Advertisement

Impact of Defects and Doping on Electron Transport in SiCNTs

  • Sudhanshu ChoudharyEmail author
  • S. Qureshi
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 187)

Abstract

The effects of vacancy defects and boron-nitrogen dopants on electron transport properties of SiCNT are investigated. The results of geometry optimization of vacancy defects show that single vacancies and di-vacancies in SiCNTs have different reconstructions. A single vacancy when optimized, reconstructs into a 5-1DB configuration in both zigzag and armchair SiCNTs, and a di-vacancy reconstructs into a 5-8-5 configuration in zigzag and into a 5-2DB configuration in armchair SiCNTs. Analysis of frontier molecular orbitals (FMO) and transmission spectrum show that the introduction of vacancy reduces the bandgap of (5,5) semiconducting SiCNTs and increases the bandgap of (4,0) conducting SiCNTs (converts them to semi-metallic nanotubes). Bias voltage-dependent current characteristics show reduction in overall current in metallic SiCNT and an increase in overall current in semiconducting SiCNT which is due to introduction of new electronic states around the Fermi level followed by conduction through the defect sites. The results of the study on the effect of BN co-doping in SiCNTs suggests that co-doping BN impurities suppresses the important negative differential resistance (NDR) property. NDR suppression is attributed to the introduction of new electronic states near the Fermi level followed by weak orbital localization. BN co-doping results in exponential current-voltage (I–V) characteristics which is in contrast to linear I–V characteristics for individual boron and nitrogen doped SiCNTs. HOMO has no contribution from B impurity, whereas LUMO has contribution from N impurity at low and high bias.

