Synthesis, Properties, and Applications of One-Dimensional Transition Metal Silicide Nanostructures

  • Guangwei She
  • Hailong Liu
  • Lixuan Mu
  • Wensheng ShiEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 187)


One-dimensional (1D) nanostructures of transition metal silicide (TMS) have attracted more attention due to their unique properties and potential applications in microelectronics. A variety of synthetic approaches were developed to fabricate 1D TMS nanostructures. Chemical vapor deposition (CVD) is the most widely used method to synthesize 1D TMS nanostructures. Various precursors and growth mechanisms are involved in the CVD processes. Other methods such as chemical vapor transport (CVT) method, silicidation method, reactive epitaxial method, hydrothermal method, were also successfully employed for the formation of 1D TMS nanostructures. Electrical transport measurements reveal that many TMS nanowires exhibit metallic behavior with extremely high conductivity. At the same time, semiconducting behaviors were observed in some situations. Some silicide nanowires (silicides of Fe, Co, Ni, Cr, Mn, etc.) have ferromagnetic properties, even at room temperature. Unique properties such as field-emission, optical, thermoelectric, mechanical were also investigated in the 1D TMS nanostructures. Based on these properties, 1D TMS nanostructures were utilized in microelectronic devices, lithium ion batteries, memory device and capacitor, etc.


Transition metal silicide One-dimensional nanostructures Nanowire Chemical vapor deposition Chemical vapor transport Silicidation Epitaxial Endotaxial Growth mechanism  Vapor-liquid-solid Vapor-solid Diffusion Solid state reaction Precursors Electrical Metallic Semiconductor Ferromagnetic Paramagnetic Optical Ohmic contact Field effect transistor Lithium ion battery  Anode Electron collection Structural supporter Cell separation 



The authors would like to acknowledge financial support from the Chinese Academy of Sciences, NSFC (grant nos. 21103211, 50902134, 51272258, 51272302, and 61025003), National Basic Research Program of China (973 Program) (grant nos. 2010CB934103 and 2012CB932400) and Beijing Natural Science Foundation (grant no. 2102043).


  1. 1.
    Dimitriadis, C.A., Werner, J.H., Logothetidis, S., Stutzmann, M., Weber, J., Nesper, R.: Electronic properties of semiconducting FeSi\(_{2}\) films. J. Appl. Phys. 68, 1726–1734 (1990)Google Scholar
  2. 2.
    Starke, U., Weiss, W., Kutschera, M., Bandorf, R., Heinz, K.: High quality iron silicide films by simultaneous deposition of iron and silicon on Si(111). J. Appl. Phys. 91, 6154–6161 (2002)Google Scholar
  3. 3.
    Ouyang, L., Thrall, E.S., Deshmukh, M.M., Park, H.: vapor-phase synthesis and characterization of \(\varepsilon \)-FeSi nanowires. Adv. Mater. 18, 1437–1440 (2006)Google Scholar
  4. 4.
    Lin, H.K., Tzeng, Y.F., Wang, C.H., Tai, N.H., Lin, I.N., Lee, C.Y., Chiu, H.T.: Ti\(_{5}\)Si\(_{3}\) nanowire and its field emission property. Chem. Mater. 20, 2429–2431 (2008)Google Scholar
  5. 5.
    Lin, H.K., Cheng, H.A., Lee, C.Y., Chiu, H.T.: Chemical vapor deposition of TiSi nanowires on C54 TiSi2 thin film: an amorphous titanium silicide interlayer assisted nanowire growth. Chem. Mater. 21, 5388–5396 (2009)Google Scholar
  6. 6.
    In, J., Seo, K., Lee, S., Yoon, H., Park, J., Lee, G., Kim, B.: Morphology-tuned synthesis of single-crystalline V\(_{5}\)Si\(_{3}\) nanotubes and nanowires. J. Phys. Chem. C 113, 12996–13001 (2009)Google Scholar
  7. 7.
    Higgins, J.M., Ding, R., DeGrave, J.P., Jin, S.: Signature of helimagnetic ordering in single-crystal MnSi nanowires. Nano Lett. 10, 1605–1610 (2010)Google Scholar
  8. 8.
    Liang, S., Fang, X., Xia, T.L., Qing, Y., Guo, Z.X.: Self-assembled magnetic nanohead-FeSi nanowire epitaxial heterojunctions by chemical vapor deposition. J. Phys. Chem. C 114, 16187–16190 (2010)Google Scholar
  9. 9.
    Decker, C.A., Solanki, R., Freeouf, J.L., Carruthers, J.R., Evans, D.R.: Directed growth of nickel silicide nanowires. Appl. Phys. Lett. 84, 1389–1391 (2004)Google Scholar
  10. 10.
