Cubic GaN on Nanopatterned 3C-SiC/Si (001) Substrates

  • Ricarda Maria KemperEmail author
  • Donat Josef As
  • Jörg K. N. Lindner
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 187)


In this chapter we demonstrate the growth and characterization of nonpolar relaxed cubic GaN by plasma-assisted molecular beam epitaxy on prepatterned 3C-SiC/Si (001) substrates. Nanopatterning of 3C-SiC/Si (001) was achieved by two different fabrication techniques: nanosphere lithography (NSL) to generate large-area pattern, and conventional electron beam lithography (EBL) for tailoring particular surface morphologies. Both methods were followed by a lift-off and a reactive ion etching (RIE) process. We analyze the influence of the substrate on the GaN growth and show that it is possible to grow single phase and defect-reduced cubic GaN crystals on 3C-SiC nanostructures. Furthermore cubic GaN/AlN multiquantum wells were grown on 3C-SiC nanostructures, which is a further step toward nanoscaled device applications.


Nitrides Molecular beam epitaxy Selective epitaxy Nanoheteroepitaxy Planar defects Nanostructures TEM EBSD 



The authors would like to thank L. Hiller, Th. Stauden and J. Pezoldt (TU Ilmenau) for patterning the substrates with electron beam lithography and reactive ion etching. The authors also wish to thank Th. Niendorf, K. Duschik and H.-J. Maier (University of Paderborn) for EBSD and some of the TEM measurements. We thank M. Ruth and C. Meier (University of Paderborn) for the micro-photoluminescence measurements. Furthermore we thank the team of the Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) at Forschungszentrum Jülich, in particular D. Meertens, M. Luysberg and K. Tillmann for access to and comprehensive support at the FIB and TEM facilities of ER-C. Part of the work at Paderborn was financially supported by German Science Foundation (As(107/4-1)).


  1. 1.
    Nakamura, S., Mukai, I., Senok, M.: Candelaclass highbrightness InGaN/AlGaN doubleheterostructure bluelight emitting diodes. Appl. Phys. Lett. 64, 1687 (1994)Google Scholar
  2. 2.
    Rajan, S., Waltereit, P., Poblenz, C., Heikman, S.J., Green, D.S., Speck, J.S., Mishra, U.K.: Power Performance of AlGaN-GaN HEMTs Grown on SiC by Plasma-Assisted MBE. IEEE Electron Device Lett. 25, 247 (2004)Google Scholar
  3. 3.
    Tschumak, E., Granzer, R., Lindner, J.K.N., Schweiz, F., Lischka, K., Nagasawa, H., Abe, M., As, D.J.: Nonpolar cubic AlGaN/GaN heterojunction field-effect transistor on Ar+implanted 3C-SiC (001). Appl. Phys. Lett. 96, 253501 (2010)Google Scholar
  4. 4.
    Fitzgerald, E.A., Watson, G.P., Proano, R.E., Ast, D.G.: Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction in growth area. J. Appl. Phys. 65, 2220 (1989)Google Scholar
  5. 5.
    Zubia, D., Hersee, S.D.: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials. J. Appl. Phys. 85, 6492 (1999)Google Scholar
  6. 6.
    Ambacher, O., Majewski, J., Miskys, C., Link, A., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, B., Eastman, L.F.: Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter 14, 3399–3434 (2002)Google Scholar
  7. 7.
    Bernardini, F., Fiorentini, V., Vanderbilt, D.: Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56, R10 024 (1997)Google Scholar
  8. 8.
    Waltereit, P., Brandt, O., Trampert, A., Grahn, H.T., Menninger, J., Reiche, M., Ploog, K.H.: Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865 (2000)Google Scholar
  9. 9.
    Schörmann, J., Potthast, S., As, D.J., Lischka, K.: In situ growth regime characterization of cubic GaN using reflection high energy electron diffraction. Appl. Phys. Lett. 90, 041918 (2009)Google Scholar
  10. 10.