Keywords

SiCNT  Defects Doping DFT NEGF ab-initio 

References

  1. 1.
    Yamacli, S.: Development of ab initio based models for carbon nanotube technology. Ph.D. Thesis submitted at Cukurova University (2011)Google Scholar
  2. 2.
    Avouris, P., Radoslavjevic, M., Wind, S.: Carbon Nanotube Electronics and Optoelectronics. In: Carbon Nanotubes. Springer-Verlag, Berlin (2004)Google Scholar
  3. 3.
    Liu, Z., Bajwa, N., Ci, L., Kar, S., Ajayan, P.M., Lu, J.Q.: Densification of carbon nanotube bundles for interconnect application. In: Proceedings of IEEE Interconnect Conference, pp. 201–203 (2007)Google Scholar
  4. 4.
    Li, J., Ye, Q., Cassell, A., NG, H.T., Stevens, R., Han, J., Meyappan, M.: Bottom-up approach for carbon nanotube interconnects. Appl. Phys. Lett. 82, 2491–2493 (2003)CrossRefGoogle Scholar
  5. 5.
    Sun, Y., Zhu, L., Jiang, H., Lu, J., Wang, W., Wong, C.P.: A paradigm of carbon nanotube interconnects in microelectronic packaging. J. Electron. Mater. 37, 1691–1697 (2008)CrossRefGoogle Scholar
  6. 6.
    Pesetski, A.A., Baumgardner, J.E., Krishnaswamy, S.V., Zhang, H., Adam, J.D., Kocabas, C., Banks, T., Rogers, J.A.: A 500MHz carbon nanotube transistor oscillator. Appl. Phys. Lett. 93, 123506 (2008)CrossRefGoogle Scholar
  7. 7.
    Harris, P.: Carbon Nanotube Science: Synthesis, Properties and Applications. Cambridge University Press, UK (2011)Google Scholar
  8. 8.
    Chen, H.-L., Ju, S.-P., Lin, J.-S., Jijun, Z., Chen, H.-T., Chang, J.-G., Weng, M.H., Lee, S.-C., Lee, W.-J.: Electronic properties of a silicon carbide nanotube under uniaxial tensile strain: a density function theory study. J. Nanopart. Res. 12(8), 2919–2928 (2010)Google Scholar
  9. 9.
    Dresselhaus, M.S., Eklund, P.C.: Phonons in carbon nanotubes. Adv. Phys. 49(6), 705–814 (2000)CrossRefGoogle Scholar
  10. 10.
    Biel, B., Garcı’a-Vidal, F.J., Rubio, A., Flores, F.: Anderson localization in carbon nanotubes: defect density and temperature effects. Phys. Rev. Lett. 95(26), 266801 (2005)CrossRefGoogle Scholar
  11. 11.
    Park, J.Y.: Electrically tunable defects in metallic single-walled carbon nanotubes. Appl. Phys. Lett. 90, 23112 (2007)Google Scholar
  12. 12.
    Chandra, B.: Synthesis and electronic transport in known chirality single wall carbon nanotubes. Ph.D. Thesis submitted at Columbia University (2009)Google Scholar
  13. 13.
    Saraswat, K., Cho, H., Kapur, P., Koo, K.H.: Performance comparison between copper, carbon nanotube and optical interconnects. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 2781–2784 (2008)Google Scholar
  14. 14.
  15. 15.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)Google Scholar
  16. 16.
    Wallace, P.R.: The band theory of graphite. Phys. Rev. 71(9), 622–634 (1947)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Semenof, G.W.: Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53(26), 2449–24452 (1984)CrossRefGoogle Scholar
  19. 19.
    Hanson, G.W.: Fundamentals of Nanoelectronics. Prentice-Hall Inc., New Jersey (2008)Google Scholar
  20. 20.
    Anantram, M.P., Leonard, F.: Physics of carbon nanotube electronic devices. Rep. Prog. Phys 69, 507–561 (2006)CrossRefGoogle Scholar
  21. 21.
    Loiseau, A., Launois, P., Petit, P., Roche, S., Salvetat, J.-P.: Understanding carbon nanotubes from basics to applications. Lect. Notes Phys. 677, XVI–552 (2006)Google Scholar
  22. 22.
    Sun, X.H., Li, C.P., Wong, W.K., Wong, N.B., Lee, C.S., Lee, S.T., Teo, B.K.: Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J. Am. Chem. Soc. 124(48), 14464–14471 (2002)Google Scholar
  23. 23.
    Pham-Huu, C., Keller, N., Ehret, G., Ledoux, M.J.: The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. J. Catal. 200(2), 400–410 (2001)Google Scholar