    Dubois, L.H., Nuzzo, R.G.: The decomposition of silane and germane on Ni(111): implications for heterogeneous catalysis. Surf. Sci. 149, 133–145 (1985)Google Scholar
  11. 11.
    Yan, X.Q., Yuan, H.J., Wang, J.X., Liu, D.F., Zhou, Z.P., Gao, Y., Song, L., Liu, L.F., Zhou, W.Y., Wang, G., Xie, S.S.: Synthesis and characterization of a large amount of branched N\(_{2}\)Si nanowires. Appl. Phys. A Mater. Sci. Process. 79, 1853–1856 (2004)Google Scholar
  12. 12.
    Lee, K.S., Mo, Y.H., Nahm, K.S., Shim, H.W., Suh, E.K., Kim, J.R., Kim, J.J.: Anomalous growth and characterization of carbon-coated nickel silicide nanowires. Chem. Phys. Lett. 384, 215–218 (2004)Google Scholar
  13. 13.
    Kim, C.J., Kang, K., Woo, Y.S., Ryu, K.G., Moon, H., Kim, J.M., Zang, D.S., Jo, M.H.: Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties. Adv. Mater. 19, 3637–3642 (2007)Google Scholar
  14. 14.
    Kang, K., Kim, S.K., Kim, C.J., Jo, M.H.: The role of NiO\(_{x}\) overlayers on spontaneous growth of NiSi\(_{x}\) nanowires from Ni seed layers. Nano Lett. 8, 431–436 (2008)Google Scholar
  15. 15.
    Zhang, H.L., Li, F., Liu, C., Chen, H.M.: The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage. Nanotechnology 19, 165606 (2008)Google Scholar
  16. 16.
    Chueh, Y.L., Chou, L.J., Cheng, S.L., Chen, L.J., Tsai, C.J., Hsu, C.M., Kung, S.C.: Synthesis and characterization of metallic TaSi\(_{2}\) nanowires. Appl. Phys. Lett. 87, 223113–223113 (2005)Google Scholar
  17. 17.
    Chueh, Y.L., Ko, M.T., Chou, L.J., Chen, L.J., Wu, C.S., Chen, C.D.: TaSi\(_{2}\) nanowires: a potential field emitter and interconnect. Nano Lett. 6, 1637–1644 (2006)Google Scholar
  18. 18.
    Chou, L.J., Chueh, Y.L., Ko, M.T.: Interconnect and contact for nanoelectronics: metallic TaSi\(_{2}\) nanowires. Thin Solid Films 515, 8109–8112 (2007)Google Scholar
  19. 19.
    Tang, C., Bando, Y., Golberg, D., Ding, X., Qi, S.: Boron nitride nanotubes filled with Ni and NiSi2 nanowires in situ. J. Phys. Chem. B 107, 6539–6543 (2003)Google Scholar
  20. 20.
    Xiang, B., Wang, Q.X., Wang, Z., Zhang, X.Z., Liu, L.Q., Xu, J., Yu, D.P.: Synthesis and field emission properties of TiSi\(_{2}\) nanowires. Appl. Phys. Lett. 86, 243103–243103 (2005)Google Scholar
  21. 21.
    Zou, C., Zhang, X., Jing, G., Zhang, J., Liao, Z., Yu, D.: Synthesis and electrical properties of TiSi\(_{2}\) nanocables. Appl. Phys. Lett. 92, 253102–253103 (2008)Google Scholar
  22. 22.
    Zhang, Z.Y., Wu, X.L., Yang, L.W., Huang, G.S., Siu, G.G., Chu, P.K.: Catalytic growth of \(\alpha \)-FeSi\(_{2}\) and silicon nanowires. J. Cryst. Growth 280, 286–291 (2005)Google Scholar
  23. 23.
    Joshi, R.K., Yoshimura, M., Tanaka, K., Ueda, K., Kumar, A., Ramgir, N.: Synthesis of vertically aligned Pd\(_{2}\)Si nanowires in microwave plasma enhanced chemical vapor deposition system. J. Phys. Chem. C 112, 13901–13904 (2008)Google Scholar
  24. 24.
    Chang, M.T., Chen, C.Y., Chou, L.J., Chen, L.J.: Core-shell chromium silicide-silicon nanopillars: a contact material for future nanosystems. ACS Nano 3, 3776–3780 (2009)Google Scholar
  25. 25.
