Silicon Nanoparticles-Based Light Emitting Capacitors

  • A. Morales SánchezEmail author
  • J. Barreto
  • C. Domínguez Horna
  • M. Aceves Mijares
  • J. A. Luna López
  • L. Licea Jiménez
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 187)


This chapter is focused on the study of the microstructural, optical, electrical, and electro-optical properties of Si-nanoparticles (Si-nps) embedded in a silica matrix for light emitting devices applications. Si-nps were created from silicon-rich oxide [SRO, (\(\mathrm{{SiO}}_\mathrm{x}\), \(\mathrm{x}<2\))] films which are deposited by low pressure chemical vapor deposition and followed by a thermal annealing at high temperature. The composition, microstructure, and optical properties of SRO films are analyzed as a function of the silicon excess and thermal annealing temperature. Once the properties of these materials are known, SRO films which exhibited the best photoluminescent (strongest PL) properties were chosen in order to analyze their electrical and electroluminescent (EL) properties. Simple Metal–Oxide–Semiconductor structures using the SRO films as the dielectric layer were fabricated for these studies. Blue and red EL was observed by changing the Si-np size from 1.5 to 2.7 nm embedded in the silica matrix, respectively. EL is ascribed to the charge injection into the Si-nps embedded in the SRO films through a balanced transport network. The EL emission is observed with the naked eye and in daylight conditions on the whole area of devices. Therefore, these results prove the feasibility to obtain LECs by using simple capacitors with SRO films as the active layer.


Silicon rich oxide Silicon nanoparticles Photoluminescence Light emitting capacitor Conductive paths Electroluminescence 



Dr. Morales acknowledges the support received from project CONACyT-180992.


  1. 1.
    Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRefGoogle Scholar
  2. 2.
    Chang, I.M., Pan, S.C., Chen, Y.F.: Light-induced degradation on porous silicon. Phys. Rev. B 48, 8747–8750 (1993)CrossRefGoogle Scholar
  3. 3.
    Kapetanakis, E., Normand, P., Tsoukalas, D., Beltsios, K., Stoemenos, J., Zhang, S., Van den Berg, J.: Charge storage and interface states effects in Si-nanocrystal memory obtained using low-energy Si\(^{+}\) implantation and annealing. Appl. Phys. Lett. 77(21), 3450–3452 (2000)CrossRefGoogle Scholar
  4. 4.
    Jambois, O., Rinnert, H., Devaux, X., Vergnat, M.: Photoluminescence and electroluminescence of size-controlled silicon nanocrystallites embedded in SiO2 thin films. J. Appl. Phys. 98, 046105 (2005)CrossRefGoogle Scholar
  5. 5.
    Gong-Ru, L., Chun-Jung, L.: Improved blue-green electroluminescence of metal-oxide-semiconductor diode fabricated on multirecipe Si-implanted and annealed SiO2/Si substrate. J. Appl. Phys. 95(12), 8484–8486 (2004)CrossRefGoogle Scholar
  6. 6.
    Aceves, M., Carrillo, J., Carranza, J., Calleja, W., Falcony, C., Rosales, P.: Duality metal oxide semiconductor-PN junction in the Al/silicon rich oxide/Si structure as a radiation sensor. Thin Solid Films 373, 134–136 (2000)CrossRefGoogle Scholar
  7. 7.
    DiMaria, D.J., Kirtley, J.R., Pakulis, E.J., Dong, D.W., Kuan, T.S., Pesavento, F.L., Theis, T.N., Cutro, J.A., Brorson, S.D.: Electroluminescence studies in silicon dioxide films containing tiny silicon islands. J. Appl. Phys. 56(2), 401–416 (1984)CrossRefGoogle Scholar
  8. 8.
    Aceves, M., Falcony, C., Reynoso, A., Calleja, W., Torres, A.: The conduction properties of the silicon/off-stoichiometry-SiO\(_{2}\) diode. Solid-State Electronics 39, 637–644 (1996)CrossRefGoogle Scholar
  9. 9.
    Morales, A., Domínguez, C., Barreto, J., Riera, M., Aceves, M., Luna, J.A., Yu, Z., Kiebach, R.: Spectroscopical analysis of luminescent silicon rich oxide films. Rev. Mex. Fís. 53, 279–282 (2007)Google Scholar
  10. 10.
