Skip to main content

Catalyst-Free Chemical Vapor Deposition for Synthesis of SiC Nanowires with Controlled Morphology

  • Chapter
  • First Online:
Silicon-based Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 187))

Abstract

Chemical vapor deposition hydrogen reduction of methyltrichlorosilane (MTS) is most prominent method for production of silicon carbide (SiC) nanowires with controlled morphology. In a typical SiC nanowire synthesis process the cracking of MTS is carried out in reducing atmosphere of hydrogen using chemical vapor deposition technique at high temperature and normal atmospheric pressure. Taguchi method is very useful to design experiments specially in the cases where large numbers of variables are to be considered. This statistical method has been used to design the experiments to get the optimum parameters for bulk production of silicon carbide wires of uniform diameter in nanometer range. Further the effect of different parameters on the morphology of SiC deposit has been discussed. XRD and SEM analysis showed the growth of crystalline \(\upbeta \)-SiC wires having different morphology. From the analysis of variance (ANOVA) of data it has been observed that growth temperature and hydrogen to MTS ratio in carrier gas are the two important parameters which decide the final growth morphology of SiC deposition. At higher temperature (\(\ge \)1400 \(^{\circ }\)C), the SiC nuclei prefer to grow as SiC grains rather than wires. The optimum deposition conditions have been obtained by analyzing Signal to Noise (S/N) ratio corresponding to lowest deposition rate and minimum growth diameter of SiC wires. The optimum deposition conditions have been used for uniform diameter growth of SiC nanowires, smoothness of the surface, and homogeneous growth of SiC on the surface. It has been observed that the hydrogen to MTS flow rate ratio value should be above 20 for the growth of SiC wires of nanometer diameter. The deposition temperature for the growth of crystalline SiC wires should be 1100–1300 \(^{\circ }\)C. The total flow rate of carrier gas comprising of argon and hydrogen should be in moderate range for particular hydrogen to MTS ratio. The effect of H\(_{2}\)/MTS mole ratio on morphology of SiC deposition by varying H\(_{2}\)/MTS mole ratio from 0 to \(\sim \)80 has been discussed in detail. This detail process study has given a new perspective to produce SiC nanowires of high purity and homogeneous diameter by a simple atmospheric pressure CVD method without using a metallic catalyst. Even manipulation of growth parameters can be done to get desired morphology of SiC deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Z.L., et al.: Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater. 12, 1295 (2000)

    CAS  Google Scholar 

  2. Hu, J., et al.: Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999)

    CAS  Google Scholar 

  3. Levenson, M.D., et al.: Welcome to the duv revolution. Solid State Technol. 38(9), 81–98 (1995)

    Google Scholar 

  4. Gibson, J.M., et al.: Reading and writing with electron beams. Phys. Today 50, 56 (1997)

    Google Scholar 

  5. Hong, S.H., et al.: Multiple ink nanolithography: toward a multiple-pen nano-plotter. Science 286, 523 (1999)

    CAS  Google Scholar 

  6. Xia, Y., et al.: Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823 (1999)

    CAS  Google Scholar 

  7. Yang, P., et al.: Inorganic semiconductor nanowires. Int. J. Nanosci. 1, 1–39 (2002)

    CAS  Google Scholar 

  8. Xia, Y., et al.: One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater. 15, 353–389 (2003)

    CAS  Google Scholar 

  9. Givargizov E.I., et al.: Highly anisotropic crystals. In: Senechal M., College S. (eds.) Reidel, Dordrecht (1987)

    Google Scholar 

  10. Noll, W., et al.: Synthesis in system \({\rm{MgO}}/{\rm{SiO}}_{2}/{\rm{H}}_{2}{\rm{O}}\). Z. Anorg. Chem. 261, 1 (1950)

    CAS  Google Scholar 

  11. Cheetham, A.K., et al.: Solid State Chemistry (Compounds), p. 31. Clarendon Press, Oxford (1992)

    Google Scholar 

  12. Cheetham, A.K., et al.: Chemistry and Physics of One-Dimensional Metals. In: Keller, H.J. (ed.) Plenum Press, New York (1977)

