Integration of Strain Free III–V Quantum Dots on Silicon

  • Stefano SanguinettiEmail author
  • Sergio Bietti
  • Giovanni Isella
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 187)


The great interest in the implementation of GaAs quantum nanostructures (QNs) on silicon substrates is mainly due to the possibility of integrating specialized high efficiency optoelectronic and photonic devices on the existing complementary metal-oxide semiconductor technology developed on Si. This would allow the realization of specialized III–V devices such as nanoemitters and intersubband detectors directly embedded with a large number of existing Si devices. Of particular, technological interest is the possibility of carrying out the III–V device fabrication after the integrated circuit has been already realized, i.e., as a back-end process. In this case, the compatibility with the underlying integrated circuit is possible only imposing strict constraints on thermal budget for growth and processing of the epilayer.


Quantum dots Droplet epitaxy III–V on Si 


  1. 1.
    Fischer, R., Masselink, W.T., Klem, J., Henderson, T., McGlinn, T.C., Klein, M.V., Morkoc, H., Mazur, J.H., Washburn, J.: Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy. J. Appl. Phys. 58, 374 (1985)Google Scholar
  2. 2.
    Wang, W.I.: Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100). Appl. Phys. Lett. 44, 1149–1151 (1984)Google Scholar
  3. 3.
    Fang, S.F., Adomi, K., Iyer, S., Morkoc, H., Zabel, H., Choi, C., Otsuka, N.: Gallium arsenide and other compound semiconductors on silicon. J. Appl. Phys. 68, R31 (1990)Google Scholar
  4. 4.
    Chadi, D.J.: Atomic and electronics-structures of reconstructed Si(100) surfaces. Phys. Rev. Lett. 43, 43 (1979)Google Scholar
  5. 5.
    Hamers, R.J., Tromp, R.M., Demuth, J.E.: Scanning tunneling microscopy of Si(001). Phys. Rev. B 34, 5343 (1986)Google Scholar
  6. 6.
    Chadi, D.J.: Stabilities of single-layer and bilayer steps on Si(001) surfaces. Phys. Rev. Lett. 59, 1691 (1987)Google Scholar
  7. 7.
    Bringans, R.D., Biegelsen, D.K., Swartz, L.E.: Atomic-Step rearrangement on Si(100) by interaction with Arsenic and the implication for GaAs-on-Si epitaxy. Phys. Rev. B 44, 3054 (1991)Google Scholar
  8. 8.
    Biegelsen, D.K., Ponce, F.A., Smith, A.J., Tramontana, J.C.: Initial stages of epitaxial growth of GaAs on (100) silicon. J. Appl. Phys. 61, 1856 (1987)Google Scholar
  9. 9.
    Politi, P., Grenet, G., Marty, A., Ponchet, A., Villain J.: Instabilities in crystal growth by atomic or molecular beams. Phys. Rep. 328, 271 (2000)Google Scholar
  10. 10.
    LeGoues, F.K., Reuter, M.C., Tersoff, J., Hammar, M., Tromp R.M.: Cyclic growth of strained-relaxed islands. Phys. Rev. Lett. 73, 300 (1994)Google Scholar
  11. 11.
    Guha, S., Madhukar, A., Rajkumar, K.C.: Onset of incoherency and defect introduction in the initial stages of molecular beam epitaxy growth of highly strained In. Appl. Phys. Lett. 57, 2110 (1990)Google Scholar
  12. 12.
    Van Der Merwe, J.H.: Crystal interfaces. Part II. Finite overgrowths. J. Appl. Phys. 34, 123 (1963)Google Scholar
  13. 13.
    Matthews, J.W., Blakeslee, A.E.: Defects in epitaxial multilayers. Misfit dislocations. J. Crystal Growth 27, 118 (1974)Google Scholar
  14. 14.
    Otsuka, N., Choi, C., Kolodziejski, L.A., Gunshor, R.L., Fischer, R., Peng, C.K., Morkoc, H., Nakamura, Y., Nagakura, S.: Study of heteroepitaxial interfaces by atomic resolution electron microscopy. J. Vacuum Sci. Technol. B 4, 896 (1986)Google Scholar
  15. 15.