    Novikov, S.V., Stanton, N.M., Campion, R.P., Foxon, C.T., Kent, A.J.: Free-standing zinc-blende (cubic) GaN layers and substrates. J. Crystal Growth 310, 3964 (2008)Google Scholar
  11. 11.
    Gay, P., Hirsch, P.B., Kelly, A.: The estimation of dislocation densities in metals from x-ray data. Acta Metallurgica 1, 315 (1953)Google Scholar
  12. 12.
    DeCuir Jr, E.A., Manasreh, M.O., Tschumak, E., Schörmann, J., As, D.J., Lischka, K.: Cubic GaN/AlN multiple quantum well photodetector. Appl. Phys. Lett. 92, 201910 (2008)Google Scholar
  13. 13.
    Kemper, R.M., Häberlen, M., Schupp, T., Weinl, M., Bürger, M., Ruth, M., Meier, C., Niendorf, T., Maier, H.J., Lischka, K., As, D.J., Lindner, J.K.N.: Formation of defects in cubic GaN grown on nano-patterned 3C-SiC (001). Phys. Stat. Sol. (c) 9(3–4), 1028 (2012)Google Scholar
  14. 14.
    Sun, X.Y., Bommena, R., Burckel, D., Frauenglass, A., Fairchild, M.N., Brueck, S.R.J., Garett, G.A., Wraback, M., Hersee, S.D.: Defect reduction mechanisms in the nanoheteroepitaxy of GaN on SiC. J. of Appl. Phys. 95, 1450 (2004)Google Scholar
  15. 15.
    Haynes, C.L., Van Duyne, R.P.: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105(24), 5599–5611 (2001)Google Scholar
  16. 16.
    Chassagne, T., Leycuras, A., Balloud, C., Arcade, P., Peyre, H., Juillaguet, S.: Investigation of 2 inch SiC layers grown in a resistively-heated LP-CVD reactor with horizontal hot-walls. Mater. Sci. Forum 457–460, 273–276 (2004)Google Scholar
  17. 17.
    Cicero, G., Catellani, A., Galli, G.: Interaction of Water Molecules with SiC(001) Surfaces. J. Phys. Chem. B 108, 16518 (2004)Google Scholar
  18. 18.
    Lindner, J.K.N., Seider, C., Fischer, F., Weinl, M., Stritzker, B.: Regular surface patterns by local swelling induced by He implantation into silicon through nanosphere lithography masks. Nucl. Instr. Meth. B 267, 1394 (2009)Google Scholar
  19. 19.
    Gogel, D., Weinl, M., Lindner, J.K.N., Stritzker, B.: Plasma modification of nanosphere lithography masks made of polystyrene beads. J. Optoelectron. Adv. Mater. 12, 740 (2010)Google Scholar
  20. 20.
    Hiller, L., Stauden, T., Kemper, R.M., Lindner, J.K.N., As, D.J., Pezoldt, J.: ECR-etching of submicron and nanometer sized 3C-SiC(100) mesa structures. Mater. Sci. Forum 717–720, 901 (2012)Google Scholar
  21. 21.
    Kemper, R.M., Hiller, L., Stauden, T., Pezoldt, J., Duschik, K., Niendorf, T., Maier, H.J., Meertens, D., Tillmann, K., As, D.J., Lindner, J.K.N.: Growth of cubic GaN on 3C-SiC/Si (001) nanostructures. J. Cryst. Growth (2012). doi: 10.1016/j.jcrysgro.2012.10.011
  22. 22.
    As, D. J.: Growth and characterization of MBE-grown cubic GaN, \({\text{ In }}_{\text{ x }}\) \({\text{ Ga }_\text{1-x }}\text{ N },\) \({\text{ and }}\) \({\text{ Al }}_{\text{ y }}\) \({\text{ Ga }_\text{1-y }}{\text{ N }}.\) In: Manasreh, M.O. (ed.) Optoelectronic Properties of Semiconductors and Superlattices, Vol. 19, Chap. 9, pp. 323–450. Taylor and Francis, New York (2003)Google Scholar
  23. 23.