    Google Scholar 

  13. Huiyu, C., et al.: Selenium nanowires and nanotubes synthesized via a facile template-free solution method. Mater. Res. Bull 45, 699–704 (2010)

    Google Scholar 

  14. Gates, B., et al.: Synthesis and characterization of uniform nanowires of trigonal selenium. Adv. Funct. Mater. 12, 219–227 (2002)

    CAS  Google Scholar 

  15. Mayers, B., et al.: One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J. Mater. Chem. 12, 1875–1881 (2002)

    CAS  Google Scholar 

  16. Messer, B., et al.: Surfactant-induced mesoscopic assemblies of inorganic molecular chains. Adv. Mater. 12, 1526–1528 (2000)

    CAS  Google Scholar 

  17. Song, J., et al.: MMo3Se3 (M = Li+, Na+, Rb+, Cs+, NMe4+) nanowire formation via cation exchange in organic solution. J. Am. Chem. Soc. 123, 9714–9715 (2001)

    CAS  Google Scholar 

  18. Meyer, K.H., et al.: Propriété des polymères on solution VI. Energie libre et chaleur de solution. Système nitrocellulose-cyclo-hexanone. Helv. Chim. Acta. 61, 783–790 (1937)

    Google Scholar 

  19. Stryer, L., et al.: Biochemistry, 3rd edn. W.H. Freeman and Company, New York (1988)

    Google Scholar 

  20. Jones, E.T.T., et al.: Preparation and characterization of molecule-based transistors with a 50-nanometer source-drain separation with use of shadow deposition techniques. Toward faster, more sensitive molecule-based devices. J. Am. Chem. Soc. 109, 5526 (1987)

    CAS  Google Scholar 

  21. Jorritsma, J., et al.: General technique for fabricating large arrays of nanowires. Nanotechnology 7, 263 (1996)

    CAS  Google Scholar 

  22. Penner, R.M., et al.: Mesoscopic metal particles and wires by electrodeposition. J. Phys. Chem. B 106, 3339 (2002)

    CAS  Google Scholar 

  23. Gao, T., et al.: Template synthesis of Y-junction metal nanowires. Appl. Phys. A 74, 403 (2002)

    CAS  Google Scholar 

  24. Masuda, H., et al.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995)

    CAS  Google Scholar 

  25. Brumlik, C.J., et al.: Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques. J. Mater. Res. 9, 1174 (1994)

    CAS  Google Scholar 

  26. Cao, H., et al.: Sol–gel template synthesis of an array of single crystal CdS nanowires on a porous alumina template. Adv. Mater. 13, 1393 (2001)

    CAS  Google Scholar 

  27. Hoyer, P., et al.: Formation of a titanium dioxide nanotube array. Langmuir 12, 1411 (1996)

    CAS  Google Scholar 

  28. Li, Y., et al.: Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 76, 2011 (2000)

    CAS  Google Scholar 

  29. Kwan, S., et al.: Synthesis and assembly of \({\rm {BaWO}}_{4}\) nanorods. Chem. Commun. 5, 447 (2001)

    Google Scholar 

  30. Yu, Y.-Y., et al.: Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B 101, 6661 (1997)

    CAS  Google Scholar 

  31. Yin, Y., et al.: Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett. 2, 427 (2002)

    CAS  Google Scholar 

  32. He, R.R., et al.: Functional bimorph composite nanotapes. Nano Lett. 2, 1109 (2002)

    CAS  Google Scholar 

  33. Zhang, Y., et al.: Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem. Phys. Lett. 331, 35 (2000)

    CAS  Google Scholar 

  34. Trentler, T.J., et al.: Solution–liquid–solid growth of crystalline III–V semiconductors: an analogy to vapor–liquid–solid growth. Science 270, 1791–1794 (1995)

    CAS  Google Scholar 

  35. Trentler, J.J., et al.: Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors: elucidation of molecular and nonmolecular components of the pathway. J. Am. Chem. Soc. 119, 2172–2182 (1997)

