Applications of Ordered Si Nanowire Array to Solar Energy Harvesting and NEMS

  • Yuerui LuEmail author
  • Amit Lal
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 187)


Nanostructured silicon thin-film solar cells are promising, due to the strongly enhanced light trapping, high carrier collection efficiency, and potential low cost. Ordered nanostructure arrays, with large-area controllable spacing, orientation, and size, are critical for reliable light-trapping and high-efficiency solar cells. Available top–down lithography approaches to fabricate large-area ordered nanostructure arrays are challenging due to the requirement of both high lithography resolution and high throughput. Here, a novel ordered silicon nano-conical-frustum array structure, exhibiting an impressive absorbance of \({\sim }{99}\,\%\) (upper bound) over wavelengths 400–1100 nm by a thickness of only \(5\,\upmu \mathrm{{m}}\), is realized by our recently reported technique self-powered parallel electron lithography that has high throughput and high resolution. High-efficiency (up to 10.8 %) solar cells are demonstrated, using these ordered ultrathin silicon nano-conical-frustum arrays. Moreover, these ordered nano-structures have been successfully integrated into nano-electro-mechanical system (NEMS), enabling high-efficiency and broad-band optical actuation for NEMS devices. The first-ever nanopillar membrane acoustic speaker, using nano-scale photonic crystal optical absorbers for thermo-mechanical excitation of speaker membrane, is demonstrated.


Si nanowire array Solar cells High-efficiency Light trapping NEMS Remote actuation Aspeaker 


