Advertisement

Adhesion and Indentation Fracture Behavior of Silicon Carbonitride Nanocomposite Coatings Deposited by Magnetron Sputtering

  • S. K. Mishra
  • A. S. BhattacharyyaEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 187)

Abstract

The ternary nanocomposite material Si–C–N was first introduced to the scientific community as a high temperature oxidation resistant polymer-derived ceramic (PDCs).

Keywords

Critical Load Radial Crack Scratch Test Lateral Crack Nanocomposite Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Riedal, R., Kleebe. H.J., Schoenfelder, H., Aldinger, F.: A covalent micro/nano composite resistant to high temperature oxidation. Nature 374, 526–528 (1995)Google Scholar
  2. 2.
    Bill, J., Seitz, J., Thurn, G., Dürr, J., Canel, J., Janos, B.Z., Jalomecki, A., Santez, D., Schempp, S., Lamparter, H.P., Mayer, J., Aldinger, F.: Structure analysis and properties of Si–C–N ceramics derived from polysilazanes, Phys. Status Solidif A 166, 269 (1998)Google Scholar
  3. 3.
    Raj, R., Riedel, R., Soraru, G.D.: Introduction to the special topical issue on ultrahigh-temperature polymer-derived ceramics. J. Am. Ceram. Soc. 84(10), 2158–2159 (2001)CrossRefGoogle Scholar
  4. 4.
    Ferreira, I., Fortunato, E., Vilarinho, P., Viana, A.S., Ramos, A.R., Alves, E., Martins, R.: Hydrogenated silicon carbon nitride films obtained by HWCVD PA-HWCVD and PECVD techniques. J. Non-Crystal. Solids 352, 1361–1366 (2006)CrossRefGoogle Scholar
  5. 5.
    Berlind, T., Hellgren, N., Johansson, M.P., Hultman, L.: Microstructure, mechanical properties, and wetting behavior of Si–C–N thin films grown by reactive magnetron sputtering Surf. Coat. Technol. 141, 145–155 (2001)Google Scholar
  6. 6.
    Janakiraman, N., Aldinger, F.: Indentation analysis of elastic and plastic deformation of precursor-derived Si–C–N ceramics. J. Eur. Ceram. Soc. 30, 775–785 (2010)CrossRefGoogle Scholar
  7. 7.
    Mishra, S.K., Gaur, H., Rupa, P.K.P., Pathak, L.C.: Deposition of nanostructured Si–C–N superhard coatings by rf magnetron sputtering. J. Vac. Sci. Technol. B 24, 1311 (2006)CrossRefGoogle Scholar
  8. 8.
    Mishra, S.K., Shekhar, C., Rupa, P.K.P., Pathak, L.C.: Effect of pressure and substrate temperature on the deposition of nano-structured silicon–carbon–nitride superhard coatings by magnetron sputtering. Thin Solid Films 515, 4738 (2007)CrossRefGoogle Scholar
  9. 9.
    Kroke, E., Li-Li, Y., Konetschney, C., Lecomte, E., Fasel, C., Riedel, R.: Mater. Sci. Eng. 26, 97 (2000)CrossRefGoogle Scholar
  10. 10.
    Meyer, E.: Untersuchungen uber Harteprugung und Harte. Phys. Z. 9, 66–74 (1980)Google Scholar
  11. 11.
    Thomas, A.: Microhardness measurement as a quality control technique for thin, hard coatings. Surf. Eng. 3, 117–22 (1987)Google Scholar
  12. 12.
    Tabor, D.: The Hardness of Metals. Clarendon Press, Oxford (1951)Google Scholar
  13. 13.
    Jönsson, B., Hogmark, S.: Hardness measurements of thin films. Thin Solid Films 114, 257–69 (1984)Google Scholar
  14. 14.
    Sargent, P.M.: Ph.D. Thesis, University of Cambridge, UK (1979)Google Scholar
  15. 15.
    Burnett, P.J., Rickerby, D.S.: The mechanical properties of wear-resistant coatings: I: modelling of hardness behaviour. Thin Solid Films 148, 41–50 (1987)CrossRefGoogle Scholar
