Advertisement

III–V Quantum-Dot Materials and Devices Monolithically Grown on Si Substrates

  • Huiyun LiuEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 187)

Abstract

The integration of III–V photonics materials and devices with Si microelectronics will enable the fabrication of complex optoelectronic circuits, which will permit the creation of the long-dreamed chip-to-chip and system-to-system optical communications. Direct epitaxial growth of semiconductor III–V compounds on Si substrates is one of the most promising candidates for the fabrication of photonics devices on the Si platform. III–V quantum dots (QDs) offer an attractive alternative to conventional quantum wells(QWs) for building III–V lasing devices on a Si platform due to their unique advantages. We developed the long-wavelength InAs/GaAs QD materials and devices monolithically grown on Si, Ge, and Ge-on-Si substrates by the use of Molecular Beam Epitaxy. Room-temperature(RT) lasing at a wavelength of around 1.3 \(\upmu \)m has been achieved with threshold current densities of 64.3 A/cm\(^{2}\) and lasing operation up to 83\(\,^{\circ }\mathrm{{C}}\) for Si-based ridge-waveguide InAs/GaAs QD lasers with as-cleaved facets. The optical and electrical properties of InAs/GaAs QDs grown on Si substrates were further investigated to evaluate the potential for Si-based photodiodes. A peak responsivity of 5 mA/W was observed at 1.28 \(\upmu \)m, while the dark current was two orders of magnitude lower than those reported for Ge-on-Si photodiodes. These studies ultimately form the basis for the monolithic integration of 1.3-\(\upmu \)m InAs/GaAs QD lasers and detectors on the Si platform.

Keywords

Quantum dots Semiconductor laser III–V/Si Integration Silicon photonics Molecular beam epitaxy Semiconductor Detector 

Notes

Acknowledgments

The author wishes to thank Professor Alwyn Seeds (University College London) for valuable discussion and support. The author also thanks Mr. Andrew Lee, Dr. Qi Jiang, Dr. Ting Wang, Dr. James Wilson, Dr. Kris Groom, Dr. Ian Sandall, Dr. Chin-Hing Tan, Dr. Jo Shien Ng, and Professor Richard Hogg for collaboration and help. This study is supported by The Royal Society, UK Defence Science and Technology Laboratory (Dstl), UK Engineering and Physics Science Research Council (EPSRC).

