Synchrotron-Excited Photoluminescence Spectroscopy of Silicon- and Carbon-Containing Quantum Dots in Low Dimensional SiO\(_{2}\) Matrices

  • Anatoly F. ZatsepinEmail author
  • Evgeny A. Buntov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 187)


A comprehensive method to study semiconductor nanoparticles in thin film SiO\(_{2}\) matrices has been developed. Selective and high-intensity synchrotron excitation allows the investigation of the nanoparticles energy structure. It is shown that the interference fringes affecting the optical excitation spectra of thin films may be neutralized by means of a special numerical technique. The spectral and kinetic properties of the Si, C, and SiC quantum dots (QD) formed by ion implantation in thin silica films were studied in details. Photoluminescence thermal quenching is shown to contain two stages and is dominated by Street law at low temperatures. Several indirect QD excitation mechanisms are realized, involving point defects, free, and self-trapped SiO\(_{2}\) matrix excitons. An exciton-assisted mechanism is dominating at helium temperatures. A resonant energy transfer mechanism taking place in the silica matrix reveals average defect-QD distance of 6–9 nm. A direct excitation channel is found only for carbon nanoclusters. An overall scheme of energy levels and optical transitions in the “matrix-cluster” system is proposed.


Quantum dots Photoluminescence spectroscopy Synchrotron radiation Thin films 



We are grateful to our colleagues Prof. D.I. Tetelbaum, Prof. H.-J. Fitting and Prof. V.A. Pustovarov for useful collaboration during the acquisition of some results presented here.


  1. 1.
    Tiwari, S., Rana, F., Hanafi, H., et al.: A silicon nanocrystals based memory. Appl. Phys. Lett. 68, 1377–1380 (1996)CrossRefGoogle Scholar
  2. 2.
    Guo, L., Leobandung, E., Chou, S.Y.: A room-temperature silicon single-electron metal- oxide-semiconductor memory with nanoscale floating-gate and ultranarrow channel. Appl. Phys. Lett. 70, 850–853 (1997)Google Scholar
  3. 3.
    Lalic, N., Linnros, J.: Light emitting diode structure based on Si nanocrystals formed by implantation into thermal oxide. J. Lumin. 80, 263–267 (1999)CrossRefGoogle Scholar
  4. 4.
    Normand, P., Tsoukalas, D., Kapetanakis, E., et al.: Formation of 2-D arrays of silicon nanocrystals in thin SiO2 films by very-low energy Si+ ion implantation. Electrochem. Solid State Lett. 1, 88–90 (1998)CrossRefGoogle Scholar
  5. 5.
    Pavesi, L., Dal Negro, L., Mazzoleni, C. et al.: Optical gain in silicon nanocrystals. Nature. 408, 440–444 (2000)Google Scholar
  6. 6.
    Fujii, M., Yoshida, M., Kanzawa, Y., et al.: 1.54 \(\mu \)m photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+. Appl. Phys. Lett. 71, 1198 (1997)CrossRefGoogle Scholar
  7. 7.
    Brongersma, M.L., Polman, A., Min, K.S., Atwater, H.A.: Depth distribution of luminescent Si nanocrystals in Si implanted SiO2 films on Si. J. Appl. Phys. 86, 759 (1999)CrossRefGoogle Scholar
  8. 8.
    Brongersma, M.L., Polman, A., Min, K.S., et al.: Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation. Appl. Phys. Lett. 72, 2577–2580 (1998)CrossRefGoogle Scholar
  9. 9.
    Devaty, R.P., Choyke, W.J.: Optical characterization of silicon carbide polytypes. Phys. Stat. Sol. (a) 162, 5–38 (1997)CrossRefGoogle Scholar
  10. 10.
    Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRefGoogle Scholar
  11. 11.
    Cullis, A.G., Canham, L.T., Calcott, D.J.: The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909–965 (1997)CrossRefGoogle Scholar
  12. 12.
    Brus, L.E., Szajowski, P.F., Wilson, W.L., et al.: Electronic spectroscopy and photophysics of Si nanocrystals: relationship to bulk c-Si and porous Si. J. Am. Chem. Soc. 117, 2915–2922 (1995)CrossRefGoogle Scholar
  13. 13.