    Lin, ChJ: Lin, G.R.: Defect-enhanced visible electroluminescence of multi-energy silicon-implanted silicon dioxide film. IEEE J. Quantum Electron. 41, 441–447 (2005)CrossRefGoogle Scholar
  11. 11.
    Song, H.Z., Bao, X.M., Li, N.S., Zhang, J.Y.: Relation between electroluminescence and photoluminescence of Si\(^{+}\)-implanted SiO\(_{2}\). J. Appl. Phys. 82, 4028–4032 (1997)CrossRefGoogle Scholar
  12. 12.
    Lin, G.R., Lin, ChJ, Lin, ChK, Chou, L.J., Chueh, Y.L.: Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO\(_{2}\). J. Appl. Phys. 97, 094306 (2005)CrossRefGoogle Scholar
  13. 13.
    Lin, G.R.: Lin, Ch.J: Improved blue-green electroluminescence of metal-oxide-semiconductor diode fabricated on multirecipe Si-implanted and annealed SiO\(_{2}\)/Si substrate. J. Appl. Phys. 95, 8484–8486 (2004)CrossRefGoogle Scholar
  14. 14.
    Walters, R.J., Carreras, J., Feng, T., Bell, L.D., Atwater, H.A.: Silicon Nanocrystal Field-Effect Light-Emitting Devices. IEEE J. Sel. Top. Quantum Electron. 12, 1647–1656 (2006)CrossRefGoogle Scholar
  15. 15.
    Linnros, J., Lalic, N., Knápek, P., Luterová, K., Kocka, J., Fejfar, A., Pelant, I.: Instabilities in electroluminescent porous silicon diodes. Appl. Phys. Lett. 69, 833–835 (1996)CrossRefGoogle Scholar
  16. 16.
    Irrera, A., Iacona, F., Crupi, I., Presti, C.D., Franzò, G., Bongiorno, C., Sanfilippo, D., Di Stefano, G., Piana, A., Fallica, P.G., Canino, A., Priolo, F.: Electroluminescence and transport properties in amorphous silicon nanostructures. Nanotechnology 17, 1428–1436 (2006)Google Scholar
  17. 17.
    Gebel, T., Rebohle, L., Sun, J., Skopura, W., Nazarov, A.N., Osiyuk, I.: Correlation of charge trapping and electroluminescence in highly efficient Si-based light emitters. Physica E 16, 499–504 (2003)CrossRefGoogle Scholar
  18. 18.
    Valenta, J., Lalic, N.: J. Linnros.: Electroluminescence microscopy and spectroscopy of silicon nanocrystals in thin SiO\(_{2}\) layers. Opt. Mater. 17, 45–50 (2001)CrossRefGoogle Scholar
  19. 19.
    Franzò, G., Irrera, A., Moreira, E.C., Miritello, M., Iacona, F., Sanfilippo, D., Di Stefano, G., Fallica, P.G., Priolo, F.: Electroluminescence of silicon nanocrystals in MOS structures. Appl. Phys. A 74, 1–5 (2002)CrossRefGoogle Scholar
  20. 20.
    Walters, R.J., Bourianoff, G.I., Atwater, H.A.: Field-effect electroluminescence in silicon nanocrystals. Nature Mater. 4, 143–146 (2005)CrossRefGoogle Scholar
  21. 21.
    Cho, K.S., Park, N., Kim, T., Kim, K., Sung, G.Y., Shin, J.H.: High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer. Appl. Phys. Lett. 86, 071909 (2005)CrossRefGoogle Scholar
  22. 22.
    Barreto, J., Perálvarez, M., Rodriguez, J.A., Morales, A., Riera, M., López, M., Garrido, B., Lechuga, L.M., Domínguez, C.: Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD. Physica E 38, 193–196 (2007)Google Scholar
  23. 23.
    Perálvarez, M., Carreras, J., Barreto, J., Morales, A., Dominguez, C., Garrido, B.: Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks. Appl. Phys. Lett. 92, 241104 (2008)CrossRefGoogle Scholar
  24. 24.