    Higgins, J.M., Ding, R., Jin, S.: Synthesis and characterization of manganese-rich silicide (\(\alpha \)-Mn\(_{5}\)Si\(_{3}\), \(\beta \)-Mn\(_{5}\)Si\(_{3}\), and \(\beta \)-Mn\(_{3}\)Si) nanowires. Chem. Mater. 23, 3848–3853 (2011)Google Scholar
  26. 26.
    Chang, C.M., Chang, Y.C., Lee, C.Y., Yeh, P.H., Lee, W.F., Chen, L.J.: Ti\(_{5}\)Si\(_{4}\) nanobats with excellent field emission properties. J. Phys. Chem. C 113, 9153–9156 (2009)Google Scholar
  27. 27.
    Chen, C.Y., Lin, Y.K., Hsu, C.W., Wang, C.Y., Chueh, Y.L., Chen, L.J., Lo, S.C., Chou, L.J.: Coaxial metal-silicide Ni\(_{2}\)Si/C54-TiSi\(_{2}\) nanowires. Nano Lett. 12, 2254–2259 (2012)Google Scholar
  28. 28.
    Du, J., Du, P., Hao, P., Huang, Y., Ren, Z., Han, G., Weng, W., Zhao, G.: Growth mechanism of TiSi nanopins on Ti\(_{5}\)Si\(_{3}\) by atmospheric pressure chemical vapor deposition. J. Phys. Chem. C 111, 10814–10817 (2007)Google Scholar
  29. 29.
    Jun, D., Piyi, D., Peng, H., Yanfei, H., Zhaodi, R., Wenjian, W., Gaorong, H., Gaoling, Z.: Self-induced preparation of TiSi nanopins by chemical vapor deposition. Nanotechnology 18, 345605 (2007)Google Scholar
  30. 30.
    Du, J., Ren, Z., Tao, K., Hu, A., Hao, P., Huang, Y., Zhao, G., Weng, W., Han, G., Du, P.: Self-induced preparation of assembled shrubbery TiSi nanowires by chemical vapor deposition. Cryst. Growth Des. 8, 3543–3548 (2008)Google Scholar
  31. 31.
    Ren, Z., Hu, A., Tao, K., Du, J., Weng, W., Ma, N., Du, P.: Preparation of TiSi nanowires by APCVD used for improving dielectric properties of PST thin film. Thin Solid Films 517, 5014–5017 (2009)Google Scholar
  32. 32.
    Ren, Z., Hao, P., Du, J., Han, G., Weng, W., Ma, N., Du, P.: Self-assembly of TiSi nanowires on TiSi\(_{2}\) thin films by APCVD. J. Alloy. Compd. 509, 7519–7524 (2011)Google Scholar
  33. 33.
    Ren, Z., Shen, M., Han, G., Weng, W., Ma, N., Du, P.: Influence of substrates on the formation of the TiSi nanowire by atmosphere pressure chemical vapor deposition. J. Nanosci. Nanotechnol. 11, 11151–11155 (2011)Google Scholar
  34. 34.
    Zhou, S., Liu, X., Lin, Y., Wang, D.: Spontaneous growth of highly conductive two-dimensional single-crystalline TiSi2 nanonets. Angew. Chem. Int. Ed. 47, 7681–7684 (2008)Google Scholar
  35. 35.
    Zhou, S., Liu, X., Lin, Y., Wang, D.: Rational synthesis and structural characterizations of complex TiSi\(_{2}\) nanostructures. Chem. Mater. 21, 1023–1027 (2009)Google Scholar
  36. 36.
    Zhou, S., Xie, J., Wang, D.: Understanding the growth mechanism of titanium disilicide nanonets. ACS Nano 5, 4205–4210 (2011)Google Scholar
  37. 37.
    Zhang, Y., Geng, D., Liu, H., Banis, M.N., Ionescu, M.I., Li, R., Cai, M., Sun, X.: Designed growth and characterization of radially aligned Ti\(_{5}\)Si\(_{3}\) nanowire architectures. J. Phys. Chem. C 115, 15885–15889 (2011)Google Scholar
  38. 38.
    Ham, M.H., Lee, J.W., Moon, K.J., Choi, J.H., Myoung, J.M.: Single-crystalline ferromagnetic Mn4Si7 nanowires. J. Phys. Chem. C 113, 8143–8146 (2009)Google Scholar
  39. 39.
    Lee, S.T., Zhang, Y.F., Wang, N., Tang, Y.H., Bello, I., Lee, C.S., Chung, Y.W.: Semiconductor nanowires from oxides. J. Mater. Res. 14, 4503–4507 (1999)Google Scholar
  40. 40.