    Yang, V.K., Groenert, M., Leitz, C.W., Pitera, A.J., Currie, M.T., Fitzgerald, E.A.: Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates. J. Appl. Phys. 93, 3859 (2003)Google Scholar
  16. 16.
    Fischer, R., Chand, N., Kopp, W., Morkoc, H., Erickson, P., Youngman R.: GaAs bipolar transistors grown on (100) Si substrates by molecular beam epitaxy. Appl. Phys. Lett. 47, 397 (1985)Google Scholar
  17. 17.
    Baribeau, J.M., Jackman, T.E., Houghton, D.C., Maigné, P., Denhoff M.W.: Growth and characterization of Si\({_{\text{1-x }} \text{ Ge }_{\text{ x }}}\) and Ge epilayers on (100) Si. J. Appl. Phys. 63, 5738 (1988)Google Scholar
  18. 18.
    Sieg, R.M., Ringel, S.A., Ting, S.M., Samavedam, S.B., Currie M., Langdo T., Fitzgerald, E.A.: Toward device-quality GaAs growth by molecular beam epitaxy on offcut \(\rm Ge\mathit{/\rm Si}{_\text{1-x }}\text{ Ge }{_{\text{ x }}}/\rm Si\) substrates. J. Vac. Sci. Technol. B 16, 1471 (1998)Google Scholar
  19. 19.
    Horikoshi, Y., Kawashima, M.: Growth mechanism of GaAs during migration-enhanced epitaxy at low growth temperatures. Jpn. J. Appl. Phys. 28, 200 (1989)Google Scholar
  20. 20.
    Ting, S.M., Fitzgerald, E.A.: Metal-organic chemical vapor deposition of single domain GaAs on \(\rm Ge/\rm Ge\rm {_\text{ x }}\text{ Si }{_{\text{1-x }}}/\rm Si\) substrates. J. Appl. Phys. 87, 2618 (2000)Google Scholar
  21. 21.
    Brammertz, G., Mols, Y., Degroote, S., Motsnyi, V., Leys, M., Borghs, G., Caymax M.: Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates. J. Appl. Phys. 99, 93514 (2006)Google Scholar
  22. 22.
    Visser, E.P., Tang, X., Wieleman, R.W., Giling, L.J.: Deep-level photoluminescence studies on Si-doped, metalorganic chemical vapor deposition grown \({\rm Al\mathit{_{\rm x}} \rm Ga\mathit{_{\rm 1-x}}}\rm As\). J. Appl. Phys. 69, 3266 (1991)Google Scholar
  23. 23.
    Hudait, M.K., Modak, P., Hardikar, S., Krupanidhi, S.B.: Photoluminescence studies on Si-doped GaAs/Ge. J. Appl. Phys. 83, 4454 (1998)Google Scholar
  24. 24.
    Fitzgerald, E.A., Xie, Y., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.J., Weir, B.E.: Totally relaxed \({\rm Ge\mathit{_{\rm x}\rm \rm Si}_{\rm 1-x}\rm }\) layers with low threading dislocation densities grown on Si substrates. Appl. Phys. Lett. 59, 811 (1991) Google Scholar
  25. 25.
    Samavedam, S.B., Fitzgerald, E.A.: Novel dislocation structure and surface morphology effects in relaxed Ge/Si-Ge(graded)/Si structures. J. Appl. Phys. 81, 3108 (1997)Google Scholar
  26. 26.
    Rosenblad, C., Deller, H.R., Dommann, A., Meyer, T., Schroeter, P., von Kaenel H.:. Silicon epitaxy by low-energy plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 16, 2785 (1998)Google Scholar
  27. 27.
    Novikov, P.L., Le Donne, A., Cereda, S., Miglio, L., Pizzini, S., Binetti, S., Rondanini, M., Cavallotti, C., Chrastina, D., Moiseev, T., von Kaenel, H., Isella, G., Montalenti, F.: Crystallinity and microstructure in Si films grown by plasma-enhanced chemical vapor deposition: a simple atomic-scale model validated by experiments. Appl. Phys. Lett. 94, 051904 (2009)Google Scholar
  28. 28.