References

  1. 1.
    Jalali, B., Fathpour, S.: Silicon photonics. J. Lightwave Technol. 24, 4600–4615 (2006)CrossRefGoogle Scholar
  2. 2.
    Young, I.A., Mohammed, E., Liao, J.T.S., Kern, A.M., Palermo, S., Block, B.A., Reshotko, M.R., Chang, P.L.D.: Optical I/O technology for tera-scale computing. IEEE J. Solid-State Circuits 45, 235–248 (2010)CrossRefGoogle Scholar
  3. 3.
    Miller, D.: Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009)CrossRefGoogle Scholar
  4. 4.
    Savage, N.: Linking with light high-speed optical interconnects. IEEE Spectr. 39, 32–36 (2002)CrossRefGoogle Scholar
  5. 5.
    Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photon 4, 518–526 (2010)CrossRefGoogle Scholar
  6. 6.
    Michel, J., Liu, J., Kimerling, L.C.: High-performance Ge-on-Si photodetector. Nat. Photon 4, 527–534 (2010)CrossRefGoogle Scholar
  7. 7.
    Leuthold, J., Koos, C., Freude, W.: Nonlinear silicon photonics. Nat. Photon 4, 535–544 (2010)CrossRefGoogle Scholar
  8. 8.
    Liang, D., Bowers, J.E.: Recent progress in lasers on silicon. Nat. Photon 4, 511–517 (2010)CrossRefGoogle Scholar
  9. 9.
    Fan, J., Poate, J.M. (eds.): Heteroepitaxy on Silicon. Materials Research Society, Pittsburgh (1986)Google Scholar
  10. 10.
    Fischer, R., Kopp, W., Morkoc, H., Pion, M., Specht, A., Burkhart, G., Appelman, H., McGougan, D., Rice, R.: Low threshold laser operation at room temperature in GaAs/(Al, Ga)As structures grown directly on (100)Si. Appl. Phys. Lett. 48, 1360–1361 (1986)CrossRefGoogle Scholar
  11. 11.
    Fischer, R., Masselink, W.T., Klem, J., Henderson, T., McGlinn, T.C., Klein, M.V., Morkoc, H., Mazur, J.H., Washburn, J.: Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy. J. Appl. Phys. 58, 374–381 (1985)CrossRefGoogle Scholar
  12. 12.
    Sugawara, M., Usami, M.: Quantum dot devices:handling the heat. Nat. Photon 3, 30–31 (2009)CrossRefGoogle Scholar
  13. 13.
    Liu, H., Sellers, I.R., Badcock, T.J., Mowbray, D.J., Skolnick, M.S., Groom, K.M., Gutierrez, M., Hopkinson, M., Ng, J.S., David, J., Beanland, R.: Improved performance of 1.3 \(\mu \)m multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer. Appl. Phys. Lett. 85, 704–706 (2004)CrossRefGoogle Scholar
  14. 14.
    Yang, J., Bhattacharya, P., Mi, Z.: High-performance In\(_{0.5}\)Ga\(_{0.5}\)As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters. IEEE Trans. Electron Devices 54, 2849–2855 (2007)CrossRefGoogle Scholar
  15. 15.
    Bordel, D., Guimard, D., Rajesh, M., NishiokA, M., Augendre, E., Clavelier, L., Arkawa, Y.: Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 \(\mu \)m band. Appl. Phys. Lett. 96, 043101 (2010)CrossRefGoogle Scholar
  16. 16.
    Beanland, R., Sanchez, A.M., Childs, D., Groom, K.M., Liu, H., Mowbray, D.J., Hopkinson, M.: Structural analysis of life tested 1.3 \(\mu \)m quantum dot lasers. J. Appl. Phys. 103, 014913 (2008) Google Scholar
  17. 17.
    Liu, H., Wang, T., Jiang, Q., Hogg, R., Tutu, T., Pozzi, F., Seeds, A.: Long-wavelength InAs/GaAs quantum dot laser diode monolithically grown on Ge substrate. Nat. Photon. 5, 416–419 (2011)CrossRefGoogle Scholar
  18. 18.
    Wang, T., Liu, H., Lee, A., Pozzi, F., Seeds, A.: 1.3-\(\mu \)m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt. Express 19, 11381–11386 (2011)CrossRefGoogle Scholar
  19. 19.
    Mi, Z., Yang, J., Bhattacharya, P., Huffaker, D.L.: Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon. Electron. Lett. 42, 121–123 (2006)CrossRefGoogle Scholar
  20. 20.
    Lee, A., Jiang, Q., Tang, M., Seeds, A., Liu, H.: Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt. Express 20, 22181–22187 (2012)CrossRefGoogle Scholar
  21. 21.
    Liu, H., Childs, D.T., Badcock, T.J., Groom, K.M., Sellers, I.R., Hopkinson, M., Hogg, R.A., Robbins, D.J., Mowbray, D.J., Skolnick, M.S.: High-performance three-layer 1.3-\(\mu \)m InAs/GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents. IEEE Photon. Technol. Lett. 17, 1139–1141 (2005)CrossRefGoogle Scholar
  22. 22.
    Liu, H., Xu, B., Chen, Y.H., Ding, D., Wang, Z.G.: Effects of seed layer on the realization of larger self-assembled coherent InAs/GaAs quantum dots. J. Appl. Phys. 88, 5433–5436 (2000)CrossRefGoogle Scholar
  23. 23.
