Plasma Enabled Fabrication of Silicon Carbide Nanostructures

  • Jinghua FangEmail author
  • Igor Levchenko
  • Morteza Aramesh
  • Amanda E. Rider
  • Steven Prawer
  • Kostya (Ken) Ostrikov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 187)


Silicon carbide is one of the promising materials for the fabrication of various one- and two-dimensional nanostructures. In this chapter, we discuss experimental and theoretical studies of the plasma-enabled fabrication of silicon carbide quantum dots, nanowires, and nanorods. The discussed fabrication methods include plasma-assisted growth with and without anodic aluminium oxide membranes and with or without silane as a source of silicon. In the silane-free experiments, quartz was used as a source of silicon to synthesize the silicon carbide nanostructures in an environmentally friendly process. The mechanism of the formation of nanowires and nanorods is also discussed.


Silicon carbide  Plasma Chemical vapor deposition Anodic aluminum oxide membrane 


  1. 1.
    Hatty, V., Kahn, H., Trevino, J., Zorman, C.A., Mehregany, M., Ballarini, R., Heuer, A.H.: Fracture toughness of low-pressure chemical-vapor-deposited polycrystalline silicon carbide thin films. J. Appl. Phys. 99, 013517 (2006)CrossRefGoogle Scholar
  2. 2.
    Yonenaga, I., Hoshi, T., Usui, A.: High-temperature hardness of bulk single-crystal gallium nitride-in comparison with other wide-gap materials. J. Phys. Condens. Matter. 12, 10319 (2000)Google Scholar
  3. 3.
    Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tanigaki, K., Hiura, H.: Opening carbon nanotubes with oxygen and implications for filling. Nature 362, 522–525 (1993)CrossRefGoogle Scholar
  4. 4.
    Fissel, A., Schroter, B., Richter, W.: The field emission properties of silicon carbide whiskers grown by CVD. Appl. Phys. Lett. 66, 3182–3184 (1995)CrossRefGoogle Scholar
  5. 5.
    Zhang, X.F., Sixta, M.E., De Jonghe, L.C.: Grain boundary evolution in hot pressed ABC SiC. J. Am. Ceram. Soc. 83, 2813–2820 (2000)CrossRefGoogle Scholar
  6. 6.
    Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)CrossRefGoogle Scholar
  7. 7.
    Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M.: Designs for optical cloaking with high-order transformations. Opt. Express 16, 5444–5452 (2008)CrossRefGoogle Scholar
  8. 8.
    Addamiano, A.: Preparation and properties of 2H SiC crystals. J. Cryst. Growth 58, 617–622 (1982)CrossRefGoogle Scholar
  9. 9.
    Zhou, D., Seraphin, S.: Production of silicon carbide whiskers from carbon nanoclusters. Chem. Phys. Lett. 222, 233–238 (1994)CrossRefGoogle Scholar
  10. 10.
    Volotskova, O., Fagan, J.A., Huh, J.Y., Phelan, F.R., Shashurin, A., Keidar, M.: Tailored distribution of single-wall carbon nanotubes from arc plasma synthesis using magnetic fields. ACS Nano 4, 5187–5192 (2010)CrossRefGoogle Scholar
  11. 11.
    Seeger, T., Kohler-Redlich, P.: Synthesis of nanometer-sized SiC whiskers in the arc-discharge. Adv. Mater. 12, 279–282 (2000)CrossRefGoogle Scholar
  12. 12.
    Kamlag, Y., Goossens, A., Colbeck, I., Schoonman, J.: Laser CVD of cubic SiC nanocrystals. Appl. Surf. Sci. 184, 118–122 (2001)CrossRefGoogle Scholar
  13. 13.
    Fang, J.-H., Aharonovich, I., Levchenko, I., et. al.: Plasma-enabled growth of single-crystalline SiC/AlSiC core-shell nanowires on porous alumina templates. Cryst. Growth Des. 12, 2917–2922 (2012)Google Scholar
  14. 14.
    Ostrikov, K., Cvelbar, U., Murphy, A.B.: Plasma nanoscience: setting directions, tackling grand challenges. J. Phys. D Appl. Phys. 44, 174001 (2011)CrossRefGoogle Scholar
  15. 15.
    Ostrikov, K., Seo, D.H., Mehdipour, H., Cheng, Q., Kumar, S.: Plasma effects in semiconducting nanowire growth. Nanoscale (2012, in press). doi: 10.1039/C1NR10658AGoogle Scholar
  16. 16.
