Advertisement

The Development of Si and Ge-Based Nanomaterials for High Performance Lithium Ion Battery Anodes

  • Xiao-Liang Wang
  • Wei-Qiang HanEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 187)

Abstract

Silicon and germanium are among the most promising anode materials for high performance lithium ion batteries, due to their unprecedented high capacities. In recent few years, increasingly enormous efforts have been dedicated to these two important anodes, leading to significant improvement in their cycling life, practical capacity, rate capability, and coulombic efficiency. Nanostructuring is playing a crucial role in enabling the improvement and will lead to their widespread use in various battery markets. Nanoscale particles can better tolerate the wild volume change upon cycling and maintain their integrity than micron-sized particles. They can also shorten the diffusion distance of lithium ions and electrons and thus have high capacity. Further, one-dimensional nanowires exhibit superior stress behavior and electron transport. Porous and hierarchical nanostructures can provide extra space to accommodate the volume change. Wisely manipulating these handles have produced impressively better-performing systems. Porous single-crystal silicon nanowires have shown more stable capacity than solid nanowires. Hierarchical porous amorphous \(\mathrm{{GeO}}_\mathrm{x}\) is another system with very long cycle life and high capacity.

Keywords

Nanomaterials Negative electrode Group-IV elements Graphene Magnéli-Phase Ti\(_{n}\mathrm{O}_{2n-1}\) Nanobelts Carbon coating 

Notes

Acknowledgments

We thank our colleagues Drs. J. J. Chen, J. Graetz, M. Feygenson, M. C. Aronson, H. Y. Chen, C. H. Lin, W. Ku, J. M. Bai, T. A. Tyson, X. Q. Yu, X. J. Wang, and X. Q. Yang for their helpful advice. We also are grateful to Dr. H. Li (Institute of Physics, Chinese Academy of Sciences) and Drs. J. Hong, F. Wang, L. H. Zhang, L. J. Wu. and C. Ma (Brookhaven National Laboratory) for their technical support and valuable discussions.

