Skip to main content

III–V Quantum-Dot Materials and Devices Monolithically Grown on Si Substrates

  • Chapter
  • First Online:
Silicon-based Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 187))

Abstract

The integration of III–V photonics materials and devices with Si microelectronics will enable the fabrication of complex optoelectronic circuits, which will permit the creation of the long-dreamed chip-to-chip and system-to-system optical communications. Direct epitaxial growth of semiconductor III–V compounds on Si substrates is one of the most promising candidates for the fabrication of photonics devices on the Si platform. III–V quantum dots (QDs) offer an attractive alternative to conventional quantum wells(QWs) for building III–V lasing devices on a Si platform due to their unique advantages. We developed the long-wavelength InAs/GaAs QD materials and devices monolithically grown on Si, Ge, and Ge-on-Si substrates by the use of Molecular Beam Epitaxy. Room-temperature(RT) lasing at a wavelength of around 1.3 \(\upmu \)m has been achieved with threshold current densities of 64.3 A/cm\(^{2}\) and lasing operation up to 83\(\,^{\circ }\mathrm{{C}}\) for Si-based ridge-waveguide InAs/GaAs QD lasers with as-cleaved facets. The optical and electrical properties of InAs/GaAs QDs grown on Si substrates were further investigated to evaluate the potential for Si-based photodiodes. A peak responsivity of 5 mA/W was observed at 1.28 \(\upmu \)m, while the dark current was two orders of magnitude lower than those reported for Ge-on-Si photodiodes. These studies ultimately form the basis for the monolithic integration of 1.3-\(\upmu \)m InAs/GaAs QD lasers and detectors on the Si platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jalali, B., Fathpour, S.: Silicon photonics. J. Lightwave Technol. 24, 4600–4615 (2006)

    Article  CAS  Google Scholar 

  2. Young, I.A., Mohammed, E., Liao, J.T.S., Kern, A.M., Palermo, S., Block, B.A., Reshotko, M.R., Chang, P.L.D.: Optical I/O technology for tera-scale computing. IEEE J. Solid-State Circuits 45, 235–248 (2010)

    Article  Google Scholar 

  3. Miller, D.: Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009)

    Article  CAS  Google Scholar 

  4. Savage, N.: Linking with light high-speed optical interconnects. IEEE Spectr. 39, 32–36 (2002)

    Article  Google Scholar 

  5. Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photon 4, 518–526 (2010)

    Article  CAS  Google Scholar 

  6. Michel, J., Liu, J., Kimerling, L.C.: High-performance Ge-on-Si photodetector. Nat. Photon 4, 527–534 (2010)

    Article  CAS  Google Scholar 

  7. Leuthold, J., Koos, C., Freude, W.: Nonlinear silicon photonics. Nat. Photon 4, 535–544 (2010)

    Article  CAS  Google Scholar 

  8. Liang, D., Bowers, J.E.: Recent progress in lasers on silicon. Nat. Photon 4, 511–517 (2010)

    Article  CAS  Google Scholar 

  9. Fan, J., Poate, J.M. (eds.): Heteroepitaxy on Silicon. Materials Research Society, Pittsburgh (1986)

    Google Scholar 

  10. Fischer, R., Kopp, W., Morkoc, H., Pion, M., Specht, A., Burkhart, G., Appelman, H., McGougan, D., Rice, R.: Low threshold laser operation at room temperature in GaAs/(Al, Ga)As structures grown directly on (100)Si. Appl. Phys. Lett. 48, 1360–1361 (1986)

    Article  CAS  Google Scholar 

  11. Fischer, R., Masselink, W.T., Klem, J., Henderson, T., McGlinn, T.C., Klein, M.V., Morkoc, H., Mazur, J.H., Washburn, J.: Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy. J. Appl. Phys. 58, 374–381 (1985)

    Article  CAS  Google Scholar 

  12. Sugawara, M., Usami, M.: Quantum dot devices:handling the heat. Nat. Photon 3, 30–31 (2009)

    Article  CAS  Google Scholar 

  13. Liu, H., Sellers, I.R., Badcock, T.J., Mowbray, D.J., Skolnick, M.S., Groom, K.M., Gutierrez, M., Hopkinson, M., Ng, J.S., David, J., Beanland, R.: Improved performance of 1.3 \(\mu \)m multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer. Appl. Phys. Lett. 85, 704–706 (2004)