    CAS  Google Scholar 

  36. Markowitz, P.D., et al.: Phase separation in \({\rm{Al}}_{x}{\rm{Ga}}_{1-x}{\rm{As}}\) nanowhiskers grown by the solution-liquid-solid mechanism. J. Am. Chem. Soc. 123, 4502–4511 (2001)

    CAS  Google Scholar 

  37. Lourie, O.R., et al.: CVD growth of boron nitride nanotubes. Chem. Mater. 12, 1808–1810 (2000)

    CAS  Google Scholar 

  38. Yao, J., et al.: Solvothermal synthesis and characterization of CdS nanowires/PVA composite films. Mater. Lett. 59, 3652–3655 (2005)

    CAS  Google Scholar 

  39. Cheng, H.M., et al.: Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications. J. Phys. Chem. C. 112(42), 16359–16364 (2008)

    CAS  Google Scholar 

  40. Peng, X.G., et al.: Shape control of CdSe nanocrystals. Nature 404, 59 (2000)

    CAS  Google Scholar 

  41. Manna, L., et al.: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700 (2000)

    CAS  Google Scholar 

  42. Sun, Y., et al.: Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165 (2002)

    CAS  Google Scholar 

  43. Korgel, B.A., et al.: Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv. Mater. 10, 661 (1998)

    CAS  Google Scholar 

  44. Wyrwa, D., et al.: One-dimensional arrangements of metal nanoclusters. Nano Lett. 2, 419 (2002)

    CAS  Google Scholar 

  45. Taylor, G.F.: A method of drawing metallic filaments and a discussion of their properties and uses. Phys. Rev. 23, 655 (1924)

    Google Scholar 

  46. Penner, R.M., et al.: Fabrication and use of nanometer-sized electrodes in electrochemistry. Science 250, 1118 (1990)

    CAS  Google Scholar 

  47. Levitt, A.P.: Whisker Technology, Wiley-Interscience, New York (1970)

    Google Scholar 

  48. Volmer, M., et al.: The mechanism of molecular condensation on crystals. Z. Phys. 7, 13 (1921)

    CAS  Google Scholar 

  49. Sears, G.W., et al.: A mechanism of whisker growth. Acta Metall. 3, 367 (1955)

    CAS  Google Scholar 

  50. Zhang, Y.: A simple method to synthesize nanowires. Chem. Mater. 14, 3564 (2002)

    CAS  Google Scholar 

  51. Dai, Z.R., et al.: Tin oxide nanowires, nanoribbons, and nanotubes. J. Phys. Chem. B 106, 1274 (2002)

    CAS  Google Scholar 

  52. Hayashi, S., et al.: Growth of magnesia whiskers by vapor-phase reactions. J. Cryst. Growth 24/25, 345 (1974)

    Google Scholar 

  53. Wolfe, E.G., et al.: Growth and morphology of magnesium oxide whiskers. J. Am. Ceram. Soc. 48, 279 (1965)

    Google Scholar 

  54. Duan, X.F., et al.: Laser-assisted catalytic growth of single crystal GaN nanowires. J. Am. Chem. Soc. 122, 188 (2000)

    CAS  Google Scholar 

  55. Zhang, Y.J., et al.: Synthesis of thin Si whiskers (nanowires) using \({\rm {SiCl}}_{4}\). J. Cryst. Growth 226, 185 (2001)

    CAS  Google Scholar 

  56. Chen, C.C., et al.: Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 123, 2791 (2001)

    CAS  Google Scholar 

  57. Wang, Y.W., et al.: Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem. Phys. Lett. 357, 314 (2002)

    CAS  Google Scholar 

  58. Huang, M.H., et al.: Catalytic growth of Zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113 (2000)

    Google Scholar 

  59. Iijima, S.: Helical microtubules of graphitic carbon. Nature (London) 354, 56 (1991)

    CAS  Google Scholar 

  60. Chopra, N.G., et al.: Boron nitride nanotubes. Science 269, 966 (1995)

    CAS  Google Scholar 

  61. Tenne, R., et al.: Polyhedral and cylindrical structures of tungsten disulphide. Nature (London) 360, 444 (1992)

    Google Scholar 

  62. Feldman, Y., et al.: High-rate, gas-phase growth of \({\rm {MoS}}_{2}\) nested inorganic fullerenes and nanotubes. Science 267, 222 (1995)