    As, D.J., Potthast, S., Schörmann, J., Li, S.F., Lischka, K., Nagasawa, H., Abe, M.: Molecular Beam Epitaxy of Cubic Group III-Nitrides on free-standing 3C-SiC substrates. Mater. Sci. Forum 527, 1489 (2006)Google Scholar
  24. 24.
    Northrup, J.E., Neugebauer, J., Feenstra, R.M., Smith, A.R.: Structure of GaN (0001): The laterally contracted Ga bilayer model. Phys. Rev. B 61, 9932 (2000)Google Scholar
  25. 25.
    Koblmüller, G., Brown, J., Averbeck, R., Riechert, H., Pongratz, P., Speck, J.S.: Continuous evolution of Ga adlayer coverages during plasma-assisted molecular-beam epitaxy of (0001) GaN. Appl. Phys. Lett. 86, 041908 (2005)Google Scholar
  26. 26.
    Brandt, O., Sun, Y.J., Däweritz, L., Ploog, K.H.: Ga adsorption and desorption kinetics on M-plane GaN. Phys. Rev. B 69, 165326 (2004)Google Scholar
  27. 27.
    Schikora, D., Hankeln, M., As, D.J., Lischka, K., Litz, T., Waag, A., Buhrow, T., Henneberger, F.: Epitaxial growth and optical transitions of cubic GaN films. Phys. Rev. B 54, 8381 (1996)Google Scholar
  28. 28.
    Feuillet, G., Hamaguchi, H., Ohta, K., Hacke, P., Okumura, H., Yoshida, S.: Arsenic mediated reconstructions on cubic (001) GaN. Appl. Phys. Lett. 70, 1025 (1997)Google Scholar
  29. 29.
    Neugebauer, J., Zywietz, Z., Scheffler, M., Northrup, J.E., Van der Walle, C.G.: Clean and As-Covered Zinc-Blende GaN (001) Surfaces: Novel Surface Structures and Surfactant Behavior. Phys. Rev. Lett. 80, 3097 (1998)Google Scholar
  30. 30.
    Mula, G., Adelmann, C., Moehl, S., Oullier, J., Daudin, B.: Surfactant effect of gallium during molecular-beam epitaxy of GaN on AlN (0001). Phys. Rev. B 64, 195406 (2001)Google Scholar
  31. 31.
    Adelmann, C., Brault, J., Jalabert, D., Gentile, P., Mariette, H., Mula, G., Daudin, B.: Dynamically stable gallium surface coverages during plasma-assisted molecular-beam epitaxy of (0001) GaN. J. Appl. Phys. 91, 9638 (2002)Google Scholar
  32. 32.
    Nagayama, A., Sawada, H., Takuma, E., Katayama, R., Onabe, K., Ichinose, H., Shiraki, Y.: Structural study on stacking faults in GaN/GaAs (001) heterostructures. Inst. Phys. Conf. Ser. 170, 749 (2002)Google Scholar
  33. 33.
    Ayers, J.E.: New model for the thickness and mismatch dependencies of threading dislocation densities in mismatched heteroepitaxial layers. J. Appl. Phys. 78, 3724 (1995)Google Scholar
  34. 34.
    Okumura, H., Ohta, K., Feuillet, G., Balakrishnan, K., Chichibu, S., Hamaguchi, H., Hacke, P., Yoshida, S.: Growth and characterization of cubic GaN. J. Cryst. Growth 178, 113 (1997)Google Scholar
  35. 35.
    Daudin, B., Feuillet, G., Hübner, J., Samson, Y., Widmann, F., Philippe, A., Bru-Chevallier, C., Guillot, G., Bustarret, E., Bentoumi, G., Deneuville, A.: How to grow cubic GaN with low hexagonal phase content on (001) SiC by molecular beam epitaxy. J. Appl. Phys. 84, 2295 (1998)Google Scholar
  36. 36.