  24. 24.
    Alam, K.M., Ray, A.K.: A hybrid density functional study of zigzag sic nanotubes. Nanotechnology 18(49), 495706 (2007)CrossRefGoogle Scholar
  25. 25.
    Alam, K.M., Ray, A.K.: Hybrid density functional study of armchair sic nanotubes. Phys. Rev. B 77(3), 035436 (2008)CrossRefGoogle Scholar
  26. 26.
    Menon, M., Richter, E., Mavrandonakis, A., Froudakis, G., Andriotis, A.N.: Structure and stability of SiC nanotubes. Phys. Rev. B 69(11), 115322 (2004)CrossRefGoogle Scholar
  27. 27.
    Mavrandonakis, A., Froudakis, G.E., Schnell, M., Muhlhauser, M.: From pure carbon to silicon-carbon nanotubes: an ab initio study. Nano Lett. 3(11), 1481–1484 (2003)CrossRefGoogle Scholar
  28. 28.
    Zhao, M.W., Xia, Y.Y., Li, F., Zhang, R.Q., Lee, S.T.: Strain energy and electronic structures of silicon carbide nanotubes: density functional calculations. Phys. Rev. B 71(8), 085312 (2005)Google Scholar
  29. 29.
    Baierle, R.J., Piquini, P., Neves, L.P., Miwa, R.H.: Ab initio study of native defects in sic nanotubes. Phys. Rev. B 74(15), 155425 (2006)Google Scholar
  30. 30.
    Gali, A.: Ab initio study of nitrogen and boron substitutional impurities in single-wall sic nanotubes. Phys. Rev. B 73(24), 245415 (2006)CrossRefGoogle Scholar
  31. 31.
    Gali, A.: Ab initio theoretical study of hydrogen and its interaction with boron acceptors and nitrogen donors in single-wall silicon carbide nanotubes. Phys. Rev. B 75(8), 085416 (2007)Google Scholar
  32. 32.
    Wu, R.Q., Yang, M., Lu, Y.H., Feng, Y.P., Huang, Z.G., Wu, Q.Y.: Silicon carbide nanotubes as potential gas sensors for CO and HCN detection. J. Phys. Chem. C 112(41), 15985–15988 (2008)CrossRefGoogle Scholar
  33. 33.
    Zhao, J.X., Ding, Y.H.: Can silicon carbide nanotubes sense carbon dioxide. J. Chem. Theor. Comput. 5(4), 1099–1105 (2009)Google Scholar
  34. 34.
    Baumeier, B., Kruger, P., Pollmann, J.: Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys. Rev. B 76(8), 085407 (2007)CrossRefGoogle Scholar
  35. 35.
    Choudhary, S., Qureshi, S.: Theoretical study on the effect of vacancy defect reconstruction on electron transport in Si-C nanotubes. Mod. Phys. Lett. B 25(28), 2159-2170 (2011)Google Scholar
  36. 36.
    Choudhary, S., Qureshi, S.: Vacancy defect reconstruction and its effect on electron transport in Si-C nanotubes. J. Nano Electron. Phys 3(1), 1035–1040 (2011)Google Scholar
  37. 37.
    Tombler, T.W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C.S., Tang, M., Wu, S.: Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000)CrossRefGoogle Scholar
  38. 38.
    Miyamoto, Y., Yu, B.D.: Computational designing of graphitic silicon carbide and its tubular forms. Appl. Phys. Lett. 80(4), 586–588 (2002)Google Scholar
  39. 39.
    Vincent Liu, L., Tian, W.Q., Wang, Y.A.: Ab initio studies of vacancy-defected fullerenes and single-walled carbon nanotubes. Int. J. Quantum Chem. 109(14), 3441–3456 (2009)CrossRefGoogle Scholar
  40. 40.
    Chibotaru, L.F., Compernolle, S., Ceulemans, A.: Electron transmission through atom-contacted carbon nanotubes. Phys. Rev. B 68(12), 125412–125424 (2003)CrossRefGoogle Scholar
  41. 41.
    Cai, Y., Zhang, A., Feng, Y.P., Zhang, C., Teoh, H.F., Ho, G.W.: Strain effects on work functions of pristine and potassium-decorated carbon nanotubes. J. Chem. Phys. 131(22), 224701–224705 (2009)Google Scholar
  42. 42.
    Yuan, J., Liew, K.M.: Effects of vacancy defect reconstruction on the elastic properties of carbon nanotubes. Carbon 47(6), 1526–1533 (2009)CrossRefGoogle Scholar
  43. 43.