    Higgins, J.M., Schmitt, A.L., Guzei, I.A., Jin, S.: Higher manganese silicide nanowires of nowotny chimney ladder phase. J. Am. Chem. Soc. 130, 16086–16094 (2008)Google Scholar
  41. 41.
    Schmitt, A.L., Zhu, L., D. Schmei\(\beta \)er, F.J. Himpsel, Jin. S.: Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor. J. Phys. Chem. B 110, 18142–18146 (2006)Google Scholar
  42. 42.
    Schmitt, A.L., Bierman, M.J., Schmeisser, D., Himpsel, F.J., Jin, S.: Synthesis and properties of single-crystal FeSi nanowires. Nano Lett. 6, 1617–1621 (2006)Google Scholar
  43. 43.
    Schmitt, A.L., Higgins, J.M., Jin, S.: Chemical synthesis and magnetotransport of magnetic semiconducting Fe\(_{1-x}\)Co\(_{x}\)Si alloy nanowires. Nano Lett. 8, 810–815 (2008)Google Scholar
  44. 44.
    Schmitt, A.L., Jin, S.: Selective patterned growth of silicide nanowires without the use of metal catalysts. Chem. Mater. 19, 126–128 (2006)Google Scholar
  45. 45.
    Higgins, J.M., Carmichael, P., Schmitt, A.L., Lee, S., Degrave, J.P., Jin, S.: Mechanistic investigation of the growth of Fe\(_{1-x}\)Co\(_{x}\)Si (0 \(\le \) x \(\le \) 1) and Fe\(_{5}\)(Si\(_{1-y}\)Ge\(_{y})_{3}\) (0 \(\le \) y \(\le \) 0.33) ternary alloy nanowires. ACS Nano 5, 3268–3277 (2011)Google Scholar
  46. 46.
    Song, Y., Schmitt, A.L., Jin, S.: Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett. 7, 965–969 (2007)Google Scholar
  47. 47.
    Szczech, J.R., Schmitt, A.L., Bierman, M.J., Jin, S.: Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport. Chem. Mater. 19, 3238–3243 (2007)Google Scholar
  48. 48.
    Song, Y., Jin, S.: Synthesis and properties of single-crystal \(\beta _{3}\)-N\(_{3}\)Si nanowires. Appl. Phys. Lett. 90, 173122–173123 (2007)Google Scholar
  49. 49.
    Szczech, J.R., Jin, S.: Epitaxially-hyperbranched FeSi nanowires exhibiting merohedral twinning. J. Mater. Chem. 20, 1375–1382 (2010)Google Scholar
  50. 50.
    Seo, K., Varadwaj, K.S.K., Mohanty, P., Lee, S., Jo, Y., Jung, M.H., Kim, J., Kim, B.: Magnetic properties of single-crystalline CoSi nanowires. Nano Lett. 7, 1240–1245 (2007)Google Scholar
  51. 51.
    Seo, K., Varadwaj, K.S.K., Cha, D., In, J., Kim, J., Park, J., Kim, B.: Synthesis and electrical properties of single crystalline CrSi\(_{2}\) nanowires. J. Phys. Chem. C 111, 9072–9076 (2007)Google Scholar
  52. 52.
    Varadwaj, K.S.K., Seo, K., In, J., Mohanty, P., Park, J., Kim, B.: Phase-controlled growth of metastable Fe\(_{5}\)Si\(_{3}\) nanowires by a vapor transport method. J. Am. Chem. Soc. 129, 8594–8599 (2007)Google Scholar
  53. 53.
    Seo, K., Yoon, H., Ryu, S.W., Lee, S., Jo, Y., Jung, M.H., Kim, J., Choi, Y.K., Kim, B.: Itinerant helimagnetic single-crystalline MnSi nanowires. ACS Nano 4, 2569–2576 (2010)Google Scholar
  54. 54.
    Seo, K., Lee, S., Yoon, H., In, J., Varadwaj, K.S.K., Jo, Y., Jung, M.-H., Kim, J., Kim, B.: Composition-tuned Co\(_{n}\)Si nanowires: location-selective simultaneous growth along temperature gradient. ACS Nano 3, 1145–1150 (2009)Google Scholar
  55. 55.
    Zhang, Z., Wong, L.M., Ong, H.G., Wang, X.J., Wang, J.L., Wang, S.J., Chen, H., Wu, T.: Self-assembled shape- and orientation-controlled synthesis of nanoscale Cu\(_{3}\)Si triangles, squares, and wires. Nano Lett. 8, 3205–3210 (2008)Google Scholar
  56. 56.