    Cereda, S., Zipoli, F., Bernasconi, M., Miglio, L., Montalenti F.: Thermal-hydrogen promoted selective desorption and enhanced mobility of adsorbed radicals in silicon film growth. Phys. Rev. Lett. 100, 046105 (2008)Google Scholar
  29. 29.
    Thomas, S.G., Bharatan, S., Jones, R.E., Thoma, R., Zirkle, T., Edwards, N.V., Liu, R., Wang, X.D., Xie, Q., Rosenblad, C., Ramm, J., Isella, G., von Kaenel H.: Structural characterization of thick, high-quality epitaxial Ge on Si substrates grown by low-energy plasma-enhanced chemical vapor deposition. J. Electron. Mater. 32, 976 (2003)Google Scholar
  30. 30.
    Marchionna, S., Virtuani, A., Acciarri, M., Isella, G., von Kaenel, H.: Defect imaging of SiGe strain relaxed buffers grown by LEPECVD. Mater. Sci. Semicond. Process. 9, 802 (2006)Google Scholar
  31. 31.
    Isella, G., Chrastina, D., Rossner, B., Hackbarth, T., Herzog, H.-J., Konig, U., von Kaenel, H.: Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices. Solid-State Electron. 48, 1317 (2004)Google Scholar
  32. 32.
    Isella, G., Osmond, J., Kummer, M., Kaufmann, R., von Kaenel, H.: Hetero-junction photodiodes fabricated from Ge/Si (100) layers grown by low-energy plasma-enhanced CVD. Semicond. Sci. Technol. 22, S26 (2007)Google Scholar
  33. 33.
    Osmond, J., Isella, D., Chrastina, D., Kaufmann, R., Acciarri, M., von Kaenel H.: Ultralow dark current Ge/Si(100) photodiodes with low thermal budget. Appl. Phys. Lett. 94, 201106 (2009)Google Scholar
  34. 34.
    Luan, H.-C., Lim, D.R., Lee, K.K., Chen, K.M., Sandland, J.G., Wada, K., Kimerling, L.C.: High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett. 75, 2909 (1999)Google Scholar
  35. 35.
    Colace, L., Masini, G., Cozza, S., Assanto, G., DeNotaristefani, F., Cencelli, V.: Near-infrared camera in polycrystalline germanium integrated on complementary-metal-oxide semiconductor electronics. Appl. Phys. Lett. 90, 011103 (2007)Google Scholar
  36. 36.
    Colombo, D., Grilli, E., Guzzi, M., Sanguinetti, S., Fedorov, A., von Kaenel, H., Isella, G.: Study of thermal strain relaxation in GaAs grown on Ge/Si substrates. J. Lumin. 121, 375 (2006)Google Scholar
  37. 37.
    Colombo, D., Grilli, E., Guzzi, M., Sanguinetti, S., Marchionna, S., Bonfanti, M., Fedorov, A., von Kaenel, H., Isella, G., Muller, E.: Analysis of strain relaxation by microcracks in epitaxial GaAs grown on Ge/Si substrates. J. Appl. Phys. 101, 103519 (2007)Google Scholar
  38. 38.
    Halbwax, M., Bouchier, D., Yam, V., Debarre, D., Nguyen, L.H., Zheng, Y., Rosner, P., Benamara, M., Strunk, H.P., Clerc, C.: Kinetics of Ge growth at low temperature on Si(001) by ultrahigh vacuum chemical vapor deposition. J. Appl. Phys. 97, 064907 (2005)Google Scholar
  39. 39.
    Bietti, S., Cecchi, S., Frigeri, C., Grilli, E., Fedorov, A., Vinattieri, A., Gurioli, M., Isella, G., Sanguinetti, S.: Fabrication of Ge-on-Si substrates for the integration of high-quality GaAs nanostructures on Si. ECS Trans. 50 (9), 783, (2012)Google Scholar
  40. 40.
    Berbezier, I., Ronda, A.: Self-assembling of Ge dots on nanopatterns: experimental investigation of their formation, evolution and control. Phys. Rev. B 75 195407 (2007)Google Scholar
  41. 41.