References

  1. 1.
    Li, H., Huang, X.J., Chen, L.Q., Wu, Z.G., Liang, Y.: A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid State Lett. 2, 547–549 (1999)Google Scholar
  2. 2.
    Wang, C.S., Wu, G.T., Zhang, X.B., Qi, Z.F., Li, W.Z.: Lithium insertion in carbon-silicon composite materials produced by mechanical milling. J. Electrochem. Soc. 145, 2751–2758 (1998)CrossRefGoogle Scholar
  3. 3.
    Kim, H., Seo, M., Park, M.H., Cho, J.: A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 49, 2146–2149 (2010)CrossRefGoogle Scholar
  4. 4.
    Wang, X.L., Feygenson, M., Aronson, M.C., Han, W.Q.: Sn/\({\rm {SnO}}_{\rm {x}}\) core-shell nanospheres: synthesis, anode performance in Li ion batteries, and superconductivity. J. Phys. Chem. C 114, 14697–14703 (2010)CrossRefGoogle Scholar
  5. 5.
    Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H.Y., Qi, L.A., Kushima, A., Li, J.: In situ observation of the electrochemical lithiation of a single \({\rm {SnO}}_2\) Nanowire electrode. Science 330, 1515–1520 (2010)CrossRefGoogle Scholar
  6. 6.
    Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008)CrossRefGoogle Scholar
  7. 7.
    Graetz, J., Ahn, C.C., Yazami, R., Fultz, B.: Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 151, A698–A702 (2004)CrossRefGoogle Scholar
  8. 8.
    Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., Yushin, G.: High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010)CrossRefGoogle Scholar
  9. 9.
    Fan, Q., Chupas, P.J., Whittingham, M.S.: Characterization of amorphous and crystalline tin-cobalt anodes. Electrochem. Solid State Lett. 10, A274–A278 (2007)CrossRefGoogle Scholar
  10. 10.
    Besenhard, J.O., Yang, J., Winter, M.: Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources 68, 87–90 (1997)CrossRefGoogle Scholar
  11. 11.
    Mao, O., Dunlap, R.A., Dahn, J.R.: Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries-I. The \({\rm {Sn}}_2{\rm {Fe}}\)-C system. J. Electrochem. Soc. 146, 405–413 (1999)CrossRefGoogle Scholar
  12. 12.
    Wang, X.L., Han, W.Q., Chen, J.J., Graetz, J.: Single-crystal intermetallic M-Sn (\({\rm M} = {\rm {Fe}}\), Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2, 1548–1551 (2010)CrossRefGoogle Scholar
  13. 13.
    Wang, X.L., Feygenson, M., Chen, H.Y., Lin, C.H., Ku, W., Bai, J.M., Aronson, M.C., Tyson, T.A., Han, W.Q.: Nanospheres of a new intermetallic FeSn(5) phase: synthesis, magnetic properties and anode performance in Li-ion batteries. J. Am. Chem. Soc. 133, 11213–11219 (2011)CrossRefGoogle Scholar
  14. 14.
    Wang, X.L., Chen, H.Y., Bai, J.M., Han, W.Q.: CoSn5 phase: crystal structure resolving and stable high capacity as anodes for Li ion batteries. J. Phys. Chem. Lett. 3, 1488–1492 (2012)CrossRefGoogle Scholar
  15. 15.
    Wang, X.L., Han, W.Q.: Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. ACS Appl. Mater. Interfaces 2, 3709–3713 (2010)CrossRefGoogle Scholar
  16. 16.
    Huang, R., Fan, X., Shen, W.C., Zhu, J.: Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes. Appl. Phys. Lett. 95, 133119 (2009)CrossRefGoogle Scholar
  17. 17.
    Obrovac, M.N., Krause, L.J.: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007)CrossRefGoogle Scholar
  18. 18.
    Wang, X.L., Han, W.Q., Chen, H.Y., Bai, J.M., Tyson, T.A., Yu, X.Q., Wang, X.J., Yang, X.Q.: Amorphous hierarchical porous \({\rm {GeO}}_{\rm x}\) as high-capacity anodes for Li ion batteries with very long cycling life. J. Am. Chem. Soc. 133, 20692–20695 (2011)CrossRefGoogle Scholar
  19. 19.
    Yoon, S., Park, C.M., Sohn, H.J.: Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem. Solid State Lett. 11, A42–A45 (2008)CrossRefGoogle Scholar
  20. 20.
    Kim, H., Cho, J.: Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. Nano Lett. 8, 3688–3691 (2008)CrossRefGoogle Scholar
  21. 21.
    Han, W.Q., Zhang, Y.: Magnéli phases \({\rm {Ti}}_{\rm {n}}{\rm {O}}_{2{\rm {n}}-1}\) nanowires: formation, optical, and transport properties. Appl. Phys. Lett. 92, 203117 (2008)CrossRefGoogle Scholar
  22. 22.
    Han, W.Q., Wang, X.L.: Carbon-coated magnéli-phase Ti(n)O(2n\(-\)1) nanobelts as anodes for Li-ion batteries and hybrid electrochemical cells. Appl. Phys. Lett. 97, 243104 (2010)CrossRefGoogle Scholar
  23. 23.
    Wang, Q., Wen, Z.H., Li, J.H.: A hybrid supercapacitor fabricated with a carbon nanotube cathode and a \({\rm {TiO}}_2\)-B nanowire anode. Adv. Funct. Mater. 16, 2141–2146 (2006)CrossRefGoogle Scholar
  24. 24.
    Wang, D.W., Fang, H.T., Li, F., Chen, Z.G., Zhong, Q.S., Lu, G.Q., Cheng, H.M.: Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage. Adv. Funct. Mater. 18, 3787–3793 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Ningbo Institute of Material Technology and Engineering (NIMTE)Chinese Academy of SciencesNingboPeople’s Republic of China
  2. 2.Seeo Inc.HaywardUSA

Personalised recommendations