    Lee, C.Y., Lu, M.P., Liao, K.F., Lee, W.F., Huang, C.T., Chen, S.Y., Chen, L.J.: Free-standing single-crystal NiSi\(_{2}\) nanowires with excellent electrical transport and field emission properties. J. Phys. Chem. C 113, 2286–2289 (2009)Google Scholar
  57. 57.
    Wang, H., Wu, J.C., Shen, Y., Li, G., Zhang, Z., Xing, G., Guo, D., Wang, D., Dong, Z., Wu, T.: CrSi\(_{2}\) hexagonal nanowebs. J. Am. Chem. Soc. 132, 15875–15877 (2010) Google Scholar
  58. 58.
    In, J., Varadwaj, K.S.K., Seo, K., Lee, S., Jo, Y., Jung, M.H., Kim, J., Kim, B.: Single-crystalline ferromagnetic Fe\(_{1-x}\)Co\(_{x}\)Si nanowires. J. Phys. Chem. C 112, 4748–4752 (2008)Google Scholar
  59. 59.
    Li, C.P., Wang, N., Wong, S.P., Lee, C.S., Lee, S.T.: Metal silicide/silicon nanowires from metal vapor vacuum arc implantation. Adv. Mater. 14, 218–221 (2002)Google Scholar
  60. 60.
    Wu, Y., Xiang, J., Yang, C., Lu, W., Lieber, C.M.: Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61–65 (2004)Google Scholar
  61. 61.
    Liu, B., Wang, Y., Dilts, S., Mayer, T.S., Mohney, S.E.: Silicidation of silicon nanowires by platinum. Nano Lett. 7, 818–824 (2007)Google Scholar
  62. 62.
    Lu, K.C., Tu, K.N., Wu, W.W., Chen, L.J., Yoo, B.Y., Myung, N.V.: Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-NiSi/Si. Appl. Phys. Lett. 90, 253111–253113 (2007)Google Scholar
  63. 63.
    Lu, K.C., Wu, W.-W., Wu, H.-W., Tanner, C.M., Chang, J.P., Chen, L.J., Tu, K.N.: In situ Control of atomic-scale si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Lett. 7, 2389–2394 (2007)Google Scholar
  64. 64.
    Chou, Y.C., Wu, W.W., Cheng, S.L., Yoo, B.Y., Myung, N., Chen, L.J., Tu, K.N.: In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi\(_{2}\) in nanowires of Si. Nano Lett. 8, 2194–2199 (2008)Google Scholar
  65. 65.
    Weber, W.M., Geelhaar, L., Unger, E., Chèze, C., Kreupl, F., Riechert, H., Lugli, P.: Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics. Phys. Status Solidi (b) 244 (2007) 4170–4175Google Scholar
  66. 66.
    Lin, Y.C., Lu, K.C., Wu, W.W., Bai, J., Chen, L.J., Tu, K.N., Huang, Y.: Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Lett. 8, 913–918 (2008)Google Scholar
  67. 67.
    Lin, Y.C., Chen, Y., Xu, D., Huang, Y.: Growth of nickel silicides in Si and Si/SiO\(_{x}\) core/shell nanowires. Nano Lett. 10, 4721–4726 (2010)Google Scholar
  68. 68.
    Liu, H.L., She, G.W., Ling, S.T., Mu, L.X., Shi, W.S.: Ferromagnetic Si/Mn\(_{27}\)Si\(_{47}\)core/shell nanowire arrays. J. Appl. Phys. 109, 4 (2011)Google Scholar
  69. 69.
    Liu, H., She, G., Mu, L., Shi, W.: Temperature-dependent structure and phase variation of nickel silicide nanowire arrays prepared by in situ silicidation. Mater. Res. Bull. 47, 3991–3994 (2012)Google Scholar
  70. 70.
    Chen, Y., Ohlberg, D.A.A., Medeiros-Ribeiro, G., Chang, Y.A., Williams, R.S.: Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001). Appl. Phys. Lett. 76, 4004–4006 (2000)Google Scholar
  71. 71.
    Chen, Y., Ohlberg, D.A.A., Williams, R.S.: Nanowires of four epitaxial hexagonal silicides grown on Si(001). J. Appl. Phys. 91, 3213–3218 (2002)Google Scholar
  72. 72.
    Zou, Z.Q., Wang, H., Wang, D., Wang, Q.K., Mao, J.J., Kong, X.Y.: Epitaxial growth of manganese silicide nanowires on Si(111)-7 x 7 surfaces. Appl. Phys. Lett. 90, 133111–133113 (2007)Google Scholar
  73. 73.
    Dan, W., Zhi-Qiang, Z.: Formation of manganese silicide nanowires on Si(111) surfaces by the reactive epitaxy method. Nanotechnology 20, 275607 (2009)Google Scholar
  74. 74.