    Liu, H., Hopkinson, M., Harrison, C., Steer, M., Frith, R., Sellers, I.R., Mowbray, D.J., Skolnick, M.S.: Optimizing the growth of 1.3 \(\mu \)m InAs/InGaAs dots-in-a-well structure. J. Appl. Phys. 93, 2931–2936 (2003) Google Scholar
  24. 24.
    Jin, C., Badcock, T., Liu, H., Groom, K., Royce, R., Mowbray, D.J., Hopkinson, M.: Observation and modelling of a room-temperature negative characteristic temperature 1.3-\(\mu \)m p-type modulation-doped quantum-dot laser. IEEE J. Quant. Electron. 42, 1259–1265 (2006)CrossRefGoogle Scholar
  25. 25.
    Badcock, T., Royce, R., Mowbray, D., Skolnick, M., Liu, H., Hopkinson, M., Groom, K., Jiang, Q.: Low threshold current density and negative characteristic temperature 1.3 \(\mu \)m InAs self-assembled quantum dot lasers. Appl. Phys. Lett. 90, 111102 (2007)CrossRefGoogle Scholar
  26. 26.
    Clawson, A.R.: Guide to references on III-V semiconductor chemical etching. Mat. Sci. Eng.: R: Rep. 31, 1–438 (2001)CrossRefGoogle Scholar
  27. 27.
    Wang, T., Lee, A., Tutu, F., Seeds, A., Liu, H., Jiang, Q., Groom, K., Hogg, R.: The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates. Appl. Phys. Lett. 100, 052113 (2012)CrossRefGoogle Scholar
  28. 28.
    Akatsu, T., Deguel, C., Sanchez, L., Allibert, F., Rouchon, D., Signamarcheix, T., Richatarch, C., Boussagol, A., Loup, V., Mazen, F., Hartmann, J., Campidelli, Y., Clavelier, L., Letertre, F., Kernevez, N., Mazure, C.: Germanium-on-insulator (GeOI) substrates - A novel engineered substrate for future high performance devices. Mat. Sci. Semicond. Proc. 9, 444–448 (2006)CrossRefGoogle Scholar
  29. 29.
    Currie, M., Samavedam, S., Langdo, T., Leitz, C., Fitzgerald, E.: Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 72, 1718–1720 (1998)CrossRefGoogle Scholar
  30. 30.
    Brammertz, G., Caymax, M., Meuris, M., Heyns, M., Mols, Y., Degroote, S., Leys, M.: GaAs on Ge for CMOS. Thin Solid Films 517, 148–151 (2008)CrossRefGoogle Scholar
  31. 31.
    Chen, R., Liu, H., Sun, H.D.: Electronic energy levels and carrier dynamics in InAs/InGaAs dots-in-a-well structure investigated by optical spectroscopy. J. Appl. Phys 107, 013513 (2010)CrossRefGoogle Scholar
  32. 32.
    Sellers, I.R., Liu, H., Groom, K.M., Childs, D.T., Robbins, D.J., Badcock, T.J., Hopkinson, M., Mowbray, D.J., Skolnick, M.S.: 1.3 \(\mu \)m InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density. Electron. Lett. 40, 1412–1413 (2004) Google Scholar
  33. 33.
    Deppe, D.G., Shavritranuruk, K., Ozgur, G., Chen, H., Freisem, S.: Quantum dot laser diode with low threshold and low internal loss. Electron. Lett. 45, 54–55 (2009)CrossRefGoogle Scholar
  34. 34.
    Ustinov, V.M., Zhukov, A.E.: GaAs-based long-wavelength lasers. Semicond. Sci. Technol. 15, R41–R54 (2000)CrossRefGoogle Scholar
  35. 35.
    Jin, C.Y., Liu, H.Y., Groom, K.M., Jiang, Q., Hopkinson, M., Badcock, T.J., Royce, R., Mowbray, D.J.: Effects of photon and thermal coupling mechanisms on the characteristics of self-assembled InAs/GaAs quantum dot lasers. Phys. Rev. B 76, 085315 (2007)CrossRefGoogle Scholar
  36. 36.
    Liu, H., Badcock, T.J., Jin, C.Y., Nabavi, E., Groom, K.M., Hopkinson, M., Mowbray, D.J.: Reduced temperature sensitivity of lasing wavelength in near-1.3 \(\mu \)m InAs/GaAs quantum-dot laser with stepped composition strain-reducing layer. Electron. Lett. 43, 670–672 (2007)CrossRefGoogle Scholar
  37. 37.
    Jutzi, M., Berroth, M., Wohl, G., Oehme, M., Kasper, E.: Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2GHz at 1300nm. Mater. Sci. Semicond. Process. 8, 423–427 (2005)CrossRefGoogle Scholar
  38. 38.
    Colace, L., Ferrara, P., Assanto, G., Fulgoni, D., Nash, L.: Low dark-current germanium-on-silicon nearinfrared detectors. IEEE Photon. Technol. Lett. 19, 1813–1815 (2007)CrossRefGoogle Scholar
  39. 39.
    Sun, X.M., Zhang, H., Zhu, H., Xu, P., Li, G.R., Liu, J., Zheng, H.Z.: High responsivity resonant-cavity enhanced InGaAs/GaAs quantum-dot photodetector for wavelength of \(\sim \)1 \(\mu \)m at room temperature. Electron. Lett. 45, 329–330 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electronic and Electrical EngineeringUniversity College London, Torrington PlaceLondonUK

Personalised recommendations