    Liao, L.S., Bao, X.M., Yang, Z.F., Min, N.B.: Intense blue emission from porous \(\beta \)-SiC formed on C\(^{+}\)-implanted silicon. Appl. Phys. Lett. 66, 2382–2384 (1995)CrossRefGoogle Scholar
  14. 14.
    Zhao, J., Mao, D.S., Lin, Z.X., et al.: Intense short-wavelength photoluminescence from thermal SiO2 films co-implanted with Si and C ions. Appl. Phys. Lett. 73, 1838–1840 (1998)CrossRefGoogle Scholar
  15. 15.
    Wu, X.L., Siu, G.G., Stokes, M.J., et al.: Blue-emitting \(\beta \)-SiC fabricated by annealing C60 coupled on porous silicon. Appl. Phys. Lett. 77, 1292–1294 (2000)CrossRefGoogle Scholar
  16. 16.
    Petrova-Koch, V., Sreseli, O., Polisski, G., et al.: Luminescence enhancement by electrochemical etching of SiC(6H). Thin Solid Films 255, 107–110 (1995)CrossRefGoogle Scholar
  17. 17.
    White, C.W., Withrow, S.P., Meldrum, A., et al.: Optical properties Of Si nanocrystals formed In SiO\(_{2}\) by ion implantation. Mater. Res. Soc. Symp. Proc. 507, 249 (1998)Google Scholar
  18. 18.
    Kovalev, D., Diener, J., Heckler, H., et al.: Optical absorption cross sections of Si nanocrystals. Phys. Rev. B. 61, 4485–4487 (2000)CrossRefGoogle Scholar
  19. 19.
    Zatsepin, A.F., Kaschieva, S., et al.: Formation and electron-beam annealing of implantation defects in a thin-film Si-SiO2 heterostructure. Tech. Phys. 54, 323–326 (2009)CrossRefGoogle Scholar
  20. 20.
    Salh, R., Fitting, L., Kolesnikova, E.V., et al.: Si and Ge nanocluster formation in silica matrix. Semiconductors 41, 397–402 (2007)CrossRefGoogle Scholar
  21. 21.
    Tetelbaum, D.I., Mikhaylov, A.N., Vasiliev, V.K., et al.: Effect of carbon implantation on visible luminescence and comosition of Si-implanted SiO\(_{2}\) layers. Surf. Coat. Technol. 203, 2658–2663 (2009)Google Scholar
  22. 22.
    Ziegler, J.F., Biersack, J.P.: SRIM—The Stopping and Range of Ions in Solids. SRIM Company, Chester (2012)Google Scholar
  23. 23.
    Zimmerer, G.: SUPERLUMI: a unique setup for luminescence spectroscopy with synchrotron radiation. Radiat. Meas. 42, 859–864 (2007)CrossRefGoogle Scholar
  24. 24.
    Zatsepin, A.F., Buntov, E.A., Kortov, V.S. et al.: Mechanism of quantum dot luminescence excitation within implanted SiO\(_{2}\):Si:C films. J. Phys.: Condens. Matter 24, 045301 (2012)Google Scholar
  25. 25.
    Zatsepin, A.F., Pustovarov, V.A., Kortov, V.S., et al.: Time-resolved photoluminescence of implanted SiO\(_{2}\):Si\(^{+}\) films. J. Non-Cryst. Sol. 355, 1119–1122 (2009)CrossRefGoogle Scholar
  26. 26.
    Zatsepin, A.F., Buntov, E.A., Kortov, V.S.: Low-temperature photoluminescence of ion-implanted SiO\(_{2}\):Sn\(^{+}\) films and glasses. J. Surf. Invest. X-ray, Synchrotron Neutron Techniques 6, 668–672 (2012)CrossRefGoogle Scholar
  27. 27.
    Smirani, R., Martin, F., Abel, G., et al.: The effect of size and depth profile of Si-nc imbedded in a SiO\(_{2}\) layer on the photoluminescence spectra. J. Lumin. 115, 62–68 (2005)CrossRefGoogle Scholar
  28. 28.
    Windt, D.L.: IMD—Software for modeling the optical properties of multilayer films. Comput. Phys. 12, 360–370 (1998)CrossRefGoogle Scholar
  29. 29.