    Zou, Z.Q., Li, W.C., Liang, J.M., Wang, D.: Self-organized growth of higher manganese silicide nanowires on Si(111), (110) and (001) surfaces. Acta Mater. 59, 7473–7479 (2011)Google Scholar
  75. 75.
    Bennett, P.A., He, Z., Smith, D.J., Ross, F.M.: Endotaxial silicide nanowires: a review. Thin Solid Films 519, 8434–8440 (2011)Google Scholar
  76. 76.
    He, Z., Stevens, M., Smith, D.J., Bennett, P.A.: Epitaxial titanium silicide islands and nanowires. Surf. Sci. 524, 148–156 (2003)Google Scholar
  77. 77.
    Stevens, M., He, Z., Smith, D.J., Bennett, P.A.: Structure and orientation of epitaxial titanium silicide nanowires determined by electron microdiffraction. J. Appl. Phys. 93, 5670–5674 (2003)Google Scholar
  78. 78.
    He, Z., Smith, D.J., Bennett, P.A.: Endotaxial silicide nanowires. Phys. Rev. Lett. 93, 256102 (2004)Google Scholar
  79. 79.
    Bennett, P.A., Ashcroft, B., He, Z., Tromp, R.M.: Growth dynamics of titanium silicide nanowires observed with low-energy electron microscopy, in AVS, Albuquerque, New Mexico, USA, pp. 2500–2504 (2002)Google Scholar
  80. 80.
    Chen, S.Y., Chen, L.J.: Nitride-mediated epitaxy of self-assembled NiSi\(_{2}\) nanowires on (001)Si. Appl. Phys. Lett. 87, 253111–253113 (2005)Google Scholar
  81. 81.
    Chen, S.Y., Chen, H.C., Chen, L.J.: Self-assembled endotaxial alpha-FeSi\(_{2}\) nanowires with length tunability mediated by a thin nitride layer on (001)Si. Appl. Phys. Lett. 88, 193114–193113 (2006)Google Scholar
  82. 82.
    Chen, S.Y., Chen, L.J.: Self-assembled epitaxial NiSi\(_{2}\) nanowires on Si(001) by reactive deposition epitaxy. Thin Solid Films 508, 222–225 (2006)Google Scholar
  83. 83.
    Liang, S., Islam, R., Smith, D.J., Bennett, P.A.: Phase transformation in FeSi2 nanowires. J. Cryst. Growth 295, 166–171 (2006)Google Scholar
  84. 84.
    Peng, Z.L., Liang, S., Deng, L.G.: Transition metal silicide nanowires growth and electrical characterization. Chin. Phys. Lett. 26, 127301 (2009)Google Scholar
  85. 85.
    Ma, J., Gu, Y., Shi, L., Chen, L., Yang, Z., Qian, Y.: Synthesis and oxidation behavior of chromium silicide (Cr\(_{3}\)Si) nanorods. J. Alloy. Compd. 375, 249–252 (2004)Google Scholar
  86. 86.
    Kim, J., Anderson, W.A.: Spontaneous nickel monosilicide nanowire formation by metal induced growth. Thin Solid Films 483, 60–65 (2005)Google Scholar
  87. 87.
    Kim, J., Anderson, W.A., Song, Y.J., Kim, G.B.: Self-assembled nanobridge formation and spontaneous growth of metal-induced nanowires. Appl. Phys. Lett. 86, 253101–253103 (2005)Google Scholar
  88. 88.
    Tanaka, M., Chu, F., Shimojo, M., Takeguchi, M., Mitsuishi, K., Furuya, K.: Position- and size-controlled fabrication of iron silicide nanorods by electron-beam-induced deposition using an ultrahigh-vacuum transmission electron microscope. Appl. Phys. Lett. 86, 183104–183103 (2005)Google Scholar
  89. 89.
    Zhang, Z., Hellström, P.-E., Lu, J., Östling, M., Zhang, S.-L.: A novel self-aligned process for platinum silicide nanowires. Microelectron. Eng. 83, 2107–2111 (2006)Google Scholar
  90. 90.
    Geng, Z.R., Lu, Q.H., Yan, P.X., Yan, D., Yue, G.H.: Efficient preparation of NiSi nanowires by DC arc-discharge. Phys. E 41, 185–188 (2008)Google Scholar
  91. 91.
    Gao, Y., Shao, G., Chen, R.S., Chong, Y.T., Li, Q.: TEM study of self-assembled FeSi\(_{2}\) nanostructures by ion beam implantation. Solid State Commun. 149, 97–100 (2009)Google Scholar
  92. 92.