  1. 1.
    Gevorkian, P.: Sustainable Energy Systems Engineering: The Complete Green Building Design Resource. McGraw-Hill Professional, New York (2007)Google Scholar
  2. 2.
    Huang, Y.-F., et al.: Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2, 770–774 (2007)CrossRefGoogle Scholar
  3. 3.
    Tsakalakos, L., et al.: Strong broadband optical absorption in silicon nanowire films. J. Nanophotonics 1, 013552 (2007)CrossRefGoogle Scholar
  4. 4.
    Sivakov, V., et al.: Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9, 1549–1554 (2009)CrossRefGoogle Scholar
  5. 5.
    Stelzner, T., et al.: Silicon nanowire-based solar cells. Nanotechnology 19, 295203 (2008)CrossRefGoogle Scholar
  6. 6.
    Tian, B., et al.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007)CrossRefGoogle Scholar
  7. 7.
    Tsakalakos, L., et al.: Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117 (2007)CrossRefGoogle Scholar
  8. 8.
    Garnett, E.C., Yang, P.: Silicon nanowire radial p–n junction solar cells. J. Am. Chem. Soc. 130, 9224–9225 (2008)CrossRefGoogle Scholar
  9. 9.
    Garnett, E., Yang, P.: Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010)CrossRefGoogle Scholar
  10. 10.
    Lin, C., Povinelli, M.L.: Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Opt. Express 17, 19371–19381 (2009)CrossRefGoogle Scholar
  11. 11.
    Hu, L., Chen, G.: Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249–3252 (2007)CrossRefGoogle Scholar
  12. 12.
    Yu, Z., Raman, A., Fan, S.: Fundamental limit of nanophotonic light trapping in solar cells. Proc. Nat. Acad. Sci. 107, 17491–17496 (2010)CrossRefGoogle Scholar
  13. 13.
    Chutinan, A., John, S.: Light trapping and absorption optimization in certain thin-film photonic crystal architectures. Phys. Rev. A 78, 023825 (2008)CrossRefGoogle Scholar
  14. 14.
    Zhu, J., et al.: Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279–282 (2008)CrossRefGoogle Scholar
  15. 15.
    Costner, E.A., Lin, M.W., Jen, W.-L., Willson, C.G.: Nanoimprint lithography materials development for semiconductor device fabrication. Annu. Rev. Mater. Res. 39, 155–180 (2009)CrossRefGoogle Scholar
  16. 16.
    Lu, Y., Lal, A.: Vacuum-free self-powered parallel electron lithography with sub-35-nm resolution. Nano Lett. 10, 2197–2201 (2010)CrossRefGoogle Scholar
  17. 17.
    Lu, Y., Yoshimizu, N., Lal, A.: Self-powered near field electron lithography. J. Vac. Sci. Technol. B 27, 2537–2541 (2009)CrossRefGoogle Scholar
  18. 18.
    Lu, Y., Peng, S., Luo, D., Lal, A.: Low-concentration mechanical biosensor based on a photonic crystal nanowire array. Nature Commun. 2, 578 (2011)CrossRefGoogle Scholar
  19. 19.
    Lu, Y., Lal, A.: Acoustic speaker based on high-efficiency broadband nano-pillar photonic crystal opto-thermo-mechanical mems excitation. In: Proceedings of the 16th International Conference on Solid-State Sensors, Actuators and Microsystems, Beijing, China, pp. 2678–2681 (2011)Google Scholar
  20. 20.
    Lu, Y., Lal, A.: Photonic crystal based all-optical pressure sensor. In: Proceedings of the 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, pp. 621–624 (2011)Google Scholar
  21. 21.
    Lu, Y., Peng, S., Luo, D., Lal, A.: Femtomolar sensitivity DNA photonic crystal nanowire array ultrasonic mass sensor. In: Proceedings of the 25th IEEE International Conference on Micro Electro Mechanical Systems, Paris, France, pp. 88–91 (2012)Google Scholar
  22. 22.
    John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)CrossRefGoogle Scholar
  23. 23.
    Diedenhofen, S.L., et al.: Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods. Adv. Mater. 21, 973–978 (2009)CrossRefGoogle Scholar
  24. 24.
    Garnett, E.C., et al.: Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements. Nat. Nanotechnol. 4, 311–314 (2009)CrossRefGoogle Scholar
  25. 25.
    Zhao, J., Wang, A., Altermatt, P., Green, M.A.: Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss. Appl. Phys. Lett. 66, 3636–3638 (1995)CrossRefGoogle Scholar
  26. 26.
    Fan, Z., et al.: Challenges and prospects of nanopillar-based solar cells. Nano Res. 2, 829–843 (2009)CrossRefGoogle Scholar
  27. 27.
    Kim, Y., Neikirk, D.P.: Micromachined fabry-perot cavity pressure transducer. IEEE Photonics Technol. Lett. 7, 1471–1473 (1995)CrossRefGoogle Scholar
  28. 28.
    Xiao, G.Z., Adnet, A., Zhang, Z., Lu, Z., Grover, C.P.: Fiber-optic fabry-perot interferometric gas-pressure sensors embedded in pressure fittings. Microwave Opt. Technol. Lett. 42, 486–489 (2004)CrossRefGoogle Scholar
  29. 29.
    Ohtaka, K.: Energy band of photons and low-energy photon diffraction. Phys. Rev. B 19, 5057–5067 (1979)CrossRefGoogle Scholar
  30. 30.
    Lohfink, A., Eccardt, P.C.: Linear and nonlinear equivalent circuit modeling of cmuts. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 2163–2172 (2005)CrossRefGoogle Scholar
  31. 31.
    Timoshenko, S.P., Woinowsky-Kreiger, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill Higher Education, New York (1964)Google Scholar
  32. 32.
    Xu, M., Wang, L.V.: Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006)CrossRefGoogle Scholar
  33. 33.
    Harren, F.J.M., Cotti, G., Oomens, J., Hekkert, S.T.L.: Encyclopedia of Analytical Chemistry. Wiley, Chichester (2006)Google Scholar
  34. 34.
    Ilic, B., Krylov, S., Aubin, K., Reichenbach, R., Craighead, H.G.: Optical excitation of nanoelectromechanical oscillators. Appl. Phys. Lett. 86, 193114 (2005)CrossRefGoogle Scholar
  35. 35.
    Klaasse, G., Puers, R., Tilmans, H.A.C.: Piezoelectric versus electrostatic actuation for a capacitive rf-mems switch. In: Proceedings of the SeSens, p. 631 (2002)Google Scholar
  36. 36.
    Lu, Y., Lal, A.: High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Nano Lett. 10, 4651–4656 (2010)CrossRefGoogle Scholar
  37. 37.
    Olfatnia, M., Xu, T., Ong, L.S., Miao, J.M., Wang, Z.H.: Investigation of residual stress and its effects on the vibrational characteristics of piezoelectric-based multilayered microdiaphragms. J. Micromech. Microeng. 20, 015007 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Sonic MEMS LaboratorySchool of Electrical and Computer Engineering, Cornell UniversityIthacaUSA

Personalised recommendations