    Article  CAS  Google Scholar 

  14. Yang, J., Bhattacharya, P., Mi, Z.: High-performance In\(_{0.5}\)Ga\(_{0.5}\)As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters. IEEE Trans. Electron Devices 54, 2849–2855 (2007)

    Article  CAS  Google Scholar 

  15. Bordel, D., Guimard, D., Rajesh, M., NishiokA, M., Augendre, E., Clavelier, L., Arkawa, Y.: Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 \(\mu \)m band. Appl. Phys. Lett. 96, 043101 (2010)

    Article  Google Scholar 

  16. Beanland, R., Sanchez, A.M., Childs, D., Groom, K.M., Liu, H., Mowbray, D.J., Hopkinson, M.: Structural analysis of life tested 1.3 \(\mu \)m quantum dot lasers. J. Appl. Phys. 103, 014913 (2008)

    Google Scholar 

  17. Liu, H., Wang, T., Jiang, Q., Hogg, R., Tutu, T., Pozzi, F., Seeds, A.: Long-wavelength InAs/GaAs quantum dot laser diode monolithically grown on Ge substrate. Nat. Photon. 5, 416–419 (2011)

    Article  CAS  Google Scholar 

  18. Wang, T., Liu, H., Lee, A., Pozzi, F., Seeds, A.: 1.3-\(\mu \)m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt. Express 19, 11381–11386 (2011)

    Article  CAS  Google Scholar 

  19. Mi, Z., Yang, J., Bhattacharya, P., Huffaker, D.L.: Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon. Electron. Lett. 42, 121–123 (2006)

    Article  CAS  Google Scholar 

  20. Lee, A., Jiang, Q., Tang, M., Seeds, A., Liu, H.: Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt. Express 20, 22181–22187 (2012)

    Article  CAS  Google Scholar 

  21. Liu, H., Childs, D.T., Badcock, T.J., Groom, K.M., Sellers, I.R., Hopkinson, M., Hogg, R.A., Robbins, D.J., Mowbray, D.J., Skolnick, M.S.: High-performance three-layer 1.3-\(\mu \)m InAs/GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents. IEEE Photon. Technol. Lett. 17, 1139–1141 (2005)

    Article  CAS  Google Scholar 

  22. Liu, H., Xu, B., Chen, Y.H., Ding, D., Wang, Z.G.: Effects of seed layer on the realization of larger self-assembled coherent InAs/GaAs quantum dots. J. Appl. Phys. 88, 5433–5436 (2000)

    Article  CAS  Google Scholar 

  23. Liu, H., Hopkinson, M., Harrison, C., Steer, M., Frith, R., Sellers, I.R., Mowbray, D.J., Skolnick, M.S.: Optimizing the growth of 1.3 \(\mu \)m InAs/InGaAs dots-in-a-well structure. J. Appl. Phys. 93, 2931–2936 (2003)

    Google Scholar 

  24. Jin, C., Badcock, T., Liu, H., Groom, K., Royce, R., Mowbray, D.J., Hopkinson, M.: Observation and modelling of a room-temperature negative characteristic temperature 1.3-\(\mu \)m p-type modulation-doped quantum-dot laser. IEEE J. Quant. Electron. 42, 1259–1265 (2006)

    Article  CAS  Google Scholar 

  25. Badcock, T., Royce, R., Mowbray, D., Skolnick, M., Liu, H., Hopkinson, M., Groom, K., Jiang, Q.: Low threshold current density and negative characteristic temperature 1.3 \(\mu \)m InAs self-assembled quantum dot lasers. Appl. Phys. Lett. 90, 111102 (2007)

    Article  Google Scholar 

  26. Clawson, A.R.: Guide to references on III-V semiconductor chemical etching. Mat. Sci. Eng.: R: Rep. 31, 1–438 (2001)

    Article  Google Scholar 

  27. Wang, T., Lee, A., Tutu, F., Seeds, A., Liu, H., Jiang, Q., Groom, K., Hogg, R.: The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates. Appl. Phys. Lett. 100, 052113 (2012)