    He, Y., Fan, J., Zhao, Y.: Engineering a well-aligned composition-graded CuSi nanorod array by an oblique angle codeposition technique. Crystal Growth Des. 10, 4954–4958 (2010)Google Scholar
  93. 93.
    He, Y., Brown, C., Lundgren, C.A., Zhao, Y.: The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties. Nanotechnology 23, 365703 (2012)Google Scholar
  94. 94.
    Seo, K., Bagkar, N., Kim, S.-i., In, J., Yoon, H., Jo, Y., Kim, B.: Diffusion-driven crystal structure transformation: synthesis of heusler alloy Fe3Si nanowires. Nano Lett. 10, 3643–3647 (2010)Google Scholar
  95. 95.
    Jung, S.J., Lutz, T., Bell, A.P., McCarthy, E.K., Boland, J.J.: Free-standing, single-crystal Cu\(_{3}\)Si nanowires. Crystal Growth Des. 12, 3076–3081 (2012)Google Scholar
  96. 96.
    Eberhardt, J., Kasper, E.: Ni/Ag metallization for SiGe HBTs using a Ni silicide contact. Semicond. Sci. Technol. 16, L47 (2001)Google Scholar
  97. 97.
    Kim, J., Shin, D.H., Lee, E.S., Han, C.S., Park, Y.C.: Electrical characteristics of single and doubly connected Ni silicide nanowire grown by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 90, 253103–253103 (2007)Google Scholar
  98. 98.
    Paschen, S., Felder, E., Chernikov, M.A., Degiorgi, L., Schwer, H., Ott, H.R., Young, D.P., Sarrao, J.L., Fisk, Z.: Low-temperature transport, thermodynamic, and optical properties of FeSi. Phys. Rev. B 56, 12916–12930 (1997)Google Scholar
  99. 99.
    Aeppli, G., DiTusa, J.F.: Undoped and doped FeSi or how to make a heavy fermion metal with three of the most common elements. Mater. Sci. Eng. B 63, 119–124 (1999)Google Scholar
  100. 100.
    Hung, S.W., Yeh, P.H., Chu, L.W., Chen, C.D., Chou, L.J., Wu, Y.J., Chen, L.J.: Direct growth of \(\beta \)-FeSi\(_{2}\) nanowires with infrared emission, ferromagnetism at room temperature and high magnetoresistance via a spontaneous chemical reaction method. J. Mater. Chem. 21, 5704–5709 (2011)Google Scholar
  101. 101.
    Kang, S., Brewer, G., Sapkota, K.R., Pegg, I.L., Philip, J.: Electrical and magnetic properties of higher manganese silicide nanostructures. IEEE Trans. Nanotechnol. 11, 437–440 (2012)Google Scholar
  102. 102.
    Kim, J.J., Shindo, D., Murakami, Y., Xia, W., Chou, L.J., Chueh, Y.L.: Direct observation of field emission in a single TaSi\(_{2}\) nanowire. Nano Lett. 7, 2243–2247 (2007)Google Scholar
  103. 103.
    Kim, J., Lee, E.S., Han, C.S., Kang, Y., Kim, D., Anderson, W.A.: Observation of Ni silicide formations and field emission properties of Ni silicide nanowires. Microelectron. Eng. 85, 1709–1712 (2008)Google Scholar
  104. 104.
    Liang, S., Islam, R., Smith, D.J., Bennett, P.A., O’Brien, J.R., Taylor, B.: Magnetic iron silicide nanowires on Si(110). Appl. Phys. Lett. 88, 113111–113113 (2006)Google Scholar
  105. 105.
    Kim, T., Bird, J.P.: Electrical signatures of ferromagnetism in epitaxial FeSi[sub 2] nanowires. Appl. Phys. Lett. 97, 263111–263113 (2010)Google Scholar
  106. 106.
    Gottlieb, U., Sulpice, A., Lambert-Andron, B., Laborde, O.: Magnetic properties of single crystalline Mn\(_{4}\)Si\(_{7}\). J. Alloy. Compd. 361, 13–18 (2003)Google Scholar
  107. 107.
    Hou, T.C., Han, Y.H., Lo, S.C., Lee, C.T., Ouyang, H., Chen, L.J.: Room-temperature ferromagnetism in CrSi\(_{2}\)(core)/SiO\(_{2}\)(shell) semiconducting nanocables. Appl. Phys. Lett. 98, 193104–193103 (2011)Google Scholar
  108. 108.