    Sakai, A., Tatsumi, T., Aoyama, K.: Growth of strain-relaxed Ge films on Si(001) surfaces. Appl. Phys. Lett. 71, 3510 (1997)Google Scholar
  42. 42.
    Kaganer, V.M., Köhler, R., Schmidbauer, M., Opitz, R.: X-ray diffraction peaks due to misfit dislocations in heteroepitaxial structures. Phys. Rev. B 55, 1793 (1997)Google Scholar
  43. 43.
    Tsui, R.K., Gershenzon, M.: Plastic deformation and fracture resulting from stresses caused by differential thermal contraction in GaP/Si heterostructures. Appl. Phys. Lett. 37, 218 (1980)Google Scholar
  44. 44.
    Chalmers, S.A., Gossard, A.C., Petroff, P.M., Gaines, J.M., Kroemer, H.: A reflection high-energy electron-diffraction study of (100) GaAs vicinal surfaces. J. Vac. Sci. Technol. B 7, 1357 (1989)Google Scholar
  45. 45.
    Bietti, S., Sanguinetti, S., Somaschini, C., Koguchi, N., Isella, G., Chrastina, D., Fedorov, A.: Fabrication of GaAs quantum dots by droplet epitaxy on Si/Ge virtual substrate. IOP Conf. Series: Mater. Sci. Eng. 6, 012009 (2009)Google Scholar
  46. 46.
    Bietti, S., Somaschini, C., Sanguinetti, S., Koguchi, N., Isella, G., Chrastina, D.: Fabrication of high efficiency III-V quantum nanostructures at low thermal budget on Si. Appl. Phys. Lett. 95, 241102 (2009)Google Scholar
  47. 47.
    Cavigli, L., Bietti, S., Accanto, N., Minari, S., Abbarchi, M., Isella, G., Frigeri, C., Vinattieri, A., Gurioli, M., Sanguinetti, S.: High temperature single photon emitter monolithically integrated on silicon. Appl. Phys. Lett. 100, 231112 (2012)Google Scholar
  48. 48.
    Koguchi, N., Takahashi, S., Chikyow, T.: New MBE growth method for InSb quantum well boxes. J. Cryst. Growth 111, 688 (1991)Google Scholar
  49. 49.
    Koguchi, N., Ishige, K., Takahashi, S.: New selective molecular-beam epitaxy growth method for direct formation of GaAs quantum dots. J. Vac. Sci. Technol. B 11, 787 (1993)Google Scholar
  50. 50.
    Mano, T., Koguchi, N.: Nanometer-scale GaAs ring structure grown by droplet epitaxy. J. Cryst. Growth 278, 108 (2005)Google Scholar
  51. 51.
    Somaschini, C., Bietti, S., Koguchi, N., Sanguinetti, S.: Fabrication of multiple concentric nanoring structures. Nano Lett. 9, 3419 (2009)Google Scholar
  52. 52.
    Somaschini, C., Bietti, S., Sanguinetti, S., Koguchi, N., Fedorov, A.: Self-assembled GaAs/AlGaAs coupled quantum ring-disk structures by droplet epitaxy. Nanotechnology 21, 125601 (2010)Google Scholar
  53. 53.
    Watanabe, K., Koguchi, N., Gotoh, Y.: Fabrication of GaAs quantum dots by modified droplet epitaxy. Jpn. J. Appl. Phys. 39, 79 (2000)Google Scholar
  54. 54.
    Koguchi, N., Ishige, K.: Growth of GaAs epitaxial microcrystal on an S-terminated GaAs substrate by successive irradiation of Ga and As molecular beams. Jpn. J. Appl. Phys. 32, 2052 (1993)Google Scholar
  55. 55.
    Mano, T., Kuroda, T., Noda, T., Sakoda, K.: Ordering of GaAs quantum dots by droplet epitaxy. Phys. Status Solidi B-Basic Res. 246, 729 (2009)Google Scholar
  56. 56.
    Sanguinetti, S., Watanabe, K., Kuroda, T., Minami, F., Gotoh, Y., Koguchi, N.: Effects of post-growth annealing on the optical properties of self-assembled GaAs/AlGaAs quantum dots. J. Cryst. Growth 242, 321Google Scholar
  57. 57.