    CAS  Google Scholar 

  63. Weng-Sieh, Z., et al.: Synthesis of BxCyNz nanotubules. Phys. Rev. B 51(11), 229 (1995)

    Google Scholar 

  64. Han, W.Q., et al.: Continuous synthesis and characterization of silicon carbide nanorods. Chem. Phys. Lett. 265, 374 (1997)

    CAS  Google Scholar 

  65. Yang, P.D., et al.: Nanorod-superconductor composites: a pathway to materials with high critical current densities. Science 273, 1836 (1996)

    CAS  Google Scholar 

  66. Xu, X.L., et al.: Tem characterization of calcium-oxygen nanorods. Nanostruct. Mater. 8(3), 373 (1997)

    CAS  Google Scholar 

  67. Han, W.Q., et al.: Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277, 1287 (1997)

    CAS  Google Scholar 

  68. Han, W.Q., et al.: Synthesis of silicon nitride nanorods using carbon nanotube as a template. Appl. Phys. Lett. 71(16), 2271 (1997)

    CAS  Google Scholar 

  69. Ono, T., et al.: Si nanowire growth with ultrahigh vacuum scanning tunneling microscopy. Appl. Phys. Lett. 70(14), 1852 (1997)

    CAS  Google Scholar 

  70. Wong, E.W., et al.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997)

    CAS  Google Scholar 

  71. Chu, Yanhui, et al.: Influence of SiC nanowires on the properties of SiC coating for C/C composites between room temperature and 1500\(\circ \)C. Corros. Sci. 53, 3048–3053 (2011)

    CAS  Google Scholar 

  72. Menga, Shuai: et al.: Tailoring and application of SiC nanowires in composites. Materials Science and Engineering A 527, 5761–5765 (2010)

    Google Scholar 

  73. Chena, Jianjun, et al.: Field emission performance of SiC nanowires directly grown on graphite substrate. Mater. Chem. Phys. 126, 655–659 (2011)

    Google Scholar 

  74. Karuppanan, S., et al.: Enhanced field emission from density-controlled SiC nanowires. Mater. Chem. Phys. 112, 88–93 (2008)

    Google Scholar 

  75. Li, Ke-Zhi, et al.: Photoluminescence of hexagonal-shaped SiC nanowires prepared by sol–gel process. Mater. Sci. Eng. A 460–461, 233–237 (2007)

    Google Scholar 

  76. Hao, J.Y., et al.: Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation. Inter. J. Hydrogen Ener 37, 15038–15044 (2012)

    CAS  Google Scholar 

  77. Wanga, H.Y.: Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array. Sens Actuators, B 166—-167, 451–456 (2012)

    Google Scholar 

  78. Liu, H.: Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation. Mater. Res. Bull. 47, 917–920 (2012)

    CAS  Google Scholar 

  79. Chu, Y.: SiC coating toughened by SiC nanowires to protect C/C composites against oxidation. Ceram. Inter. 38, 189–194 (2012)

    CAS  Google Scholar 

  80. Choi, H.-J.: Continuous synthesis of silicon carbide whiskers. J. Mater. Sci. 30, 1982 (1995)

    CAS  Google Scholar 

  81. Meng, G.W., et al.: Preparation of \(\upbeta \)-SiC nanorods with and without amorphous \({\rm {SiO}}_{2}\) wrapping layers. J. Mater. Res. 13, 2533 (1998)

    CAS  Google Scholar 

  82. Yang, W.Y., et al.: Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor. Chem. Phys. Lett. 383, 441 (2004)

    CAS  Google Scholar 

  83. Shen, G., et al.: Silicon carbide hollow anospheres, nanowiresand coaxial nanowires. Chem. Phys. Lett. 375, 177–184 (2003)