  16. 16.
    Burnett, P.J., Rickerby, D.S.: The mechanical properties of wear-resistant coatings: II: experimental studies and interpretation of hardness. Thin Solid Films 148, 51–65 (1987)CrossRefGoogle Scholar
  17. 17.
    Bull, S.J., Rickerby, D.S.: New developments in the modeling of the hardness and scratch adhesion of thin films. Surf. Coat. Technol. 42, 149–64 (1990)Google Scholar
  18. 18.
    Chicot, D., Lesage, J.: Absolute hardness of films and coating. Thin Solid Films 254, 123–130 (1995)CrossRefGoogle Scholar
  19. 19.
    Ichimura, H., Rodriguez, F.M., Rodrigo, A.: The composite and film hardness of TiN coatings prepared by cathodic arc evaporation. Surf. Coat. Technol. 127, 138–143 (2000)CrossRefGoogle Scholar
  20. 20.
    Korsunsky, A.M., McGurk, M.R., Bull, S.J., Page, T.F.: On the hardness of coated systems. Surf. Coat. Technol. 99, 171–183 (1998)CrossRefGoogle Scholar
  21. 21.
    Puchi-Cabrera, E.S.: A new model for the computation of the composite hardness of coated systems. Surf. Coat. Technol. 160, 177–186 (2002)Google Scholar
  22. 22.
    Bull, S.J.: Nanoindentation of coatings. J. Phys. D: Appl. Phys. 38, 393–413 (2005)CrossRefGoogle Scholar
  23. 23.
    Bhattacharyya, A.S., Das, G.C., Mukherjee, S., Mishra, S.K.: Effect of radio frequency and direct current modes of deposition on protective metallurgical hard silicon carbon nitride coatings by magnetron sputtering. Vacuum 83, 1464–1469 (2009)CrossRefGoogle Scholar
  24. 24.
    Bhattacharyya, A.S., Mishra, S.K., Das, G.C.: Mukherjee shot properties. Eur. Coat. J. 3, 108–114 (2009)Google Scholar
  25. 25.
    Bhattacharyya, A.S., Mishra, S.K., Mukherjee, S., Das, G.C.: A comparative study of Si–C–N films on different substrates grown by RFmagnetron sputtering. J. Alloys Comp. 478, 474–478 (2009)Google Scholar
  26. 26.
    Lube, T.: Indentation crack profiles in silicon nitride. J. Eur. Ceram. Soc. 21, 211–218 (2001)CrossRefGoogle Scholar
  27. 27.
    Chicot, D., Duarte, G., Tricoteaux, A., Jorgowski, B., Leriche, A., Lesage, J.: Vickers indentation fracture (VIF) modeling to analyze multi-cracking toughness of titania, alumina and zirconia plasma sprayed coatings. Mater. Sci. Eng. A 527, 65–76 (2009)CrossRefGoogle Scholar
  28. 28.
    Burnett, P.J., Rickery, D.S.: The scratch adhesion test an elastic-plastic indentation analysis. Thin Solid Films 157, 233–254 (1988)CrossRefGoogle Scholar
  29. 29.
    Mishra, S.K., Bhattacharyya, A.S.: Effect of substrate temperature on the adhesion properties of magnetron sputtered nano-composite Si–C–N hard thin films. Mater. Lett. 62, 398–402 (2008)CrossRefGoogle Scholar
  30. 30.
    Gonczy, S.T., Randall, N.: An ASTM standard for quantitative scratch adhesion testing of thin, hard ceramic coatings. In: 29th International Conference on Advance Ceramic and Composites, Cocoa beach, FL, 23–28 Jan 2005Google Scholar
  31. 31.
    Bull, S.J., Berasetegui, E.G.: An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol. Int. 39, 99–114 (2006)Google Scholar
  32. 32.
    Ashrafizadeh, F.: Adhesion evaluation of PVD coatings to aluminium substrate. Surf. Coat. Technol. 130, 186–194 (2000)CrossRefGoogle Scholar