    Bastard, J.-Y., Marzin, G.: Calculation of the energy levels in InAs/GaAs quantum dots. Solid State Commun. 92, 437 (1994)Google Scholar
  58. 58.
    Kuroda, T., Mano, T., Ochiai, T., Sanguinetti, S., Sakoda, K., Kido, G., Koguchi, N.: Optical transitions in quantum ring complexes. Phys. Rev. B 72, 205301 (2005)Google Scholar
  59. 59.
    Pavesi, L., Guzzi, M.: Photoluminescence of Alx Ga1-xAs alloys. J. Appl. Phys. 75, 4779 (1994)Google Scholar
  60. 60.
    Oelgart, G., Schwabe, R., Fieseler, H., Jacobs, B.: Photoluminescence of Ge-doped \({\rm Al\mathit{_{\rm x}} \rm Ga\mathit{_{\rm 1-x}}}\rm As \). J. Appl. Phys. 3, 943 (1988)Google Scholar
  61. 61.
    Lester, L., Stintz, A., Li, H., Newell, T., Pease, E., Fuchs, B., Malloy, K.: Optical characteristics of 1.24-\(\mu \)m InAs quantum-dot laser diodes. IEEE Photonics Technol. Lett. 11, 931 (1999)Google Scholar
  62. 62.
    Raghavan, S., Rotella, P., Stintz, A., Fuchs, B., Krishna, S., Morath, C., Cardimona, D.A., Kennerly, S.W.: High-responsivity, normal-incidence long-wave infrared InAs/In\({_{0.15}}\)Ga\({_{0.85}}\)As dots-in-a-well detector. Appl. Phys. Lett. 81, 1369 (2002)Google Scholar
  63. 63.
    Wu, J., Li, Z., Shao, D., Manasreh, M.O., Kunets, V.P., Wang, Z.M., Salamo, G.J., Weaver, B.D.: Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy. Appl. Phys. Lett. 94(17), 171102 (2009)Google Scholar
  64. 64.
    Sanguinetti, S., Mano, T., Gerosa, A., Somaschini, C., Bietti, S., Koguchi, N., Grilli, E., Guzzi, M., Gurioli, M., Abbarchi, M.: Rapid thermal annealing effects on self-assembled quantum dot and quantum ring structures. J. Appl. Phys. 104 113519 (2008)Google Scholar
  65. 65.
    Bietti, S., Somaschini, C., Sarti, E., Koguchi, N., Sanguinetti, S., Isella, G., Chrastina, D., Fedorov, A.: Photoluminescence study of low thermal budget III-V nanostructures on silicon by droplet epitaxy. Nanoscale Res. Lett. 5, 1650 (2010)Google Scholar
  66. 66.
    Mantovani, V., Sanguinetti, S., Guzzi, M., Grilli, E., Gurioli, M., Watanabe, K., Koguchi, N.: Low density GaAs/AlGaAs quantum dots grown by modified droplet epitaxy. J. Appl. Phys. 96, 4416 (2004)Google Scholar
  67. 67.
    Sanguinetti, S., Colombo, D., Guzzi, M., Grilli, E., Gurioli, M., Seravalli, L., Frigeri, P., Franchi, S.: Carrier thermodynamics in InAs/In\({_x}\)Ga\({{_{1-x}}}\) As quantum dots. Phys. Rev. B 74, 1 (2006) Google Scholar
  68. 68.
    Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008)Google Scholar
  69. 69.
    Shields, A.: Semiconductor quantum light sources. Nat. Photonics 1, 215 (2007)Google Scholar
  70. 70.
    Abbarchi, M., Mastrandrea, C., Kuroda, T., Mano, T., Vinattieri, A., Sakoda, K., Gurioli, M.: Poissonian statistics of excitonic complexes in quantum dots. J. Appl. Phys. 106, 053504 (2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Stefano Sanguinetti
    • 1
    Email author
  • Sergio Bietti
    • 1
  • Giovanni Isella
    • 2
  1. 1.Dipartimento di Scienza dei MaterialiUniversita’ degli Studi di, Milano-BicoccaMilanoItaly
  2. 2.Politecnico di MilanoComoItaly

Personalised recommendations