    Lacombe, A., Kadari, B., Beaudoin, F., Barba, D., Martin, F., Ross, G.G.: Electroluminescence microspectroscopy of silicon nanocrystals obtained by Si+ ion implantation in SiO\(_{2}\). Nanotechnology 19, 465702 (2008)CrossRefGoogle Scholar
  25. 25.
    Fernández, González: A. A., Aceves Mijares, M., Morales Sánchez, A., Leyva, K. M.: Intense whole area electroluminescence from low pressure chemical vapor deposition-silicon-rich oxide based light emitting capacitors. J. Appl. Phys. 108, 043105 (2010)CrossRefGoogle Scholar
  26. 26.
    Cen, Z.H., Chen, T.P., Liu, Z., Liu, Y., Ding, L., Yang, M., Wong, J.I., Yu, S.F., Goh, W.P.: Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film. Opt. Express 18, 20439–20444 (2010)CrossRefGoogle Scholar
  27. 27.
    Cheong, H.J., Tanaka, A., Hippo, D., Usami, K., Suchiya, Y., Mizuta, H., Oda, S.: Visible Electroluminescence from spherical-shaped silicon nanocrystals. Jpn. J. Appl. Phys. 47, 8137–8140 (2008)Google Scholar
  28. 28.
    Pai, P.G., Chao, S.S., Takagi, Y.: Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 4(3), 689–694 (1986)CrossRefGoogle Scholar
  29. 29.
    Ay, F., Aydinli, A.: Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Opt. Mater. 26, 33–46 (2004)CrossRefGoogle Scholar
  30. 30.
    Fazio, E., Barletta, E., Barreca, F., Neri, F.: Investigation of nanocrystalline silicon phase embedded in SiOx thin films grown by pulsed laser deposition. J. Vac. Sci. Technol. B 23(2), 519–524 (2005)CrossRefGoogle Scholar
  31. 31.
    Martinet, C., Devine, R.A.B.: Analysis of the vibrational mode spectra of amorphous SiO2 films. J. Appl. Phys. 77(9), 4343–4348 (1995)CrossRefGoogle Scholar
  32. 32.
    Kouvatsos, D.N., Ioannou-Sougleridis, V., Nassiopoulou, A.G.: Charging effects in silicon nanocrystals embedded in SiO\(_{2}\) films. Mater. Sci. and Eng. B 101, 270–274 (2003)CrossRefGoogle Scholar
  33. 33.
    Kameda, E., Matsuda, T., Emura, Y., Ohzone, T.: Fowler-Nordheim tunneling in MOS capacitors with Si-implanted SiO\(_{2}\). Solid-State Electronics 42(11), 2105–2111 (1998)CrossRefGoogle Scholar
  34. 34.
    Lelis, A.J., Oldhan, T.R.: Time dependence of switching oxide traps. IEEE Transact. Nuc. Sci. 41(6), 1835–1843 (1994)CrossRefGoogle Scholar
  35. 35.
    Perera, R., Ikeda, A., Hattori, R., Kuroki, Y.: Trap assisted leakage current conduction in thin silicon oxynitride films grown by rapid thermal oxidation combined microwave excited plasma nitridation. Microelectron. Eng. 65, 357–370 (2003)CrossRefGoogle Scholar
  36. 36.
    Morales-Sánchez, A., Barreto, J., Domínguez, C., Aceves-Mijares, M., Perálvarez, M., Garrido, B., Luna-López, J.: A.: DC and AC electroluminescence in silicon nanoparticles embedded in silicon-rich oxide films. Nanotechnology 21, 085710 (2010)Google Scholar
  37. 37.
    Yu, Z., Aceves, M., Ipiña, M.A.: Single electron charging and transport in silicon rich oxide. Nanotechnology 17, 3962–3967 (2006)CrossRefGoogle Scholar
  38. 38.
    Morales-Sánchez, A., Barreto, J., Domínguez, C., Aceves, M., Yu, Z., Luna-López, J.A.: Coulomb blockade effects in silicon nanoparticles embedded in thin silicon-rich oxide films. Nanotechnology 19, 165401 (2008)CrossRefGoogle Scholar
  39. 39.
    Salonidou, A., Nassiopoulou, A.G., Giannakopoulos, K., Travlos, A., Ioannou-Sougleridis, V., Tsoi, E.: Growth of two-dimensional arrays of silicon nanocrystals in thin SiO\(_{2}\) layers by low pressure chemical vapour deposition and high temperature annealing/oxidation. Investigation of their charging properties. Nanotechnology 15, 1233–1239 (2004)Google Scholar
  40. 40.