    CAS  Google Scholar 

  84. Chiu, S.C., et al.: SiC nanowires in large quantities: synthesis, band gap characterization, and photoluminescence properties. J. Cryst. Growth 311, 1036 (2009)

    CAS  Google Scholar 

  85. Zhu, J., et al.: Nanostructure of GaN and SiC nanowires based on carbon nanotubes. J. Mater. Res. 14, 1175 (1999)

    CAS  Google Scholar 

  86. Park, B.T., et al.: Growth and characterization of silicon carbide nanowires. Surf. Rev. Lett. 11, 373 (2004)

    CAS  Google Scholar 

  87. Ryu, Y., et al.: Direct growth of core-shell SiC–\({\rm {SiO}}_{2}\) nanowires and field emission characteristics. Nanotechnology 16, S370 (2005)

    Google Scholar 

  88. Liu, D.F., et al.: A simple large-scale synthesis of coaxial nanocables:silicon carbide sheathed with silicon oxide. Chem. Phys. Lett. 375, 269–272 (2003)

    CAS  Google Scholar 

  89. Choi, H.-J., et al.: Growth and modulation of silicon carbide nanowires. J. Cryst. Growth 269, 472 (2004)

    CAS  Google Scholar 

  90. Zhou, X.T., et al.: Thin \(\upbeta \)-SiC nanorods and their field emission properties. Chem. Phys. Lett. 318, 58 (2000)

    CAS  Google Scholar 

  91. Kim, W.J., et al.: Growth of SiC nanowires within stacked SiC fiber fabrics by a noncatalytic chemical vapor infiltration technique. J. Cryst. Growth 300, 503–508 (2007)

    CAS  Google Scholar 

  92. Yang, W., et al.: In situ growth of SiC nanowires on RS-SiC substrate(s). J. Cryst. Growth 264, 278–283 (2004)

    CAS  Google Scholar 

  93. Takao, S., et al.: MOCVD growth of spherical aggregates of SiC nanocrystallites. Appl. Surf. Sci. 254, 7630–7632 (2008)

    CAS  Google Scholar 

  94. Attolini, G., et al.: A new growth method for the synthesis of 3C-SiC nanowires. Mater. Lett. 63, 2581–2583 (2009)

    Google Scholar 

  95. Ju, Z., et al.: High-yield synthesis of single-crystalline 3C-SiC nanowires by a facile autoclave route. Mater. Lett. 61, 3913–3915 (2007)

    CAS  Google Scholar 

  96. Lespiaux, D., et al.: Chemisorption on \(\upbeta \)-SiC and amorphous \({\rm {SiO}}_{2}\) during CVD of silicon carbide from the Si–C–H–Cl system. Correlations with the nucleation process. Thin Solid Films 265, 40–51 (1995)

    CAS  Google Scholar 

  97. Fu, Q.G., et al.: Synthesis of silicon carbide nanowires by CVD without using a metallic catalyst. Mater. Chem. Phys. 100, 108–111 (2006)

    CAS  Google Scholar 

  98. Wang, F.L., et al.: SiC nanowires synthesized by rapidly heating a mixture of SiO and arc-discharge plasma pretreated carbon black. Nanoscale Res. Lett. 4, 153 (2009)

    CAS  Google Scholar 

  99. Chen, J., et al.: A simple catalyst-free route for large-scale synthesis of SiC nanowires. J. Alloys and Compd. 509, 6844–6847 (2011)

    CAS  Google Scholar 

  100. Longkullabutra, H., et al.: Large-scale: synthesis, microstructure, and FT-IR property of SiC nanowires. Curr. Appl. Phys. 12, S112–S115 (2012)

    Google Scholar 

  101. Zhou, W.M., et al.: Large-scale synthesis and characterization of SiC nanowires by high-frequency induction heating. Appl. Surf. Sci. 252, 5143–5148 (2006)