  33. 33.
    Burghard, Z.: PhD-Thesis, Max-Planck Institute for Metals Research & University of Stuttgart, Germany (2004)Google Scholar
  34. 34.
    Cook, R.F., Pharr, G.M.: Lateral cracks and microstructural effects in the indentation fracture of yttria. J. Am. Ceram. Soc. 73, 787–817 (1990)CrossRefGoogle Scholar
  35. 35.
    Lawn, B.R.: Fracture of Brittle Solids, 2nd edn. Cambridge University Press, Cambridge (1993) (1993).Google Scholar
  36. 36.
    Dieter, G.E.: Mechanical Metallurgy. McGraw Hill Book Company (UK) limited, New York (1988)Google Scholar
  37. 37.
    Kumar, P.: Elements of Fracture Mechanics, 1st edn. A.H. Wheeler & Co. Ltd., Allahabad (1999)Google Scholar
  38. 38.
    Krueger, R., O’Brien, T.K.: A shell/3D modeling technique for the analysis of delaminated composite laminates. Comp. Part A: Appl. Sci. Manuf. 32, 25–44 (2001)CrossRefGoogle Scholar
  39. 39.
    Davies, P.: Round Robin analysis of G\(_{Ic}\) interlaminar fracture test. Appl. Comp. Mater. 3, 135–140 (1996)Google Scholar
  40. 40.
    Weisstein, E.W.: "Cardioid." from mathworld-a Wolfram Web resource. http://mathworld.wolfram.com/Cardioid.html
  41. 41.
    Zhou, Y., Probst, D., Thissen, A., Kroke, E., Riedel, R., Hauser, R., Hoche, H., Broszeit, E., Kroll, P., Stafast, H.: Hard silicon carbonitride films obtained by RF-plasma enhanced chemical vapour deposition using the single source precursor bis(trimethylsilyl)-carbodiimide. J. Eur. Ceram. Soc. 26, 1325–1335 (2006)CrossRefGoogle Scholar
  42. 42.
    Probst, D., Hoche, H., Zhou, Y.Y., Hausier, R., Stelzner, T., Scheerer, H., Brotzeit, E., Berger, C., Riedel, R., Stafast, H., Koke, E.: Development of PECVD Si/C/N:H films for tribological and corrosive complex load conditions. Surf. Coat. Technol. 200, 355–359 (2005)Google Scholar
  43. 43.
    Bushan, B., Gupta, B.K.: Handbook of Tribology (Materials Coating and Surface Treatments). pp. 15.45–15.58. ISBN: 0-07-005249-2Google Scholar
  44. 44.
    Mehrotra, P.K., Quinto, D.T.: Techniques for evaluating mechanical 236 properties of hard coatings. J. Vac. Sci. Technol. A 3(6), 237, 2401–2405 (1985)Google Scholar
  45. 45.
    Perry, A.J.: The adhesion of chemically vapour deposited hard coatings to steel—the scratch test. Thin Solid Films 78, 77–93 (1981)CrossRefGoogle Scholar
  46. 46.
    Steinmann, P.A., Hintermann, H.E.: Adhesion of TiC and TiCN coatings on steel. J Vac. Sci Technol. A 3, 2394–400 (1985)Google Scholar
  47. 47.
    Valli, J.: A review of adhesion test methods for thin hard coatings. J. Vac. Sci. Technol. A 4, 3001–3014 (1986)Google Scholar
  48. 48.
    Mittal, K.L.: Adhesion Measurement of Films and Coatings, pp. 1–13. The Netherlands: VSP, Utrecht (1995)Google Scholar
  49. 49.
    Bhushan, B.: Handbook of Micro/Nanotribology, 2nd edn. CRC Press, Boca Raton (1999)Google Scholar
  50. 50.
    Huang, L.Y., Zhao, J.W., Xu, K.W., Lu, J.: Analysis of nano-scratchbehavior of diamond-like carbon films. Surf. Coat. Tech. 154, 232–236 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.CSIR-National Metallurgical LaboratoryJamshedpurIndia
  2. 2.Central University of JharkhandRanchiIndia

Personalised recommendations