    Afanas’ev, V. V., Stesmans, A.: Charge state of paramagnetic E’ centre in thermal SiO\(_{2}\) layers on silicon. J. Phys.: Condens. Matter12, 2285–2290 (2000)Google Scholar
  41. 41.
    Ng, C.Y., Liu, Y., Chen, T.P., Tse, M.S.: Charging/discharging of silicon nanocrystals embedded in an SiO\(_{2}\) matrix inducing reduction/recovery in the total capacitance and tunneling current. Smart Mater. Struct. 15, S43–S46 (2006)CrossRefGoogle Scholar
  42. 42.
    Perálvarez, M., Barreto, J., Carreras, J., Morales, A., Navarro, D., Lebour, Y., Domínguez, C., Garrido, B.: Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition. Nanotechnology 20, 405201 (2009)CrossRefGoogle Scholar
  43. 43.
    Luna-López, J.A., Morales-Sánchez, A., Aceves-Mijares, M., Yu, Z., Domínguez, C.: Analysis of surface roughness and its relationship with photoluminescence properties of silicon-rich oxide films. J. Vac. Sci. Technol. A 27(1), 57–62 (2009)CrossRefGoogle Scholar
  44. 44.
    Flores, F.F., Aceves, M., Carrillo, J., Domínguez, J., Falcony, C.: Photoluminescence and cathodoluminescence characteristics of SiO\(_{2}\) and SRO films implanted with Si. Superficies y Vacío 18, 7–13 (2005)Google Scholar
  45. 45.
    Lopez, R., Aceves, M., Yu Z., Falcony, C., Cathodoluminescence of Silicon Rich Oxide with nitrogen incorporated. 4th International Conference on Electrical and Electronics, Engineering, pp. 341–344 (2007)Google Scholar
  46. 46.
    Perálvarez, M., García, C., López, M., Garrido, B., Barreto, J., Domínguez, C., Rodríguez, J.A.: Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 89, 051112 (2006)Google Scholar
  47. 47.
    Lin, ChF: Liu, C.W., Chen, M.J., Lee, M.H., Lin, I.C.: Electroluminescence at Si band gap energy based on metal-oxide-silicon structures. J of. Appl. Phys. 87(12), 8793–8795 (2000)Google Scholar
  48. 48.
    Lin, ChF: Liu, C.W., Chen, M.J., Lee, M.H., Lin, I.C.: Infrared electroluminescence from metal-oxide-semiconductor structures on silicon. J. Phys. Condens. Matter 12, L205–L210 (2000)CrossRefGoogle Scholar
  49. 49.
    Ray, M., Hossain, S.M., Klie, R.F., Banerjee, K., Ghosh, S.: Free standing luminescent silicon quantum dots: evidence of quantum confinement and defect related transitions. Nanotechnology 21, 505602 (2010)CrossRefGoogle Scholar
  50. 50.
    Morales-Sánchez, A., Aceves-Mijares, M., Monfil-Leyva, K., González, A.A., Luna-López, J.A., Carrillo, J., Domínguez, C., Barreto, J., Flores-Gracia, F.J.: Strong blue and red luminescence in silicon nanoparticles based light emitting capacitors. Applied Physics Letters 99, 171102 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. Morales Sánchez
    • 1
    Email author
  • J. Barreto
    • 2
  • C. Domínguez Horna
    • 3
  • M. Aceves Mijares
    • 4
  • J. A. Luna López
    • 5
  • L. Licea Jiménez
    • 1
  1. 1.Centro de Investigación en Materiales Avanzados (CIMAV)Alianza Norte 202 Parque de Investigación e Innovación TecnológicaNuevo León México
  2. 2.Centre for Quantum Photonics, HH Wills LaboratoryUniversity of BristolBristolUK
  3. 3.Instituto de Microelectrónica de Barcelona (CNM-CSIC)BellaterraEspaña
  4. 4.Electronics DepartmentINAOEPue. Pue.México
  5. 5.IC-CIDS Benemérita Universidad Autónoma de PueblaPueblaMéxico

Personalised recommendations