    CAS  Google Scholar 

  102. Wei, J., et al.: Large-scale synthesis and photoluminescence properties of hexagonal-shaped SiC nanowires. J. Alloys Compd. 462, 271–274 (2008)

    CAS  Google Scholar 

  103. Sharma, P., et al.: Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. J. Mate. Process. Technol. 168, 147–151 (2005)

    CAS  Google Scholar 

  104. Khoeia, A.R., et al.: Design optimisation of aluminium recycling processes using Taguchi technique. J. Mater. Process. Technol. 27, 96–106 (2002)

    Google Scholar 

  105. Prakash, J., et al.: Taguchi method optimization of parameters for growth of nano dimensional SiC wires by chemical vapor deposition technique. Curr. Nanosci. 8, 161–169 (2012)

    CAS  Google Scholar 

  106. Lee, D.N.: A model for development of orientation of vapour deposits. J. Mater. Sci. 24, 4375–4378 (1989)

    CAS  Google Scholar 

  107. Alwndrof, M.D., et al.: A model of silicon carbide chemical vapor deposition. J. Electrochem. Soc. 138(3), 841–852 (1991)

    Google Scholar 

  108. Sotirchos, S.V., et al.: On the homogeneous chemistry of the thermal decompositionof methyltrichlorosilane: thermodynamic analysis and kinetic modeling. J. Electrochem. Soc. 141, 1599–1627 (1994)

    Google Scholar 

  109. Joseik, A., et al.: Residence-time dependent kinetics of CVD growth of SiC in the MTSH2 system. J. Cryst. Growth 160, 253–260 (1996)

    Google Scholar 

  110. Yang, W., et al.: Fabrication in-situ SiC nanowires/SiC matrix composite by chemical vapour infiltration process. Mater. Lett. 58, 3145–3148 (2004)

    CAS  Google Scholar 

  111. Wei, J., et al.: Fabrication of composite structure of carbon fibers and high density SiC nanowires. Physica E 41, 1810–1813 (2009)

    CAS  Google Scholar 

  112. Sun, X.H., et al.: Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J. Am. Chem. Soc. 124, 14464–14471 (2002)

    CAS  Google Scholar 

  113. Chen, J., et al.: Growth mechanism of twinned SiC nanowires synthesized by a simple thermal evaporation method. Physica E 42, 2335–2340 (2010)

    CAS  Google Scholar 

  114. Chiew, Y.L., et al.: Growth of SiC nanowires using oil palm empty fruit bunch fibres infiltrated with tetraethyl orthosilicate. Physica E 44, 2041–2049 (2012)

    Google Scholar 

  115. Jian, W., et al.: Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant. Mater. Chem. Phys. 95, 140–144 (2006)

    Google Scholar 

  116. Zhaoqian, L., et al.: Growth mechanism of silica nanowires without a metal catalyst via oxyacetylene torch ablation. Mater. Lett. 74, 118–120 (2012)

    Google Scholar 

  117. Dhiman, R., et al.: Growth of SiC nanowhiskers from wooden precursors, separation, and characterization. Ceram. Inter. 37, 3759–3764 (2011)

    CAS  Google Scholar 

  118. Lee, J.S., et al.: Improvement of porous silicon carbide filters by growth of silicon carbide nanowires using a modified carbothermal reduction process. J. Alloys Compd 467, 543–549 (2009)

    CAS  Google Scholar 

  119. Lee, J.S., et al.: In situ growth of SiC nanowires by carbothermal reduction using a mixture of low-purity \({\rm {SiO}}_{2}\) and carbon. J. Alloys Compd 456, 257–263 (2008)

    CAS  Google Scholar 

  120. Huang, H., et al.: In situ growth of silicon carbide nanowires from anthracite surfaces. Ceram. Inter. 37, 1063–1072 (2011)

    CAS  Google Scholar 

  121. Chu, Y., et al.: Microstructure and growth mechanism of SiC nanowires with periodically fluctuating hexagonal prisms by CVD. J. Alloys Compd 508, L36–L39 (2010)