    Born, M., Wolf, E.: Principles of Optics, 6th edn. Pergamon Press, Oxford (1980)Google Scholar
  30. 30.
    Stearns, D.G.: The scattering of x rays from nonideal multilayer structures. J. Appl. Phys. 65, 491–506 (1989)CrossRefGoogle Scholar
  31. 31.
    Nevot, L., Croce, P.: Caractérisation des surfaces par réflexion rasante de rayons X. Application à l’étude du polissage de quelques verres silicates. Revue. Phys. Appl. 15, 761–779 (1980)Google Scholar
  32. 32.
    Smith, S.: The Scientist and Engineer’s Guide to Digital Signal Processing. California Technical Publishing, San Diego (1997)Google Scholar
  33. 33.
    Buntov, E.A.: ICorrector software. (2012). Accessed 9 Nov 2012
  34. 34.
    Skuja, L.N.: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids. 239, 16–48 (1998)CrossRefGoogle Scholar
  35. 35.
    Salh, R., von Czarnowski, A., Zamoryanskaya, M.V. et al.: Cathodoluminescence of SiOx under-stoichiometric silica layers. Phys. Stat. Sol. (a). 203, 2049–2057 (2006)Google Scholar
  36. 36.
    Glinka, YuD, Lin, S.-H., Chen, Y.-T.: The photoluminescence from hydrogen-related species in composites of SiO\(_{2}\) nanoparticles. Appl. Phys. Lett. 75, 778–780 (1999)CrossRefGoogle Scholar
  37. 37.
    Gan, F.H., Fuxi, G.: Optical and Spectroscopic Properties of Glass. Springer-Verlag, Berlin (1992)Google Scholar
  38. 38.
    Calcott, P.D.J., Nash, K.J., Canham, L.T. et al.: Identification of radiative transitions in highly porous silicon. J. Phys.: Condens. Matter 5, L91 (1993)Google Scholar
  39. 39.
    Ghislotti, G., Nielsen, B., Asoka-Kumar, P., et al.: Effect of different preparation conditions on light emission from silicon implanted SiO\(_{2}\) layers. J. Appl. Phys. 79, 8660–8663 (1996)CrossRefGoogle Scholar
  40. 40.
    Inokuma, T., Wakayama, Y., Muramoto, T., et al.: Optical properties of Si clusters and Si nanocrystallites in high-temperature annealed SiOx films. J. Appl. Phys. 83, 2228–2234 (1998)CrossRefGoogle Scholar
  41. 41.
    Yi, L.X., Heitmann, J., Scholz, R., Zacharias, M.: Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers. Appl. Phys. Lett. 81, 4248–4250 (2002)CrossRefGoogle Scholar
  42. 42.
    Serincan, U., Aygun, G., Turan, R.: Spatial distribution of light-emitting centers in Si-implanted SiO\(_{2}\). J. Lumin. 113, 229–234 (2005)CrossRefGoogle Scholar
  43. 43.
    Trukhin, A.N.: Excitons, localized states in silicon dioxide and related crystals and glasses In: Pacchioni, G., Skuja, L., Griscom, D.L. (eds.) Defects in SiO\(_{2}\) and Related Dielectrics: Science and Technology. Springer, New York (2002)Google Scholar
  44. 44.
    Mathioudakis, C., Kopidakis, G., Patsalas, P., Kelires, P.C.: Disorder and optical properties of amorphous carbon. Diam. Relat. Mater. 16, 1788–1792 (2007)CrossRefGoogle Scholar
  45. 45.
    Robertson, J.: Recombination and photoluminescence mechanism in hydrogenated amorphous carbon. Phys. Rev. B. 53, 16302–16305 (1996)CrossRefGoogle Scholar
  46. 46.
    Henley, S.J., Carey, J.D., Silva, S.R.: Room temperature photoluminescence from nanostructured amorphous carbon. Appl. Phys. Lett. 85, 6236–6238 (2004)CrossRefGoogle Scholar
  47. 47.
    Fan, J.Y., Wu, X.L., Chu, P.K.: Low-dimensional SiC nanostructures: fabrication, luminescence, and electrical properties. Prog. Mater. Sci. 51, 983–1031 (2006)CrossRefGoogle Scholar
  48. 48.