    Article  Google Scholar 

  28. Akatsu, T., Deguel, C., Sanchez, L., Allibert, F., Rouchon, D., Signamarcheix, T., Richatarch, C., Boussagol, A., Loup, V., Mazen, F., Hartmann, J., Campidelli, Y., Clavelier, L., Letertre, F., Kernevez, N., Mazure, C.: Germanium-on-insulator (GeOI) substrates - A novel engineered substrate for future high performance devices. Mat. Sci. Semicond. Proc. 9, 444–448 (2006)

    Article  CAS  Google Scholar 

  29. Currie, M., Samavedam, S., Langdo, T., Leitz, C., Fitzgerald, E.: Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 72, 1718–1720 (1998)

    Article  CAS  Google Scholar 

  30. Brammertz, G., Caymax, M., Meuris, M., Heyns, M., Mols, Y., Degroote, S., Leys, M.: GaAs on Ge for CMOS. Thin Solid Films 517, 148–151 (2008)

    Article  CAS  Google Scholar 

  31. Chen, R., Liu, H., Sun, H.D.: Electronic energy levels and carrier dynamics in InAs/InGaAs dots-in-a-well structure investigated by optical spectroscopy. J. Appl. Phys 107, 013513 (2010)

    Article  Google Scholar 

  32. Sellers, I.R., Liu, H., Groom, K.M., Childs, D.T., Robbins, D.J., Badcock, T.J., Hopkinson, M., Mowbray, D.J., Skolnick, M.S.: 1.3 \(\mu \)m InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density. Electron. Lett. 40, 1412–1413 (2004)

    Google Scholar 

  33. Deppe, D.G., Shavritranuruk, K., Ozgur, G., Chen, H., Freisem, S.: Quantum dot laser diode with low threshold and low internal loss. Electron. Lett. 45, 54–55 (2009)

    Article  CAS  Google Scholar 

  34. Ustinov, V.M., Zhukov, A.E.: GaAs-based long-wavelength lasers. Semicond. Sci. Technol. 15, R41–R54 (2000)

    Article  CAS  Google Scholar 

  35. Jin, C.Y., Liu, H.Y., Groom, K.M., Jiang, Q., Hopkinson, M., Badcock, T.J., Royce, R., Mowbray, D.J.: Effects of photon and thermal coupling mechanisms on the characteristics of self-assembled InAs/GaAs quantum dot lasers. Phys. Rev. B 76, 085315 (2007)

    Article  Google Scholar 

  36. Liu, H., Badcock, T.J., Jin, C.Y., Nabavi, E., Groom, K.M., Hopkinson, M., Mowbray, D.J.: Reduced temperature sensitivity of lasing wavelength in near-1.3 \(\mu \)m InAs/GaAs quantum-dot laser with stepped composition strain-reducing layer. Electron. Lett. 43, 670–672 (2007)

    Article  CAS  Google Scholar 

  37. Jutzi, M., Berroth, M., Wohl, G., Oehme, M., Kasper, E.: Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2GHz at 1300nm. Mater. Sci. Semicond. Process. 8, 423–427 (2005)

    Article  CAS  Google Scholar 

  38. Colace, L., Ferrara, P., Assanto, G., Fulgoni, D., Nash, L.: Low dark-current germanium-on-silicon nearinfrared detectors. IEEE Photon. Technol. Lett. 19, 1813–1815 (2007)

    Article  CAS  Google Scholar 

  39. Sun, X.M., Zhang, H., Zhu, H., Xu, P., Li, G.R., Liu, J., Zheng, H.Z.: High responsivity resonant-cavity enhanced InGaAs/GaAs quantum-dot photodetector for wavelength of \(\sim \)1 \(\mu \)m at room temperature. Electron. Lett. 45, 329–330 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Professor Alwyn Seeds (University College London) for valuable discussion and support. The author also thanks Mr. Andrew Lee, Dr. Qi Jiang, Dr. Ting Wang, Dr. James Wilson, Dr. Kris Groom, Dr. Ian Sandall, Dr. Chin-Hing Tan, Dr. Jo Shien Ng, and Professor Richard Hogg for collaboration and help. This study is supported by The Royal Society, UK Defence Science and Technology Laboratory (Dstl), UK Engineering and Physics Science Research Council (EPSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, H. (2013). III–V Quantum-Dot Materials and Devices Monolithically Grown on Si Substrates. In: Li, H., Wu, J., Wang, Z. (eds) Silicon-based Nanomaterials. Springer Series in Materials Science, vol 187. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8169-0_14

Download citation

Publish with us

Policies and ethics