Advertisement

Minimal Change Disease in Adults

Chapter

Abstract

Minimal change disease (MCD) is the etiology of the nephrotic syndrome in the majority of children and up to one-fourth of adults with this condition. The pathophysiology of MCD is poorly understood, but recent studies suggest the roles of regulatory T-cell dysfunction and specific podocyte proteins in its pathogenesis. Oral glucocorticoids are considered first-line therapy for adult MCD and lead to remission in over 80 % of cases. Most patients experience relapse, and some develop glucocorticoid dependence or resistance with further treatment. Here we review the pathophysiology, clinical presentation, and treatment of MCD in adults.

Keywords

Nephrotic Syndrome Treg Cell Idiopathic Nephrotic Syndrome Minimal Change Disease Podocyte Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nachman PH, Jennette JC, Falk RJ. Primary glomerular diseases. In: Brenner BM, editor. The kidney. 8th ed. Philadelphia: W.B. Saunders Company; 2008. p. 987–1279.Google Scholar
  2. 2.
    Caulfield JP, Reid JJ, Farquhar MG. Alterations of glomerular epithelium in acute aminonucleoside nephrosis—evidence for formation of occluding junctions and epithelial-cell detachment. Lab Invest. 1976;34:43–59.PubMedGoogle Scholar
  3. 3.
    Shalhoub RJ. Pathogenesis of lipoid nephrosis: a disorder of T cell function. Lancet. 1974;304:556–60.CrossRefGoogle Scholar
  4. 4.
    Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, et al. Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol. 2009;20:260–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Araya C, Diaz L, Wasserfall C, Atkinson M, Mu W, Johnson R, et al. T regulatory cell function in idiopathic minimal lesion nephrotic syndrome. Pediatr Nephrol. 2009;24:1691–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Audard V, Pawlak A, Candelier M, Lang P, Sahali D. Upregulation of nuclear factor-related kappa B suggests a disorder of transcriptional regulation in minimal change nephrotic syndrome. PLoS One. 2012;7:e30523.PubMedCrossRefGoogle Scholar
  7. 7.
    Le BL, Bruneau S, Naulet J, Renaudin K, Buzelin F, Usal C, et al. Induction of T regulatory cells attenuates idiopathic nephrotic syndrome. J Am Soc Nephrol. 2009;20:57–67.CrossRefGoogle Scholar
  8. 8.
    Barrat FJ, Cua DJ, Boonstra A, Richards DF, Crain C, Savelkoul HF, et al. In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med. 2002;195:603–16.PubMedCrossRefGoogle Scholar
  9. 9.
    Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, et al. Induction of B7–1 in podocytes is associated with nephrotic syndrome. J Clin Invest. 2004;113:1390–7.PubMedGoogle Scholar
  10. 10.
    Lai KW, Wei CL, Tan LK, Tan PH, Chiang GSC, Lee CGL, et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol. 2007;18:1476–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Shimada M, Ishimoto T, Lee PY, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, et al. Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-{kappa}B-dependent pathway. Nephrol Dial Transplant. 2012;27(1):81–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Garin EH, Mu W, Arthur JM, Rivard CJ, Araya CE, Shimada M, et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int. 2010;78:296–302.PubMedCrossRefGoogle Scholar
  13. 13.
    Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, et al. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol. 2000;20:5343–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Clement LC, Avila-Casado C, Mace C, Soria E, Bakker WW, Kersten S, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med. 2011;17:117–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Black DA, Rose G, Brewer DB. Controlled trial of prednisone in adult patients with the nephrotic syndrome. Br Med J. 1970; 3:421–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Coggins CH. Adult minimal change nephropathy: experience of the collaborative study of glomerular disease. Trans Am Clin Climatol Assoc. 1986;97:18–26.PubMedGoogle Scholar
  17. 17.
    Arneil GC, Lam CN. Long-term assessment of steroid therapy in childhood nephrosis. Lancet. 1966;2:819–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Huang JJ, Hsu SC, Chen FF, Sung JM, Tseng CC, Wang MC. Adult-onset minimal change disease among Taiwanese: clinical features, therapeutic response, and prognosis. Am J Nephrol. 2001;21:28–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Mak SK, Short CD, Mallick NP. Long-term outcome of adult-onset minimal-change nephropathy. Nephrol Dial Transplant. 1996; 11:2192–201.PubMedCrossRefGoogle Scholar
  20. 20.
    Waldman M, Crew RJ, Valeri A, Busch J, Stokes B, Markowitz G, et al. Adult minimal-change disease: clinical characteristics, treatment, and outcomes. Clin J Am Soc Nephrol. 2007;2:445–53.PubMedCrossRefGoogle Scholar
  21. 21.
    Korbet SM, Schwartz MM, Lewis EJ. Minimal-change glomerulopathy of adulthood. Am J Nephrol. 1988;8:291–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Tse KC, Lam MF, Yip PS, Li FK, Choy BY, Lai KN, et al. Idiopathic minimal change nephrotic syndrome in older adults: steroid responsiveness and pattern of relapses. Nephrol Dial Transplant. 2003; 18:1316–20.PubMedCrossRefGoogle Scholar
  23. 23.
    Nolasco F, Cameron JS, Heywood EF, Hicks J, Ogg C, Williams DG. Adult-onset minimal change nephrotic syndrome: a long-term follow-up. Kidney Int. 1986;29:1215–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Fakhouri F, Bocquet N, Taupin P, Presne C, Gagnadoux MF, Landais P, et al. Steroid-sensitive nephrotic syndrome: from childhood to adulthood. Am J Kidney Dis. 2003;41:550–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Appel GB, Radhakrishnan J, D’Agati V. Secondary glomerular disease. In: Brenner BM, editor. Brenner & Rector’s the kidney. 8th ed. Philadelphia: Saunders; 2008. p. 1067–126.Google Scholar
  26. 26.
    Radhakrishnan J, Appel AS, Valeri A, Appel GB. The nephrotic syndrome, lipids, and risk factors for cardiovascular disease. Am J Kidney Dis. 1993;22:135–42.PubMedGoogle Scholar
  27. 27.
    McIntyre P, Craig JC. Prevention of serious bacterial infection in children with nephrotic syndrome. J Paediatr Child Health. 1998;34:314–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Mahmoodi BK, ten Kate MK, Waanders F, Veeger NJ, Brouwer JL, Vogt L, et al. High absolute risks and predictors of venous and arterial thromboembolic events in patients with nephrotic syndrome: results from a large retrospective cohort study. Circulation. 2008;117:224–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Imbasciati E, Gusmano R, Edefonti A, Zucchelli P, Pozzi C, Grassi C, Della Volpe M, Perfumo F, Petrone P, Picca M. Controlled trial of methylprednisolone pulses and low dose oral prednisone for the minimal change nephrotic syndrome. Br Med J. 1985; 291:1305–8.CrossRefGoogle Scholar
  30. 30.
    Hodson EM, Willis NS, Craig JC. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst Rev. 2007;4, CD001533.PubMedGoogle Scholar
  31. 31.
    Gipson DS, Massengill SF, Yao L, Nagaraj S, Smoyer WE, Mahan JD, et al. Management of childhood onset nephrotic syndrome. Pediatrics. 2009;124:747–57.PubMedCrossRefGoogle Scholar
  32. 32.
    Palmer SC, Nand K, Strippoli GF. Interventions for minimal change disease in adults with nephrotic syndrome. Cochrane Database Syst Rev. 2008;1, CD001537.PubMedGoogle Scholar
  33. 33.
    Uldall PR, Feest TG, Morley AR, Tomlinson BE, Kerr DN. Cyclophosphamide therapy in adults with minimal-change nephrotic syndrome. Lancet. 1972;1:1250–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Al-Khader AA, Lien JW, Aber GM. Cyclophosphamide alone in the treatment of adult patients with minimal change glomerulonephritis. Clin Nephrol. 1979;11:26–30.PubMedGoogle Scholar
  35. 35.
    Matsumoto H, Nakao T, Okada T, Nagaoka Y, Takeguchi F, Tomaru R, et al. Favorable outcome of low-dose cyclosporine after pulse methylprednisolone in Japanese adult minimal-change nephrotic syndrome. Intern Med. 2004;43:668–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Latta K, von Schnakenburg C, Ehrich JH. A meta-analysis of cytotoxic treatment for frequently relapsing nephrotic syndrome in children. Pediatr Nephrol. 2001;16:271–82.PubMedCrossRefGoogle Scholar
  37. 37.
    Li X, Li H, Chen J, He Q, Lv R, Lin W, et al. Tacrolimus as a steroid-sparing agent for adults with steroid-dependent minimal change nephrotic syndrome. Nephrol Dial Transplant. 2008; 23:1919–25.PubMedCrossRefGoogle Scholar
  38. 38.
    Meyrier A, Condamin MC, Broneer D, The Collaborative Group of the French Society of Nephrology. Treatment of adult idiopathic nephrotic syndrome with cyclosporin A: minimal-change disease and focal-segmental glomerulosclerosis. Clin Nephrol. 1991;35 Suppl 1:37–42.Google Scholar
  39. 39.
    Ponticelli C, Edefonti A, Ghio L, Rizzoni G, Rinaldi S, Gusmano R, et al. Cyclosporin versus cyclophosphamide for patients with steroid-dependent and frequently relapsing idiopathic nephrotic syndrome: a multicenter randomized controlled trial. Nephrol Dial Transplant. 1993;8:1326–32.PubMedGoogle Scholar
  40. 40.
    Eguchi A, Takei T, Yoshida T, Tsuchiya K, Nitta K. Combined cyclosporine and prednisolone therapy in adult patients with the first relapse of minimal-change nephrotic syndrome. Nephrol Dial Transplant. 2010;25:124–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Meyrier A, Niaudet P, Brodehl J. Optimal use of sandimmun in nephrotic syndrome. Berlin: Springer; 1993.Google Scholar
  42. 42.
    Meyrier A, Noel L-H, Auriche P, Callard P. Long-term renal tolerance of cyclosporin A treatment in adult idiopathic nephrotic syndrome. Collaborative Group of the Societe de Nephrologie. Kidney Int. 1994;45:1446–56.PubMedCrossRefGoogle Scholar
  43. 43.
    Siu YP, Tong MK, Leung K, Kwan TH, Au TC. The use of enteric-coated mycophenolate sodium in the treatment of relapsing and steroid-dependent minimal change disease. J Nephrol. 2008; 21:127–31.PubMedGoogle Scholar
  44. 44.
    Choi MJ, Eustace JA, Gimenez LF, Atta MG, Scheel PJ, Sothinathan R, et al. Mycophenolate mofetil treatment for primary glomerular diseases. Kidney Int. 2002;61:1098–114.PubMedCrossRefGoogle Scholar
  45. 45.
    Fujinaga S, Ohtomo Y, Hirano D, Nishizaki N, Someya T, Ohtsuka Y, et al. Mycophenolate mofetil therapy for childhood-onset steroid dependent nephrotic syndrome after long-term cyclosporine: extended experience in a single center. Clin Nephrol. 2009; 72:268–73.PubMedGoogle Scholar
  46. 46.
    Hoxha E, Stahl RA, Harendza S. Rituximab in adult patients with immunosuppressive-dependent minimal change disease. Clin Nephrol. 2011;76:151–8.PubMedGoogle Scholar
  47. 47.
    Fujinaga S, Hirano D, Nishizaki N, Kamei K, Ito S, Ohtomo Y, et al. Single infusion of rituximab for persistent steroid-dependent minimal-change nephrotic syndrome after long-term cyclosporine. Pediatr Nephrol. 2010;25:539–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Jennette JC, Falk RJ. Adult minimal change glomerulopathy with acute renal failure. Am J Kidney Dis. 1990;16:432–7.PubMedGoogle Scholar
  49. 49.
    Lechner BL, Bockenhauer D, Iragorri S, Kennedy TL, Siegel NJ. The risk of cardiovascular disease in adults who have had childhood nephrotic syndrome. Pediatr Nephrol. 2004;19:744–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Medicine, Division of NephrologyColumbia University Medical CenterNew YorkUSA
  2. 2.Columbia University Medical CenterNew YorkUSA

Personalised recommendations