    Lu, A.J., Pan, B.C.: Nature of single vacancy in a chiral carbon nanotubes. Phys. Rev. Lett. 92(10), 105504–105507 (2004)CrossRefGoogle Scholar
  44. 44.
    Rossato, J., Baierle, R.J., Fazzio, A., Mota, R.: Vacancy formation process in carbon nanotubes: first-principles approach. Nano Lett. 5(1), 197–200 (2005)CrossRefGoogle Scholar
  45. 45.
    Ajayan, P.M., Ravikumar, V., Charlier, J.C.: Surface reconstructions and dimensional changes in single-walled carbon nanotubes. Phys. Rev. Lett. 81(7), 1437–1440 (1998)CrossRefGoogle Scholar
  46. 46.
    He, Y., Zhang, C., Cao, C., Cheng, H.P.: Effects of strain and defects on the electron conductance of metallic carbon nanotubes. Phys. Rev. B 75(23), 235429–235434 (2007)Google Scholar
  47. 47.
    Yamacli, S., Avci, M.: Simple and accurate model for voltage- dependent resistance of metallic carbon nanotube interconnects: an ab initio study. Phys. Lett. A 374(2), 297–304 (2009)Google Scholar
  48. 48.
    Wang, Z., Zu, X., Xiao, H., Gao, F., Weber, W.J.: Tuning the band structures of single walled silicon carbide nanotubes with uniaxial strain: a first principles study. Appl. Phys. Lett. 92(18), 183116–183118 (2008)Google Scholar
  49. 49.
    Li, X.F., Chen, K.Q., Wang, L., Long, M.Q., Zoul, B.S., Shuai, Z.: Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices. Appl. Phys. Lett. 91(13), 133511–133513 (2007)CrossRefGoogle Scholar
  50. 50.
    Yang, Y.T., Song, J.X., Liu, X.H., Chai, C.C.: Negative differential resistance in single-walled SiC nanotubes. Chin. Sci. Bull. 53(23), 3770–3772 (2008)CrossRefGoogle Scholar
  51. 51.
    Yang, Y.T., Ding, R.X., Song, J.X.: Transport properties of boron-doped single-walled silicon carbide nanotubes. Physica B 406(2), 216–219 (2010)Google Scholar
  52. 52.
    Li, Z., Kosov, D.S.: Dithiocarbamate anchoring in molecular wire junctions: a first principles study. J. Phys. Chem. B 110(20), 9893–9898 (2006)CrossRefGoogle Scholar
  53. 53.
    Mintmire, J.W., White, C.T.: Properties: theoretical predictions. In: Ebbesen, T.W. (ed.) Carbon Nanotubes – Preparation and Properties, pp. 191–209, CRC Press, Boca Raton (1997)Google Scholar
  54. 54.
    Wei C.: Doped Nanomaterials and Nanodevices (2007)Google Scholar
  55. 55.
    Nevidomskyy, A.H., Csanyi, G., Payne, M.C.: Chemically active substitutional nitrogen impurity in carbon nanotubes. Phys. Rev. Lett. 91(10), 105502 (2003)CrossRefGoogle Scholar
  56. 56.
    Kang, H.S., Jeong, S.: Nitrogen doping and chirality of carbon nanotubes. Phys. Rev. B 70(23), 233411–233414 (2004)Google Scholar
  57. 57.
    Khalfoun, H., Hermet, P., Henrard, L.: B and N codoping effect on electronic transport in carbon nanotubes. Phys. Rev. B 81(19), 193411–193414 (2010)CrossRefGoogle Scholar
  58. 58.
    Taguchi, T., Igawa, N., Yamamoto, H., Jitsukawa, S.: Synthesis of silicon carbide nanotubes. J. Am. Ceram. Soc. 88(2), 459–461 (2005)CrossRefGoogle Scholar
  59. 59.
    Song, J., Yang, Y., Liu, H.: Electronic structures and optical properties of the nitrogen-doped SiC nanotube. In: Proceedings of IEEE EDSSC, pp. 509–512 (2009)Google Scholar
  60. 60.
    Guo, W., Hu, Y.B., Zhang, Y.Y., Du, S.X., Gao, H.J.: Transport properties of boron nanotubes investigated by ab initio calculation. Chin. Phys. B 18(6), 2502 (2009)Google Scholar
  61. 61.
    Choudhary, S., Qureshi, S.: Theoretical study on transport properties of a BN co-doped SiC nanotube. Phys. Lett. A 375(38), 3382–3385 (2011)Google Scholar
  62. 62.
    Yang, Y.T., Song, J.X., Liu, X.H., Chai, C.C.: Negative differential resistance in single-walled SiC nanotubes. Chin. Sci. Bull. 53(23), 3770–3772 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electrical EngineeringI. I. T. KanpurKanpurIndia

Personalised recommendations