    Kemper, R.M., Weinl, M., Kemper, R.M., Weinl, M., Mietze, C., Häberlen, M., Schupp, T., Tschumak, E., Lindner, J.K.N., Lischka, K., As, D.J.: Growth of cubic GaN on nano-patterned 3C-SiC/Si (001) substrates. J. Cryst. Growth 323, 84 (2011)Google Scholar
  37. 37.
    Taylor, A., Jones, R.M.: The crystal structure and the thermal expansion of cubic and hexagonal silicon carbide, Silicon Carbide-A High Temperature Semiconductor, edited by J.R.O Connor, J. Smiltens, Oxford, Symposium Publications Division, Pergamon Press, 1960, Section III, Chap.1, p.147 (1960)Google Scholar
  38. 38.
    Strite, S., Juan, J., Li, Z., Salvador, A., Chen, H., Smith, D.J., Choyke, W.J., Morkoc, H., Vac, J.: An investigation of the properties of cubic GaN grown on GaAs by plasma-assisted molecular-beam epitaxy. J. Vac. Sci. Technol. B9(4), 1924 (1991)Google Scholar
  39. 39.
    Wu, J., Yaguchi, H., Zhang, B.P., Segawa, Y., Onabe, K., Shiraki, Y.: Optical properties of cubic GaN grown on 3C-SiC (100) substrates by metalorganic vapor phase epitaxy. Phys. Stat. Sol. (a) 180, 403 (2000)Google Scholar
  40. 40.
    Sanorpim, S., Takuma, E., Ichinose, H., Katayama, R., Onabe, K.: Structural transition control of laterally overgrown c-GaN and h-GaN on stripe-patterned GaAs (001) substrates by MOVPE. Phys. Stat. Sol. (b) 244(6), 1769 (2007)Google Scholar
  41. 41.
    Stadelmann, P.A.: EMS - A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21(2), 131 (1987)Google Scholar
  42. 42.
    As, D.J., Schmilgus, F., Wang, C., Schöttker, B., Schikora, D., Lischka, K.: The near band edge photoluminescence of cubic GaN epilayers. Appl. Phys. Lett. 70, 1311 (1997)Google Scholar
  43. 43.
    Nagasawa, H., Abe, M., Yagi, K., Kawahara, T., Hatta, N.: Fabrication of high performance 3C-SiC vertical MOSFETs by reducing planar defects. Phys. Stat. Sol. (b) 245(7), 1272–1280 (2008)Google Scholar
  44. 44.
    Kemper, R.M., Schupp, T., Häberlen, M., Niendorf, T., Maier, H.-J., Dempewolf, A., Bertram, F., Christen, J., Kirste, R., Hoffmann, A., Lindner, J., As, D.J.: Anti-phase domains in cubic GaN. J. Appl. Phys. 110, 123512 (2011)Google Scholar
  45. 45.
    Reimer, L.: Scanning Electron Microscopy, 2nd edn, pp. 368–374. Springer, New York (1998)Google Scholar
  46. 46.
    Zainal, N., Novikov, S.V., Mellor, C.J., Foxon, C.T., Kent, A.J.: Current-voltage characteristics of zinc-blende (cubic) Al0.3Ga0.7N/GaN double barrier resonant tunneling diodes. Appl. Phys. Lett. 97, 112102 (2010)Google Scholar
  47. 47.
    Mietze, C., Lischka, K., As, D.J.: Current-voltage characteristics of cubic Al(Ga)N/GaN double barrier structures on 3C-SiC. Phys. Stat. Sol. (a) 209(3), 439 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ricarda Maria Kemper
    • 1
    Email author
  • Donat Josef As
    • 1
  • Jörg K. N. Lindner
    • 1
  1. 1.Department of PhysicsUniversity of PaderbornPaderbornGermany

Personalised recommendations