    DeGrave, J.P., Schmitt, A.L., Selinsky, R.S., Higgins, J.M., Keavney, D.J., Jin, S.: spin polarization measurement of homogeneously doped Fe\(_{1-x}\)Co\(_{x}\)Si nanowires by andreev reflection spectroscopy. Nano Lett. 11, 4431–4437 (2011)Google Scholar
  109. 109.
    Zhou, F., Szczech, J., Pettes, M.T., Moore, A.L., Jin, S., Shi, L.: Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations. Nano Lett. 7, 1649–1654 (2007)Google Scholar
  110. 110.
    Zou, C., Jing, G., Yu, D., Xue, Y., Duan, H.: Mechanical properties of TiSi\(_{2}\) nanowires. Phys. Lett. A 373, 2065–2070 (2009)Google Scholar
  111. 111.
    Weber, W.M., Geelhaar, L., Graham, A.P., Unger, E., Duesberg, G.S., Liebau, M., Pamler, W., Chèze, C., Riechert, H., Lugli, P., Kreupl, F.: Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 6, 2660–2666 (2006)Google Scholar
  112. 112.
    Wang, W., Ari, A.M., Wong, W.K.: Ieee, On-chip interconnects and repeaters based on NiSi nanowires. Ieee, New York (2006)Google Scholar
  113. 113.
    Maex, K., De Keersmaecker, R.F., Ghosh, G., Delaey, L., Probst, V.: Degradation of doped Si regions contacted with transition-metal silicides due to metal-dopant compound formation. J. Appl. Phys. 66, 5327–5334 (1989)Google Scholar
  114. 114.
    Hua, Q., Du, N., Zhang, H., Liu, Z., Wang, L., Yang, D.: Direct growth of Ni\(_{2}\)Si nanowire array electrodes for high-performance reversible lithium-ion batteries. J. Mater. Sci. Eng. 28, 645 (2010)Google Scholar
  115. 115.
    Zhou, S., Wang, D.: Unique lithiation and delithiation processes of nanostructured metal silicides. ACS Nano 4, 7014–7020 (2010)Google Scholar
  116. 116.
    Zhou, S., Simpson, Z.I., Yang, X., Wang, D.: Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction. ACS Nano 6, 8114–8119 (2012)Google Scholar
  117. 117.
    Kang, K., Song, K., Heo, H., Yoo, S., Kim, G.-S., Lee, G., Kang, Y.-M., Jo, M.-H.: Kinetics-driven high power Li-ion battery with a-Si/NiSi\(_{x}\) core-shell nanowire anodes. Chem. Sci. 2, 1090–1093 (2011)Google Scholar
  118. 118.
    Qi, Y., Du, N., Zhang, H., Fan, X., Yang, Y., Yang, D.: CoO/NiSi\(_{x}\) core-shell nanowire arrays as lithium-ion anodes with high rate capabilities. Nanoscale 4, 991–996 (2012)Google Scholar
  119. 119.
    Xie, J., Yang, X., Zhou, S., Wang, D.: Comparing one- and two-dimensional heteronanostructures as silicon-based lithium ion battery anode materials. ACS Nano 5, 9225–9231 (2011)Google Scholar
  120. 120.
    Zhou, S., Yang, X., Lin, Y., Xie, J., Wang, D.: A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime. ACS Nano 6, 919–924 (2011)Google Scholar
  121. 121.
    Lin, Y., Zhou, S., Liu, X., Sheehan, S., Wang, D.: TiO\(_{2}\)/TiSi\(_{2}\) heterostructures for high-efficiency photoelectrochemical H\(_{2}\)O splitting. J. Am. Chem. Soc. 131, 2772–2773 (2009)Google Scholar
  122. 122.
    Banerjee, S., Mohapatra, S.K., Misra, M.: Water photooxidation by TiSi\(_{2}\)-TiO\(_{2}\) nanotubes. J. Phys. Chem. C 115, 12643–12649 (2011)Google Scholar
  123. 123.
    Hung, S.W., Wang, T.T.J., Chu, L.W., Chen, L.J.: Orientation-dependent room-temperature ferromagnetism of FeSi nanowires and applications in nonvolatile memory devices. J. Phys. Chem. C 115, 15592–15597 (2011)Google Scholar
  124. 124.
    Kim, D.J., Seol, J.K., Lee, M.R., Hyung, J.H., Kim, G.S., Ohgai, T., Lee, S.K.: Ferromagnetic nickel silicide nanowires for isolating primary CD4\(^{+}\) T lymphocytes. Appl. Phys. Lett. 100, 163703–163704 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Guangwei She
    • 1
  • Hailong Liu
    • 1
  • Lixuan Mu
    • 1
  • Wensheng Shi
    • 1
    Email author
  1. 1.Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations