Advertisement

Porous Silicon as Anode Material for Lithium-Ion Batteries

  • Madhuri Thakur
  • Roderick Pernites
  • Steve L. Sinsabaugh
  • Michael S. Wong
  • Sibani L. BiswalEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 187)

Abstract

Lithium-ion batteries are ubiquitous in our modern society, powering everything from cell phones, laptops, and power tools.They are also powering emerging applications such as electric vehicles and used for on-grid power stabilization. Lithium-ion batteries are a significant and growing part of this market due to their high specific energy. The worldwide market for lithium-ion batteries is projected to reach more than USD 9 billion by 2015. While lithium-ion batteries are often selected for their high specific energy, the market is demanding yet higher performance, usually in terms of energy stored per unit mass of battery. Many groups have recently turned their attention toward developing a silicon-based anode material to increase lithium-ion battery density. Silicon continues to draw great interest as an anode for lithium-ion batteries due to its large specific capacity as compared to the conventional graphite. Despite this exciting property, its practical use has been limited due to a large volume change associated with the insertion and extraction of lithium, which oftentimes leads to cracking and pulverization of the anode, limiting its cycle life. To overcome this problem, significant research has been focused toward developing various silicon nanostructures to accommodate the severe volume expansion and contraction. The structuring of the silicon often involves costly processing steps, limiting its application in price sensitive commercial lithium-ion batteries. To achieve commercial viability, work is being pursued on silicon battery anode structures and processes with a special emphasis on the cost and environment. In this review book chapter, we will summarize recent development of a cost-effective electrochemically etched porous silicon as an anode material for lithium-ion batteries. Briefly, the new approach involves creating hierarchical micron-and nanometer-sized pores on the surface of micron-sized silicon particulates, which are combined with an excellent conductor binder.

Keywords

Porous silicon  Anode Lithium-ion battery Electrochemical etching 

Notes

Acknowledgments

This work is supported by LANCER, the Lockheed Martin Advanced Nanotechnology Center of Excellence at Rice University.

References

  1. 1.
    Shin, H.C., Corno, J.A., Gole, J.L., Liu, M.L.: Porous silicon negative electrodes for rechargeable lithium batteries. J. Power Sources 139, 314–320 (2005)CrossRefGoogle Scholar
  2. 2.
    Obrovac, M.N., Christensen, L., Le, D.B., Dahnb, J.R.: Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 154, A849–A855 (2007)CrossRefGoogle Scholar
  3. 3.
    Winter, M., Besenhard, J.O., Spahr, M.E., Novak, P.: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998)CrossRefGoogle Scholar
  4. 4.
    Anani, A., Huggins, R.A.: Multinary alloy electrodes for solid-state batteries. 1. A phase-diagram approach for the selection and storage properties determination of candidate electrode materials. J. Power Sources 38, 351–362 (1992)CrossRefGoogle Scholar
  5. 5.
    Chen, X., Gerasopoulos, K., Guo, J., et al.: Virus-enabled silicon anode for lithium-ion batteries. ACS Nano 4, 5366–5372 (2010)CrossRefGoogle Scholar
  6. 6.
    Wen, C.J., Huggins, R.A.: Chemical diffusion in intermediate phases in the lithium-silicon system. J. Solid State Chem. 37, 271–278 (1981)CrossRefGoogle Scholar
  7. 7.
    Yang, Y., McDowell, M.T., Jackson, A., et al.: New nanostructured \({\rm {Li}}_2\)S/silicon rechargeable battery with high specific energy. Nano Lett. 10, 1486–1491 (2010)CrossRefGoogle Scholar
  8. 8.
    Rong, J., Masarapu, C., Ni, J., Zhang, Z., Wei, B.: Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications. ACS Nano 4, 4683–4690 (2010)CrossRefGoogle Scholar
  9. 9.
    Liu, N., Hu, L., McDowell, M.T., Jackson, A., Cui, Y.: Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487–6493 (2011)CrossRefGoogle Scholar
  10. 10.
    Obrovac, M.N., Krause, L.J.: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007)CrossRefGoogle Scholar
  11. 11.
    Kang, D.K., Corno, J.A., Gole, J.L., Shin, H.C.: Microstructured nanopore-walled porous silicon as an anode material for rechargeable lithium batteries. J. Electrochem. Soc. 155, A276–A281 (2008)Google Scholar
  12. 12.
    Chan, C.K., Peng, H., Liu, G., et al.: High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnol. 3, 31–35 (2008)CrossRefGoogle Scholar
  13. 13.
    Qiu, M.C., Yang, L.W., Qi, X., Li, J., Zhong, J.X.: Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery. ACS Appl. Mater. Interfaces 2, 3614–3618 (2010)CrossRefGoogle Scholar
  14. 14.
    Zhong, X., Qu, Y., Lin, Y.-C., Liao, L., Duan, X.: Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS Appl. Mater. Interfaces 3, 261–270 (2011)CrossRefGoogle Scholar
  15. 15.
    Hatchard, T.D., Dahn, J.R.: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838–A842 (2004)CrossRefGoogle Scholar
  16. 16.
    Baranchugov, V., Markevich, E., Pollak, E., Salitra, G., Aurbach, D.: Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem. Commun. 9, 796–800 (2007)CrossRefGoogle Scholar
  17. 17.
    Du, C., Gao, C., Yin, G., Chen, M., Wang, L.: Facile fabrication of a nanoporous silicon electrode with superior stability for lithium ion batteries. Energy Environ. Sci. 4, 1037–1042 (2011)CrossRefGoogle Scholar
  18. 18.
    Magasinski, A., Zdyrko, B., Kovalenko, I., et al.: Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces 2, 3004–3010 (2010)CrossRefGoogle Scholar
  19. 19.
    Sailor, M.J.: Porous Silicon in Practice. Wiley-VCH, Weinheim (2012)Google Scholar
  20. 20.
    Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRefGoogle Scholar
  21. 21.
    Lehmann, V., Gosele, U.: Porous silicon formation—a quantum wire effect. Appl. Phys. Lett. 58, 856–858 (1991)CrossRefGoogle Scholar
  22. 22.
    Cullis, A.G., Canham, L.T., Calcott, P.D.J.: The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909–965 (1997)CrossRefGoogle Scholar
  23. 23.
    Stewart, M.P., Buriak, J.M.: Chemical and biological applications of porous silicon technology. Adv. Mater. 12, 859–869 (2000)CrossRefGoogle Scholar
  24. 24.
    Menna, P., Di Francia, G., Laferrara, V.: Porous silicon in solar-cells - a review and a description of its application as an ar coating. Sol. Energy Mater. Sol. Cells 37, 13–24 (1995)CrossRefGoogle Scholar
  25. 25.
    Wong, M.S., Knowles, W.V.: Surfactant-templated mesostructured materials:synthesis and compositional control,chap5. In: Lu, G.Q., Zhao, X.S.(eds.) Nanoporous Materials - Science and Engineering, 125–164. Imperial College Press, London (2004)Google Scholar
  26. 26.
    Lehmann, V., Rönnebeck, S.: The physics of macropore formation in low-doped p-type silicon. J. Electrochem. Soc. 146, 2968–2975 (1999)Google Scholar
  27. 27.
    Houle, F.A.: Photochemical etching of silicon–the influence of photogenerated charge-carriers. Phys. Rev. B 39, 10120–10132 (1989)Google Scholar
  28. 28.
    Thakur, M., Isaacson, M., Sinsabaugh, S.L., Wong, M.S., Biswal, S.L.: Gold-coated porous silicon films as anodes for lithium ion batteries. J. Power Sources 205, 426–432 (2012)Google Scholar
  29. 29.
    Kim, H., Cho, J.: Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. Nano Lett. 8, 3688–3691 (2008)Google Scholar
  30. 30.
    Kim, H., Han, B., Choo, J., Cho, J.: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 47, 10151–10154 (2008)Google Scholar
  31. 31.
    Bang, B.M., Lee, J.-I., Kim, H., et al.: High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Eng. Mater. 2, 878–883 (2012)Google Scholar
  32. 32.
    Shen, P., Uesawa, N., Inasawa, S., Yamaguchi, Y.: Characterization of flowerlike silicon particles obtained from chemical etching: visible fluorescence and superhydrophobicity. Langmuir 26, 13522–13527 (2010)Google Scholar
  33. 33.
    Halimaoui, A.: Porous Silicon Science and Technology. Springer, Berlin (1995)Google Scholar
  34. 34.
    Turner, D.R.: Electropolishing silicon in hydrofluoric acid solutions. J. Electrochem. Soc. 105, 402–408 (1958)Google Scholar
  35. 35.
    Theunissen, M.J.J.: Etch channel formation during anodic dissolution of n-type silicon in aqueous hydrofluoric acid. J. Electrochem. Soc. 119, 351–360 (1972)Google Scholar
  36. 36.
    Propst, E.K., Kohl, P.A.: The electrochemical oxidation of silicon and formation of porous silicon in acetonitrile. J. Electrochem. Soc. 141, 1006–1013 (1994)Google Scholar
  37. 37.
    Ponomarev, E.A., Levy-Clement, C.: Macropore formation on p-type Si in fluoride containing organic electrolytes. Electrochem. Solid-State Lett. 1, 42–45 (1998)CrossRefGoogle Scholar
  38. 38.
    Wehrspohn, R.B., Chazalviel, J.N., Ozanam, F., Solomon, I.: Electrochemistry and photoluminescence of porous amorphous silicon. Thin Solid Films 297, 5–8 (1997)CrossRefGoogle Scholar
  39. 39.
    Wehrspohn, R.B., Chazalviel, J.N., Ozanam, F.: Macropore formation in highly resistive p-type crystalline silicon. J. Electrochem. Soc. 145, 2958–2961 (1998)CrossRefGoogle Scholar
  40. 40.
    Steinert, M., Acker, J., Krause, M., Oswald, S., Wetzig, K.: Reactive species generated during wet chemical etching of silicon in HF/\({\rm {HNO}}_3\) mixtures. J. Phys. Chem. B 110, 11377–11382 (2006)Google Scholar
  41. 41.
    Steinert, M., Acker, J., Oswald, S., Wetzig, K.: Study on the mechanism of silicon etching in \({\rm {HNO}}_3\)-rich HF/\({\rm {HNO}}_3\) mixtures. J. Phys. Chem. C 111, 2133–2140 (2007)CrossRefGoogle Scholar
  42. 42.
    Lee, J.-H., Seo, Y., Lim, T.-S., Bishop, P.L., Papautsky, I.: MEMS needle-type sensor array for in situ measurements of dissolved oxygen and redox potential. Environ. Sci. Technol. 41, 7857–7863 (2007)CrossRefGoogle Scholar
  43. 43.
    Bsiesy, A.: In: Canham, L.T. (ed.) Properties of Porous Silicon, pp. 283–289. INSPEC, London (1997)Google Scholar
  44. 44.
    Iyer, S.S., Xie, Y.H.: Light-emission from silicon. Science 260, 40–46 (1993)CrossRefGoogle Scholar
  45. 45.
    Takasuka, E., Kamei, K.: Microstructure of porous silicon and its correlation with photoluminescence. Appl. Phys. Lett. 65, 484–486 (1994)CrossRefGoogle Scholar
  46. 46.
    Peng, K.Q., Xu, Y., Wu, Y., et al.: Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1, 1062–1067 (2005)CrossRefGoogle Scholar
  47. 47.
    Garnett, E.C., Yang, P.: Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130, 9224–9225 (2008)CrossRefGoogle Scholar
  48. 48.
    Fang, H., Li, X., Song, S., Xu, Y., Zhu, J.: Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology 19(25), 255703. doi: 10.1088/0957-4484/19/25/255703
  49. 49.
    Wu, E.C., Park, J.-H., Park, J., et al.: Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano 2, 2401–2409 (2008)CrossRefGoogle Scholar
  50. 50.
    Harper, J., Sailor, M.J.: Detection of nitric oxide and nitrogen dioxide with photoluminescent porous silicon. Anal. Chem. 68, 3713–3717 (1996)Google Scholar
  51. 51.
    Patolsky, F., Zheng, G.F., Lieber, C.M.: Nanowire-based biosensors. Anal. Chem. 78, 4260–4269 (2006)Google Scholar
  52. 52.
    Tasciotti, E., Liu, X., Bhavane, R., et al.: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3, 151–157 (2008)CrossRefGoogle Scholar
  53. 53.
    Park, J.-H., Gu, L., von Maltzahn, G., et al.: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Mater. 8, 331–336 (2009)CrossRefGoogle Scholar
  54. 54.
    Lee, C., Kim, H., Hong, C., et al.: Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation. J. Mater. Chem. 18, 4790–4795 (2008)CrossRefGoogle Scholar
  55. 55.
    De Stefano, L., Rea, I., Giardina, P., Armenante, A., Rendina, I.: Protein-modified porous silicon nanostructures. Adv. Mater. 20, 1529–1533 (2008)CrossRefGoogle Scholar
  56. 56.
    Canham, L.T.: Bioactive silicon structure fabrication through nanoetching techniques. Adv. Mater. 7, 1033–1037 (1995)CrossRefGoogle Scholar
  57. 57.
    Shin, H.C., Shi, Z., Gole, J.L., Liu, M.L.: Porous silicon based electrodes for lithium batteries. In: Wachman, E., Swider-Lyons, K., Carolan, M.F., Garzon, F.H., Liu, M., Stetter, J.R. (eds.) Solid State Ionic Devices III, PV 2002-26, 2003, pp. 518–525. The Electrochemical Society, Pennington, NJ (2003)Google Scholar
  58. 58.
    Gole, J.L., Seals, L.T., Lillehei, P.T.: Patterned metallization of porous silicon from electroless solution for direct electrical contact. J. Electrochem. Soc. 147, 3785–3789 (2000)CrossRefGoogle Scholar
  59. 59.
    Yu, Y., Gu, L., Zhu, C.B., et al.: Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 22, 2247–2250 (2010)CrossRefGoogle Scholar
  60. 60.
    Halimaoui, A.: Porous silicon formation by anodisation. In: Canhan, L. (ed.) Properties of Porous Silicon, p. 18. The Institution of Electrical Engineering, London (1997)Google Scholar
  61. 61.
    Takamura, T., Sumiya, K., Suzuki, J., Yamada, C., Sekine, K.: Enhancement of Li doping/undoping reaction rate of carbonaceous materials by coating with an evaporated metal film. J. Power Sources 81, 368–372 (1999)CrossRefGoogle Scholar
  62. 62.
    Astrova, E.V., Fedulova, G.V., Smirnova, I.A., et al.: Porous silicon based negative electrodes for lithium ion batteries. Tech. Phys. Let 37, 731–734 (2011)CrossRefGoogle Scholar
  63. 63.
    Thakur, M., Pernites, R.B., Nitta, N., et al.: Freestanding macroporous silicon and pyrolyzed polyacrylonitrile composite as an anode for lithium ion batteries. Chem. Mater. 24, 2998–3003 (2012)CrossRefGoogle Scholar
  64. 64.
    Solanki, C.S., Bilyalov, R.R., Bender, H., Poortmans, J.: New approach for the formation and separation of a thin porous silicon layer. Phys. Status Solidi A 182, 97–101 (2000)CrossRefGoogle Scholar
  65. 65.
    Solanki, C.S., Bilyalov, R.R., Poortmans, J., et al.: Self-standing porous silicon films by one-step anodizing. J. Electrochem. Soc. 151, C307–C314 (2004)CrossRefGoogle Scholar
  66. 66.
    Xue, J.S., Dahn, J.R.: Dramatic effect of oxidation on lithium insertion in carbons made from epoxy-resins. J. Electrochem. Soc. 142, 3668–3677 (1995)CrossRefGoogle Scholar
  67. 67.
    Kim, C., Yang, K.S., Kim, Y.J., Endo, M.: Heat treatment temperature effects on structural and electrochemical properties of PVDC-based disordered carbons. J. Mater. Sci. 38, 2987–2991 (2003)CrossRefGoogle Scholar
  68. 68.
    Yen, Y.-C., Chao, S.-C., Wu, H.-C., Wu, N.-L.: Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells. J. Electrochem. Soc. 156, A95–A102 (2009)CrossRefGoogle Scholar
  69. 69.
    Pospisil, J., Samoc, M., Zieba, J.: Third-order nonlinear optical properties of a ladder polymer obtained by pyrolysis of polyacrylonitrile. Eur. Polym. J. 34, 899–904 (1998)CrossRefGoogle Scholar
  70. 70.
    Thakur, M., Sinsabaugh, S.L., Isaacson, M., Wong, M.S., Biswal, S.L.: Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries. Sci. Rep. 2(795), (2012)(Accepted). doi: 10.1038/srep00795
  71. 71.
    Cui, L.-F., Hu, L., Wu, H., Choi, J.W., Cui, Y.: Inorganic glue enabling high performance of silicon particles as lithium ion battery anode. J. Electrochem. Soc. 158, A592–A596 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Madhuri Thakur
    • 1
  • Roderick Pernites
    • 1
  • Steve L. Sinsabaugh
    • 2
  • Michael S. Wong
    • 1
  • Sibani L. Biswal
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringRice UniversityHoustonUSA
  2. 2.Lockeed Martin, MS2AkronUSA

Personalised recommendations