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications. J. Phys. Chem. C. 112(42), 16359–16364 (2008)Google Scholar
  40. 40.
    Peng, X.G., et al.: Shape control of CdSe nanocrystals. Nature 404, 59 (2000)Google Scholar
  41. 41.
    Manna, L., et al.: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700 (2000)Google Scholar
  42. 42.
    Sun, Y., et al.: Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165 (2002)Google Scholar
  43. 43.
    Korgel, B.A., et al.: Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv. Mater. 10, 661 (1998)Google Scholar
  44. 44.
    Wyrwa, D., et al.: One-dimensional arrangements of metal nanoclusters. Nano Lett. 2, 419 (2002)Google Scholar
  45. 45.
    Taylor, G.F.: A method of drawing metallic filaments and a discussion of their properties and uses. Phys. Rev. 23, 655 (1924)Google Scholar
  46. 46.
    Penner, R.M., et al.: Fabrication and use of nanometer-sized electrodes in electrochemistry. Science 250, 1118 (1990)Google Scholar
  47. 47.
    Levitt, A.P.: Whisker Technology, Wiley-Interscience, New York (1970)Google Scholar
  48. 48.
    Volmer, M., et al.: The mechanism of molecular condensation on crystals. Z. Phys. 7, 13 (1921)Google Scholar
  49. 49.
    Sears, G.W., et al.: A mechanism of whisker growth. Acta Metall. 3, 367 (1955)Google Scholar
  50. 50.
    Zhang, Y.: A simple method to synthesize nanowires. Chem. Mater. 14, 3564 (2002)Google Scholar
  51. 51.
    Dai, Z.R., et al.: Tin oxide nanowires, nanoribbons, and nanotubes. J. Phys. Chem. B 106, 1274 (2002)Google Scholar
  52. 52.
    Hayashi, S., et al.: Growth of magnesia whiskers by vapor-phase reactions. J. Cryst. Growth 24/25, 345 (1974)Google Scholar
  53. 53.
    Wolfe, E.G., et al.: Growth and morphology of magnesium oxide whiskers. J. Am. Ceram. Soc. 48, 279 (1965)Google Scholar
  54. 54.
    Duan, X.F., et al.: Laser-assisted catalytic growth of single crystal GaN nanowires. J. Am. Chem. Soc. 122, 188 (2000)Google Scholar
  55. 55.
    Zhang, Y.J., et al.: Synthesis of thin Si whiskers (nanowires) using \({\rm {SiCl}}_{4}\). J. Cryst. Growth 226, 185 (2001)Google Scholar
  56. 56.
    Chen, C.C., et al.: Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 123, 2791 (2001)Google Scholar
  57. 57.
    Wang, Y.W., et al.: Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem. Phys. Lett. 357, 314 (2002)Google Scholar
  58. 58.
    Huang, M.H., et al.: Catalytic growth of Zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113 (2000)Google Scholar
  59. 59.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature (London) 354, 56 (1991)Google Scholar
  60. 60.
    Chopra, N.G., et al.: Boron nitride nanotubes. Science 269, 966 (1995)Google Scholar
  61. 61.
    Tenne, R., et al.: Polyhedral and cylindrical structures of tungsten disulphide. Nature (London) 360, 444 (1992)Google Scholar
  62. 62.
    Feldman, Y., et al.: High-rate, gas-phase growth of \({\rm {MoS}}_{2}\) nested inorganic fullerenes and nanotubes. Science 267, 222 (1995)Google Scholar
  63. 63.
    Weng-Sieh, Z., et al.: Synthesis of BxCyNz nanotubules. Phys. Rev. B 51(11), 229 (1995)Google Scholar
  64. 64.
    Han, W.Q., et al.: Continuous synthesis and characterization of silicon carbide nanorods. Chem. Phys. Lett. 265, 374 (1997)Google Scholar
  65. 65.
    Yang, P.D., et al.: Nanorod-superconductor composites: a pathway to materials with high critical current densities. Science 273, 1836 (1996)Google Scholar
  66. 66.
    Xu, X.L., et al.: Tem characterization of calcium-oxygen nanorods. Nanostruct. Mater. 8(3), 373 (1997)Google Scholar
  67. 67.
    Han, W.Q., et al.: Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277, 1287 (1997)Google Scholar
  68. 68.
    Han, W.Q., et al.: Synthesis of silicon nitride nanorods using carbon nanotube as a template. Appl. Phys. Lett. 71(16), 2271 (1997)Google Scholar
  69. 69.
    Ono, T., et al.: Si nanowire growth with ultrahigh vacuum scanning tunneling microscopy. Appl. Phys. Lett. 70(14), 1852 (1997)Google Scholar
  70. 70.
    Wong, E.W., et al.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997)Google Scholar
  71. 71.
    Chu, Yanhui, et al.: Influence of SiC nanowires on the properties of SiC coating for C/C composites between room temperature and 1500\(\circ \)C. Corros. Sci. 53, 3048–3053 (2011)Google Scholar
  72. 72.
    Menga, Shuai: et al.: Tailoring and application of SiC nanowires in composites. Materials Science and Engineering A 527, 5761–5765 (2010)Google Scholar
  73. 73.
    Chena, Jianjun, et al.: Field emission performance of SiC nanowires directly grown on graphite substrate. Mater. Chem. Phys. 126, 655–659 (2011)Google Scholar
  74. 74.
    Karuppanan, S., et al.: Enhanced field emission from density-controlled SiC nanowires. Mater. Chem. Phys. 112, 88–93 (2008)Google Scholar
  75. 75.
    Li, Ke-Zhi, et al.: Photoluminescence of hexagonal-shaped SiC nanowires prepared by sol–gel process. Mater. Sci. Eng. A 460–461, 233–237 (2007)Google Scholar
  76. 76.
    Hao, J.Y., et al.: Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation. Inter. J. Hydrogen Ener 37, 15038–15044 (2012)Google Scholar
  77. 77.
    Wanga, H.Y.: Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array. Sens Actuators, B 166—-167, 451–456 (2012)Google Scholar
  78. 78.
    Liu, H.: Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation. Mater. Res. Bull. 47, 917–920 (2012)Google Scholar
  79. 79.
    Chu, Y.: SiC coating toughened by SiC nanowires to protect C/C composites against oxidation. Ceram. Inter. 38, 189–194 (2012)Google Scholar
  80. 80.
    Choi, H.-J.: Continuous synthesis of silicon carbide whiskers. J. Mater. Sci. 30, 1982 (1995)Google Scholar
  81. 81.
    Meng, G.W., et al.: Preparation of \(\upbeta \)-SiC nanorods with and without amorphous \({\rm {SiO}}_{2}\) wrapping layers. J. Mater. Res. 13, 2533 (1998)Google Scholar
  82. 82.
    Yang, W.Y., et al.: Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor. Chem. Phys. Lett. 383, 441 (2004)Google Scholar
  83. 83.
    Shen, G., et al.: Silicon carbide hollow anospheres, nanowiresand coaxial nanowires. Chem. Phys. Lett. 375, 177–184 (2003)Google Scholar
  84. 84.
    Chiu, S.C., et al.: SiC nanowires in large quantities: synthesis, band gap characterization, and photoluminescence properties. J. Cryst. Growth 311, 1036 (2009)Google Scholar
  85. 85.
    Zhu, J., et al.: Nanostructure of GaN and SiC nanowires based on carbon nanotubes. J. Mater. Res. 14, 1175 (1999)Google Scholar
  86. 86.
    Park, B.T., et al.: Growth and characterization of silicon carbide nanowires. Surf. Rev. Lett. 11, 373 (2004)Google Scholar
  87. 87.
    Ryu, Y., et al.: Direct growth of core-shell SiC–\({\rm {SiO}}_{2}\) nanowires and field emission characteristics. Nanotechnology 16, S370 (2005)Google Scholar
  88. 88.
    Liu, D.F., et al.: A simple large-scale synthesis of coaxial nanocables:silicon carbide sheathed with silicon oxide. Chem. Phys. Lett. 375, 269–272 (2003)Google Scholar
  89. 89.
    Choi, H.-J., et al.: Growth and modulation of silicon carbide nanowires. J. Cryst. Growth 269, 472 (2004)Google Scholar
  90. 90.
    Zhou, X.T., et al.: Thin \(\upbeta \)-SiC nanorods and their field emission properties. Chem. Phys. Lett. 318, 58 (2000)Google Scholar
  91. 91.
    Kim, W.J., et al.: Growth of SiC nanowires within stacked SiC fiber fabrics by a noncatalytic chemical vapor infiltration technique. J. Cryst. Growth 300, 503–508 (2007)Google Scholar
  92. 92.
    Yang, W., et al.: In situ growth of SiC nanowires on RS-SiC substrate(s). J. Cryst. Growth 264, 278–283 (2004)Google Scholar
  93. 93.
    Takao, S., et al.: MOCVD growth of spherical aggregates of SiC nanocrystallites. Appl. Surf. Sci. 254, 7630–7632 (2008)Google Scholar
  94. 94.
    Attolini, G., et al.: A new growth method for the synthesis of 3C-SiC nanowires. Mater. Lett. 63, 2581–2583 (2009)Google Scholar
  95. 95.
    Ju, Z., et al.: High-yield synthesis of single-crystalline 3C-SiC nanowires by a facile autoclave route. Mater. Lett. 61, 3913–3915 (2007)Google Scholar
  96. 96.
    Lespiaux, D., et al.: Chemisorption on \(\upbeta \)-SiC and amorphous \({\rm {SiO}}_{2}\) during CVD of silicon carbide from the Si–C–H–Cl system. Correlations with the nucleation process. Thin Solid Films 265, 40–51 (1995)Google Scholar
  97. 97.
    Fu, Q.G., et al.: Synthesis of silicon carbide nanowires by CVD without using a metallic catalyst. Mater. Chem. Phys. 100, 108–111 (2006)Google Scholar
  98. 98.
    Wang, F.L., et al.: SiC nanowires synthesized by rapidly heating a mixture of SiO and arc-discharge plasma pretreated carbon black. Nanoscale Res. Lett. 4, 153 (2009)Google Scholar
  99. 99.
    Chen, J., et al.: A simple catalyst-free route for large-scale synthesis of SiC nanowires. J. Alloys and Compd. 509, 6844–6847 (2011)Google Scholar
  100. 100.
    Longkullabutra, H., et al.: Large-scale: synthesis, microstructure, and FT-IR property of SiC nanowires. Curr. Appl. Phys. 12, S112–S115 (2012)Google Scholar
  101. 101.
    Zhou, W.M., et al.: Large-scale synthesis and characterization of SiC nanowires by high-frequency induction heating. Appl. Surf. Sci. 252, 5143–5148 (2006)Google Scholar
  102. 102.
    Wei, J., et al.: Large-scale synthesis and photoluminescence properties of hexagonal-shaped SiC nanowires. J. Alloys Compd. 462, 271–274 (2008)Google Scholar
  103. 103.
    Sharma, P., et al.: Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. J. Mate. Process. Technol. 168, 147–151 (2005)Google Scholar
  104. 104.
    Khoeia, A.R., et al.: Design optimisation of aluminium recycling processes using Taguchi technique. J. Mater. Process. Technol. 27, 96–106 (2002)Google Scholar
  105. 105.
    Prakash, J., et al.: Taguchi method optimization of parameters for growth of nano dimensional SiC wires by chemical vapor deposition technique. Curr. Nanosci. 8, 161–169 (2012)Google Scholar
  106. 106.
    Lee, D.N.: A model for development of orientation of vapour deposits. J. Mater. Sci. 24, 4375–4378 (1989)Google Scholar
  107. 107.
    Alwndrof, M.D., et al.: A model of silicon carbide chemical vapor deposition. J. Electrochem. Soc. 138(3), 841–852 (1991)Google Scholar
  108. 108.
    Sotirchos, S.V., et al.: On the homogeneous chemistry of the thermal decompositionof methyltrichlorosilane: thermodynamic analysis and kinetic modeling. J. Electrochem. Soc. 141, 1599–1627 (1994)Google Scholar
  109. 109.
    Joseik, A., et al.: Residence-time dependent kinetics of CVD growth of SiC in the MTSH2 system. J. Cryst. Growth 160, 253–260 (1996)Google Scholar
  110. 110.
    Yang, W., et al.: Fabrication in-situ SiC nanowires/SiC matrix composite by chemical vapour infiltration process. Mater. Lett. 58, 3145–3148 (2004)Google Scholar
  111. 111.
    Wei, J., et al.: Fabrication of composite structure of carbon fibers and high density SiC nanowires. Physica E 41, 1810–1813 (2009)Google Scholar
  112. 112.
    Sun, X.H., et al.: Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J. Am. Chem. Soc. 124, 14464–14471 (2002)Google Scholar
  113. 113.
    Chen, J., et al.: Growth mechanism of twinned SiC nanowires synthesized by a simple thermal evaporation method. Physica E 42, 2335–2340 (2010)Google Scholar
  114. 114.
    Chiew, Y.L., et al.: Growth of SiC nanowires using oil palm empty fruit bunch fibres infiltrated with tetraethyl orthosilicate. Physica E 44, 2041–2049 (2012)Google Scholar
  115. 115.
    Jian, W., et al.: Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant. Mater. Chem. Phys. 95, 140–144 (2006)Google Scholar
  116. 116.
    Zhaoqian, L., et al.: Growth mechanism of silica nanowires without a metal catalyst via oxyacetylene torch ablation. Mater. Lett. 74, 118–120 (2012)Google Scholar
  117. 117.
    Dhiman, R., et al.: Growth of SiC nanowhiskers from wooden precursors, separation, and characterization. Ceram. Inter. 37, 3759–3764 (2011)Google Scholar
  118. 118.
    Lee, J.S., et al.: Improvement of porous silicon carbide filters by growth of silicon carbide nanowires using a modified carbothermal reduction process. J. Alloys Compd 467, 543–549 (2009)Google Scholar
  119. 119.
    Lee, J.S., et al.: In situ growth of SiC nanowires by carbothermal reduction using a mixture of low-purity \({\rm {SiO}}_{2}\) and carbon. J. Alloys Compd 456, 257–263 (2008)Google Scholar
  120. 120.
    Huang, H., et al.: In situ growth of silicon carbide nanowires from anthracite surfaces. Ceram. Inter. 37, 1063–1072 (2011)Google Scholar
  121. 121.
    Chu, Y., et al.: Microstructure and growth mechanism of SiC nanowires with periodically fluctuating hexagonal prisms by CVD. J. Alloys Compd 508, L36–L39 (2010)Google Scholar
  122. 122.
    Xin, L., et al.: Morphological evolution of one-dimensional SiC nanomaterials controlled by sol–gel carbothermal reduction. Mater. Charact. 65, 55–61 (2012)Google Scholar
  123. 123.
    Wei, J., et al.: Photoluminescence performance of SiC nanowires, whiskers and agglomerated nanoparticles synthesized from activated carbon. Physica E 41, 1616–1620 (2009)Google Scholar
  124. 124.
    Taguchi, T., et al.: Preparation and characterization of single-phase SiC nanotubes and C–SiC coaxial nanotubes. Physica E 28, 431–438 (2005)Google Scholar
  125. 125.
    Guo, J.Z., et al.: Preparation of SiC nanowires with fins by chemical vapor deposition. Physica E 39, 262–266 (2007)Google Scholar
  126. 126.
    Li, X., et al.: Preparation of silicon carbide nanowires via a rapid heating process. Mater. Sci. Eng B 176, 87–91 (2011)Google Scholar
  127. 127.
    Li, G., et al.: SiC nanowires grown on activated carbon in a polymer pyrolysis route. Mater. Sci. Eng. B 166, 108–112 (2010)Google Scholar
  128. 128.
    Zhao, H., et al.: Silicon carbide nanowires synthesized with phenolic resin and silicon powders. Physica E 41, 753–756 (2009)Google Scholar
  129. 129.
    Khongwong, W., et al.: Simple approach to fabricate SiC–\({\rm {SiO}}_{2}\) composite nanowires and their oxidation resistance. Mater. Sci. Eng. B 173, 117–121 (2010)Google Scholar
  130. 130.
    Li, B., et al.: Simultaneous growth of SiC nanowires, SiC nanotubes, and SiC/\({\rm {SiO}}_{2}\) core–shell nanocables. J. Alloys Compd. 462, 446–451 (2008)Google Scholar
  131. 131.
    Kang, P., et al.: Synthesis of \({\rm {SiO}}_{2}\) covered SiC nanowires with milled Si,C nanopowders. Mater. Lett. 65, 3461–3464 (2011)Google Scholar
  132. 132.
    Zhang, L.D., et al.: Synthesis and characterization of nanowires and nanocables. Mater. Sci. Eng. A286, 34–38 (2000)Google Scholar
  133. 133.
    Chen, J., et al.: Synthesis and photoluminescence of needle-shaped 3C-SiC nanowires on the substrate of PAN carbon fiber. J. Alloys Compd 456, 320–323 (2008)Google Scholar
  134. 134.
    Zhang, E., et al.: Synthesis and photoluminescence property of silicon carbon nanowires synthesized by the thermal evaporation method. Physica E 41, 655–659 (2009)Google Scholar
  135. 135.
    Wei, J., et al.: Synthesis of centimeter-scale ultra-long SiC nanowires by simple catalyst-free chemical vapor deposition. J. Cryst. Growth 335, 160–164 (2011)Google Scholar
  136. 136.
    Niu, J.J., et al.: Synthesis of macroscopic SiC nanowires at the gram level and their electrochemical activity with Pt loadings. Acta Mater. 57, 3084–3090 (2009)Google Scholar
  137. 137.
    Zhang, H.X., et al.: Synthesis of nanostructured SiC using the pulsed laser deposition technique. Materi. Res. Bull. 44, 184–188 (2009)Google Scholar
  138. 138.
    Raman, V., et al.: Synthesis of silicon carbide nanofibers from pitch blended with sol–gel derived silica. Mater. Lett. 60, 3906–3911 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jyoti Prakash
    • 1
    Email author
  • Sunil Kumar Ghosh
    • 2
  • Dakshinamoorthy Sathiyamoorthy
    • 1
  1. 1.Powder Metallurgy DivisionBhabha Atomic Research Centre TrombayMumbaiIndia
  2. 2.Bio Organic DivisionBhabha Atomic Research Centre TrombayMumbaiIndia

Personalised recommendations