    Shimizu-Iwayama, T., Hole, D.E., Boyd, I.W.: Mechanism of photoluminescence of Si nanocrystals in SiO\(_{2}\) fabricated by ion implantation: the role of interactions of nanocrystals and oxygen. J. Phys.: Condens. Matter 11, 6595 (1999)Google Scholar
  49. 49.
    Rebohle, L., Gebel, T., Frob, H., et al.: Ion beam processing for Si/C-rich thermally grown SiO\(_{2}\) layers: photoluminescence and microstructure. Appl. Surf. Sci. 184, 156–160 (2001)CrossRefGoogle Scholar
  50. 50.
    Zhuravlev, K.S., Gilinsky, A.M., Kobitsky, A.Y.: Mechanism of photoluminescence of Si nanocrystals fabricated in a SiO\(_{2}\) matrix. Appl. Phys. Lett. 73, 2962–2964 (1998)CrossRefGoogle Scholar
  51. 51.
    Griscom, D.L.: Self-trapped holes in amorphous silicon dioxide. Phys. Rev. B. 40, 4224–4227 (1989)CrossRefGoogle Scholar
  52. 52.
    Trukhin, A., Poumellec, B.: Energy transport in silica to oxygen-deficient luminescence centers. Comparison with other luminescence centers in silica and \(\alpha \)-quartz. Solid State Commun. 129, 285–289 (2004)CrossRefGoogle Scholar
  53. 53.
    Messina, F., Vella, E., Cannas, M., Boscaino, R.: Evidence of delocalized excitons in amorphous solids. Phys. Rev. Lett. 105, 116401 (2010)CrossRefGoogle Scholar
  54. 54.
    Toyozawa, Y.: Dynamics and instabilities of an exciton in the phonon field and the correlated absorption-emission spectra. Pure Appl. Chem. 69, 1171–1178 (1997)CrossRefGoogle Scholar
  55. 55.
    Zatsepin, A.F., Biryukov, D.Yu., Kortov, V.S.: Photoelectron spectroscopy of E\(^\prime \) centers in crystalline and glassy silicon dioxide. Phys. Solid State 48, 245–254 (2006)Google Scholar
  56. 56.
    Dovrat, M., Goshen, Y., Jedrzejewski, J., et al.: Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy. Phys. Rev. B. 69, 155311 (2004)CrossRefGoogle Scholar
  57. 57.
    Mihalcescu, I., Vial, J.C., Romestain, R.J.: Carrier localization in porous silicon investigated by time-resolved luminescence analysis. J. Appl. Phys. 80, 2404–2411 (1996)CrossRefGoogle Scholar
  58. 58.
    Linnros, J., Lalic, N., Galeckas, A., Grivickas, V.: Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO\(_{2}\). J. Appl. Phys. 86, 6128–6134 (1999)Google Scholar
  59. 59.
    Inokuti, M., Hirayama, F.: Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys. 43, 1978 (1965)CrossRefGoogle Scholar
  60. 60.
    Zatsepin, A.F., Buntov, E.A., Ageev, A.L.: The relation between static disorder and photoluminescence quenching law in glasses: a numerical technique. J. Lumin. 130, 1721–1724 (2010)CrossRefGoogle Scholar
  61. 61.
    Street, R.A.: Recombination in a-Si:H: defect luminescence. Adv. Phys. 25, 5775–5784 (1976)CrossRefGoogle Scholar
  62. 62.
    Mott, N.F., Davis, E.A.: Electronic Processes in Non-crystalline Materials. Oxford University Press, Oxford (1979)Google Scholar
  63. 63.
    Wang, J., Righini, M., Gnoli, A., et al.: Thermal activation energy of crystal and amorphous nano-silicon in SiO\(_{2}\) matrix. Solid State Commun. 147, 461–464 (2008)CrossRefGoogle Scholar
  64. 64.
    Zatsepin, A.F.: Statics and dynamics of excited states of oxygen-deficient centers in SiO\(_{2}\). Phys. Solid State 52, 1176–1187 (2010)CrossRefGoogle Scholar
  65. 65.
    Kapoor, M., Singh, V.A., Johri, G.K.: Origin of the anomalous temperature dependence of luminescence in semiconductor nanocrystallites. Phys. Rev. B. 61, 1941 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Physics and TechnologyUral Federal UniversityEkaterinburgRussia

Personalised recommendations