    CAS  Google Scholar 

  122. Xin, L., et al.: Morphological evolution of one-dimensional SiC nanomaterials controlled by sol–gel carbothermal reduction. Mater. Charact. 65, 55–61 (2012)

    Google Scholar 

  123. Wei, J., et al.: Photoluminescence performance of SiC nanowires, whiskers and agglomerated nanoparticles synthesized from activated carbon. Physica E 41, 1616–1620 (2009)

    CAS  Google Scholar 

  124. Taguchi, T., et al.: Preparation and characterization of single-phase SiC nanotubes and C–SiC coaxial nanotubes. Physica E 28, 431–438 (2005)

    CAS  Google Scholar 

  125. Guo, J.Z., et al.: Preparation of SiC nanowires with fins by chemical vapor deposition. Physica E 39, 262–266 (2007)

    Google Scholar 

  126. Li, X., et al.: Preparation of silicon carbide nanowires via a rapid heating process. Mater. Sci. Eng B 176, 87–91 (2011)

    CAS  Google Scholar 

  127. Li, G., et al.: SiC nanowires grown on activated carbon in a polymer pyrolysis route. Mater. Sci. Eng. B 166, 108–112 (2010)

    CAS  Google Scholar 

  128. Zhao, H., et al.: Silicon carbide nanowires synthesized with phenolic resin and silicon powders. Physica E 41, 753–756 (2009)

    Google Scholar 

  129. Khongwong, W., et al.: Simple approach to fabricate SiC–\({\rm {SiO}}_{2}\) composite nanowires and their oxidation resistance. Mater. Sci. Eng. B 173, 117–121 (2010)

    CAS  Google Scholar 

  130. Li, B., et al.: Simultaneous growth of SiC nanowires, SiC nanotubes, and SiC/\({\rm {SiO}}_{2}\) core–shell nanocables. J. Alloys Compd. 462, 446–451 (2008)

    CAS  Google Scholar 

  131. Kang, P., et al.: Synthesis of \({\rm {SiO}}_{2}\) covered SiC nanowires with milled Si,C nanopowders. Mater. Lett. 65, 3461–3464 (2011)

    CAS  Google Scholar 

  132. Zhang, L.D., et al.: Synthesis and characterization of nanowires and nanocables. Mater. Sci. Eng. A286, 34–38 (2000)

    Google Scholar 

  133. Chen, J., et al.: Synthesis and photoluminescence of needle-shaped 3C-SiC nanowires on the substrate of PAN carbon fiber. J. Alloys Compd 456, 320–323 (2008)

    CAS  Google Scholar 

  134. Zhang, E., et al.: Synthesis and photoluminescence property of silicon carbon nanowires synthesized by the thermal evaporation method. Physica E 41, 655–659 (2009)

    CAS  Google Scholar 

  135. Wei, J., et al.: Synthesis of centimeter-scale ultra-long SiC nanowires by simple catalyst-free chemical vapor deposition. J. Cryst. Growth 335, 160–164 (2011)

    CAS  Google Scholar 

  136. Niu, J.J., et al.: Synthesis of macroscopic SiC nanowires at the gram level and their electrochemical activity with Pt loadings. Acta Mater. 57, 3084–3090 (2009)

    CAS  Google Scholar 

  137. Zhang, H.X., et al.: Synthesis of nanostructured SiC using the pulsed laser deposition technique. Materi. Res. Bull. 44, 184–188 (2009)

    CAS  Google Scholar 

  138. Raman, V., et al.: Synthesis of silicon carbide nanofibers from pitch blended with sol–gel derived silica. Mater. Lett. 60, 3906–3911 (2006)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Prakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prakash, J., Ghosh, S.K., Sathiyamoorthy, D. (2013). Catalyst-Free Chemical Vapor Deposition for Synthesis of SiC Nanowires with Controlled Morphology. In: Li, H., Wu, J., Wang, Z. (eds) Silicon-based Nanomaterials. Springer Series in Materials Science, vol 187. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8169-0_9

Download citation

Publish with us

Policies and ethics