    Gao, H., Mu, C., Wang, F., Xu, D., Wu, K., Xie, Y., Liu, S., Wang, E., Xu, J., Yu, D.: Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template. J. Appl. Phys. 93, 5602–5605 (2003)CrossRefGoogle Scholar
  17. 17.
    Sui, Y.C., Acosta, D.R., Gonzalez-Leon, J.A., Bermudez, A., Feuchtwanger, J., Cui, B.Z., Flores, J.O., Saniger, J.M.: Structure, thermal stability, and deformation of multibranched carbon nanotubes synthesized by CVD in the AAO template. J. Phys. Chem. B 105, 1523–1527 (2001)Google Scholar
  18. 18.
    Zong, R.L., Zhou, J., Li, B., Fu, M., Shi, S.K., Li, L.T.: Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic alumina oxide. J. Chem. Phys. 123, 094710 (2005)CrossRefGoogle Scholar
  19. 19.
    Liu, C.H., Yiu, W.C., Au, F.C.K., Ding, J.X., Lee, C.S., Lee, S.T.: Electrical properties of zinc oxide nanowires and intramolecular junctions. Appl. Phys. Lett. 83, 3168–3170 (2009)CrossRefGoogle Scholar
  20. 20.
    Li, Z., Zhang, J., Meng, A., Guo, J.: Large-area highly-oriented SiC nanowire arrays: synthesis, raman, and photoluminescence properties. J. Phys. Chem. B. 110, 22382–22386 (2006)CrossRefGoogle Scholar
  21. 21.
    Levchenko, I., Rider, A. E., Ostrikov, K.: Plasma-aided nanofabrication: where is the cutting edge? J. Appl. Phys. 101, 044306 (2007)Google Scholar
  22. 22.
    Rider, A.E., Levchenko, I., Ostrikov, K.: Plasma/ion-controlled metal catalyst saturation: enabling simultaneous growth of carbon nanotube/nanocone arrays. Appl. Phys. Lett. 90(19), 193110 (2007)Google Scholar
  23. 23.
    Cheng, Q., Xu, S., Long, J.D., Ni, Z.H., Rider, A.E., Ostrikov, K.: High-rate, low-temperature synthesis of composition controlled hydrogenated amorphous silicon carbide films in low-frequency inductively coupled plasmas. J. Phys. D. Appl. Phys. 41, 055406 (2008)CrossRefGoogle Scholar
  24. 24.
    Rider, A. E., Ostrikov, K., Levchenko, I.: Tailoring the composition of self-assembled Si\(_{1-x}\)C\(_{x}\) quantum dots: simulation of plasma/ion-related controls. Nanotechnology 19(35), 355705 (2008)Google Scholar
  25. 25.
    Cheng, Q.J., Long, J.D., Xu, S.: Chemically active plasmas for deterministic assembly of nanocrystalline SiC film. J. Phys. D. Appl. Phys. 40, 2304 (2007)Google Scholar
  26. 26.
    Cheng, Q., Xu, S.: Low-temperature synthesis of homogeneous nanocrystalline cubic silicon carbide films. J. Appl. Phys. 102, 056101 (2007)CrossRefGoogle Scholar
  27. 27.
    Cheng, Q.J., Long, J.D., Xu, S.: Growth dynamics and characterization of SiC quantum dots synthesized by low-frequency inductively coupled plasma-assisted RF magnetron sputtering. J. Appl. Phys. 101, 094304 (2007)CrossRefGoogle Scholar
  28. 28.
    Levchenko, I., Ostrikov, K., Keidar, M., Xu, S.: Deterministic nanoassembly: neutral or plasma route? Appl. Phys. Lett. 89, 033109 (2006)CrossRefGoogle Scholar
  29. 29.
    Cheng, Q., Xu, S., Long, J., Huang, S., Guo, J.: Homogeneous nanocrystalline cubic silicon carbide films prepared by inductively coupled plasma chemical vapor deposition. Nanotechnology 18, 465601 (2007)CrossRefGoogle Scholar
  30. 30.
    Fang, J.H., Spizzirri, P., Cimmino, A., Rubanov, S., Prawer, S.: Extremely high aspect ratio alumina transmission nanomasks: their fabrication and characterization using electron microscopy. Nanotechnology 20, 065706 (2009)CrossRefGoogle Scholar
  31. 31.
    Xu, S., Levchenko, I., Huang, S.Y., Ostrikov, K.: Silicon on silicon: self-organized nanotip arrays formed in reactive Ar+ H2 plasmas. Appl. Phys. Lett. 95, 111505 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jinghua Fang
    • 1
    Email author
  • Igor Levchenko
    • 1
  • Morteza Aramesh
    • 2
  • Amanda E. Rider
    • 1
  • Steven Prawer
    • 2
  • Kostya (Ken) Ostrikov
    • 1
  1. 1.CSIRO Materials Science and EngineeringWest LindfieldAustralia
  2. 2.University of MelbourneMelbourneAustralia

Personalised recommendations